Annotation of rpl/lapack/lapack/zgelsd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
        !             2:      $                   WORK, LWORK, RWORK, IWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
        !            11:       DOUBLE PRECISION   RCOND
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IWORK( * )
        !            15:       DOUBLE PRECISION   RWORK( * ), S( * )
        !            16:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
        !            17: *     ..
        !            18: *
        !            19: *  Purpose
        !            20: *  =======
        !            21: *
        !            22: *  ZGELSD computes the minimum-norm solution to a real linear least
        !            23: *  squares problem:
        !            24: *      minimize 2-norm(| b - A*x |)
        !            25: *  using the singular value decomposition (SVD) of A. A is an M-by-N
        !            26: *  matrix which may be rank-deficient.
        !            27: *
        !            28: *  Several right hand side vectors b and solution vectors x can be
        !            29: *  handled in a single call; they are stored as the columns of the
        !            30: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
        !            31: *  matrix X.
        !            32: *
        !            33: *  The problem is solved in three steps:
        !            34: *  (1) Reduce the coefficient matrix A to bidiagonal form with
        !            35: *      Householder tranformations, reducing the original problem
        !            36: *      into a "bidiagonal least squares problem" (BLS)
        !            37: *  (2) Solve the BLS using a divide and conquer approach.
        !            38: *  (3) Apply back all the Householder tranformations to solve
        !            39: *      the original least squares problem.
        !            40: *
        !            41: *  The effective rank of A is determined by treating as zero those
        !            42: *  singular values which are less than RCOND times the largest singular
        !            43: *  value.
        !            44: *
        !            45: *  The divide and conquer algorithm makes very mild assumptions about
        !            46: *  floating point arithmetic. It will work on machines with a guard
        !            47: *  digit in add/subtract, or on those binary machines without guard
        !            48: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            49: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            50: *  without guard digits, but we know of none.
        !            51: *
        !            52: *  Arguments
        !            53: *  =========
        !            54: *
        !            55: *  M       (input) INTEGER
        !            56: *          The number of rows of the matrix A. M >= 0.
        !            57: *
        !            58: *  N       (input) INTEGER
        !            59: *          The number of columns of the matrix A. N >= 0.
        !            60: *
        !            61: *  NRHS    (input) INTEGER
        !            62: *          The number of right hand sides, i.e., the number of columns
        !            63: *          of the matrices B and X. NRHS >= 0.
        !            64: *
        !            65: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
        !            66: *          On entry, the M-by-N matrix A.
        !            67: *          On exit, A has been destroyed.
        !            68: *
        !            69: *  LDA     (input) INTEGER
        !            70: *          The leading dimension of the array A. LDA >= max(1,M).
        !            71: *
        !            72: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
        !            73: *          On entry, the M-by-NRHS right hand side matrix B.
        !            74: *          On exit, B is overwritten by the N-by-NRHS solution matrix X.
        !            75: *          If m >= n and RANK = n, the residual sum-of-squares for
        !            76: *          the solution in the i-th column is given by the sum of
        !            77: *          squares of the modulus of elements n+1:m in that column.
        !            78: *
        !            79: *  LDB     (input) INTEGER
        !            80: *          The leading dimension of the array B.  LDB >= max(1,M,N).
        !            81: *
        !            82: *  S       (output) DOUBLE PRECISION array, dimension (min(M,N))
        !            83: *          The singular values of A in decreasing order.
        !            84: *          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
        !            85: *
        !            86: *  RCOND   (input) DOUBLE PRECISION
        !            87: *          RCOND is used to determine the effective rank of A.
        !            88: *          Singular values S(i) <= RCOND*S(1) are treated as zero.
        !            89: *          If RCOND < 0, machine precision is used instead.
        !            90: *
        !            91: *  RANK    (output) INTEGER
        !            92: *          The effective rank of A, i.e., the number of singular values
        !            93: *          which are greater than RCOND*S(1).
        !            94: *
        !            95: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !            96: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            97: *
        !            98: *  LWORK   (input) INTEGER
        !            99: *          The dimension of the array WORK. LWORK must be at least 1.
        !           100: *          The exact minimum amount of workspace needed depends on M,
        !           101: *          N and NRHS. As long as LWORK is at least
        !           102: *              2*N + N*NRHS
        !           103: *          if M is greater than or equal to N or
        !           104: *              2*M + M*NRHS
        !           105: *          if M is less than N, the code will execute correctly.
        !           106: *          For good performance, LWORK should generally be larger.
        !           107: *
        !           108: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           109: *          only calculates the optimal size of the array WORK and the
        !           110: *          minimum sizes of the arrays RWORK and IWORK, and returns
        !           111: *          these values as the first entries of the WORK, RWORK and
        !           112: *          IWORK arrays, and no error message related to LWORK is issued
        !           113: *          by XERBLA.
        !           114: *
        !           115: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
        !           116: *          LRWORK >=
        !           117: *              10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
        !           118: *             (SMLSIZ+1)**2
        !           119: *          if M is greater than or equal to N or
        !           120: *             10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
        !           121: *             (SMLSIZ+1)**2
        !           122: *          if M is less than N, the code will execute correctly.
        !           123: *          SMLSIZ is returned by ILAENV and is equal to the maximum
        !           124: *          size of the subproblems at the bottom of the computation
        !           125: *          tree (usually about 25), and
        !           126: *             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
        !           127: *          On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK.
        !           128: *
        !           129: *  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
        !           130: *          LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN),
        !           131: *          where MINMN = MIN( M,N ).
        !           132: *          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
        !           133: *
        !           134: *  INFO    (output) INTEGER
        !           135: *          = 0: successful exit
        !           136: *          < 0: if INFO = -i, the i-th argument had an illegal value.
        !           137: *          > 0:  the algorithm for computing the SVD failed to converge;
        !           138: *                if INFO = i, i off-diagonal elements of an intermediate
        !           139: *                bidiagonal form did not converge to zero.
        !           140: *
        !           141: *  Further Details
        !           142: *  ===============
        !           143: *
        !           144: *  Based on contributions by
        !           145: *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
        !           146: *       California at Berkeley, USA
        !           147: *     Osni Marques, LBNL/NERSC, USA
        !           148: *
        !           149: *  =====================================================================
        !           150: *
        !           151: *     .. Parameters ..
        !           152:       DOUBLE PRECISION   ZERO, ONE, TWO
        !           153:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
        !           154:       COMPLEX*16         CZERO
        !           155:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
        !           156: *     ..
        !           157: *     .. Local Scalars ..
        !           158:       LOGICAL            LQUERY
        !           159:       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
        !           160:      $                   LDWORK, LIWORK, LRWORK, MAXMN, MAXWRK, MINMN,
        !           161:      $                   MINWRK, MM, MNTHR, NLVL, NRWORK, NWORK, SMLSIZ
        !           162:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
        !           163: *     ..
        !           164: *     .. External Subroutines ..
        !           165:       EXTERNAL           DLABAD, DLASCL, DLASET, XERBLA, ZGEBRD, ZGELQF,
        !           166:      $                   ZGEQRF, ZLACPY, ZLALSD, ZLASCL, ZLASET, ZUNMBR,
        !           167:      $                   ZUNMLQ, ZUNMQR
        !           168: *     ..
        !           169: *     .. External Functions ..
        !           170:       INTEGER            ILAENV
        !           171:       DOUBLE PRECISION   DLAMCH, ZLANGE
        !           172:       EXTERNAL           ILAENV, DLAMCH, ZLANGE
        !           173: *     ..
        !           174: *     .. Intrinsic Functions ..
        !           175:       INTRINSIC          INT, LOG, MAX, MIN, DBLE
        !           176: *     ..
        !           177: *     .. Executable Statements ..
        !           178: *
        !           179: *     Test the input arguments.
        !           180: *
        !           181:       INFO = 0
        !           182:       MINMN = MIN( M, N )
        !           183:       MAXMN = MAX( M, N )
        !           184:       LQUERY = ( LWORK.EQ.-1 )
        !           185:       IF( M.LT.0 ) THEN
        !           186:          INFO = -1
        !           187:       ELSE IF( N.LT.0 ) THEN
        !           188:          INFO = -2
        !           189:       ELSE IF( NRHS.LT.0 ) THEN
        !           190:          INFO = -3
        !           191:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           192:          INFO = -5
        !           193:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
        !           194:          INFO = -7
        !           195:       END IF
        !           196: *
        !           197: *     Compute workspace.
        !           198: *     (Note: Comments in the code beginning "Workspace:" describe the
        !           199: *     minimal amount of workspace needed at that point in the code,
        !           200: *     as well as the preferred amount for good performance.
        !           201: *     NB refers to the optimal block size for the immediately
        !           202: *     following subroutine, as returned by ILAENV.)
        !           203: *
        !           204:       IF( INFO.EQ.0 ) THEN
        !           205:          MINWRK = 1
        !           206:          MAXWRK = 1
        !           207:          LIWORK = 1
        !           208:          LRWORK = 1
        !           209:          IF( MINMN.GT.0 ) THEN
        !           210:             SMLSIZ = ILAENV( 9, 'ZGELSD', ' ', 0, 0, 0, 0 )
        !           211:             MNTHR = ILAENV( 6, 'ZGELSD', ' ', M, N, NRHS, -1 )
        !           212:             NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ + 1 ) ) /
        !           213:      $                  LOG( TWO ) ) + 1, 0 )
        !           214:             LIWORK = 3*MINMN*NLVL + 11*MINMN
        !           215:             MM = M
        !           216:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
        !           217: *
        !           218: *              Path 1a - overdetermined, with many more rows than
        !           219: *                        columns.
        !           220: *
        !           221:                MM = N
        !           222:                MAXWRK = MAX( MAXWRK, N*ILAENV( 1, 'ZGEQRF', ' ', M, N,
        !           223:      $                       -1, -1 ) )
        !           224:                MAXWRK = MAX( MAXWRK, NRHS*ILAENV( 1, 'ZUNMQR', 'LC', M,
        !           225:      $                       NRHS, N, -1 ) )
        !           226:             END IF
        !           227:             IF( M.GE.N ) THEN
        !           228: *
        !           229: *              Path 1 - overdetermined or exactly determined.
        !           230: *
        !           231:                LRWORK = 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
        !           232:      $                  ( SMLSIZ + 1 )**2
        !           233:                MAXWRK = MAX( MAXWRK, 2*N + ( MM + N )*ILAENV( 1,
        !           234:      $                       'ZGEBRD', ' ', MM, N, -1, -1 ) )
        !           235:                MAXWRK = MAX( MAXWRK, 2*N + NRHS*ILAENV( 1, 'ZUNMBR',
        !           236:      $                       'QLC', MM, NRHS, N, -1 ) )
        !           237:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
        !           238:      $                       'ZUNMBR', 'PLN', N, NRHS, N, -1 ) )
        !           239:                MAXWRK = MAX( MAXWRK, 2*N + N*NRHS )
        !           240:                MINWRK = MAX( 2*N + MM, 2*N + N*NRHS )
        !           241:             END IF
        !           242:             IF( N.GT.M ) THEN
        !           243:                LRWORK = 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
        !           244:      $                  ( SMLSIZ + 1 )**2
        !           245:                IF( N.GE.MNTHR ) THEN
        !           246: *
        !           247: *                 Path 2a - underdetermined, with many more columns
        !           248: *                           than rows.
        !           249: *
        !           250:                   MAXWRK = M + M*ILAENV( 1, 'ZGELQF', ' ', M, N, -1,
        !           251:      $                     -1 )
        !           252:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + 2*M*ILAENV( 1,
        !           253:      $                          'ZGEBRD', ' ', M, M, -1, -1 ) )
        !           254:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + NRHS*ILAENV( 1,
        !           255:      $                          'ZUNMBR', 'QLC', M, NRHS, M, -1 ) )
        !           256:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + ( M - 1 )*ILAENV( 1,
        !           257:      $                          'ZUNMLQ', 'LC', N, NRHS, M, -1 ) )
        !           258:                   IF( NRHS.GT.1 ) THEN
        !           259:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
        !           260:                   ELSE
        !           261:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
        !           262:                   END IF
        !           263:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + M*NRHS )
        !           264: !     XXX: Ensure the Path 2a case below is triggered.  The workspace
        !           265: !     calculation should use queries for all routines eventually.
        !           266:                   MAXWRK = MAX( MAXWRK,
        !           267:      $                 4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
        !           268:                ELSE
        !           269: *
        !           270: *                 Path 2 - underdetermined.
        !           271: *
        !           272:                   MAXWRK = 2*M + ( N + M )*ILAENV( 1, 'ZGEBRD', ' ', M,
        !           273:      $                     N, -1, -1 )
        !           274:                   MAXWRK = MAX( MAXWRK, 2*M + NRHS*ILAENV( 1, 'ZUNMBR',
        !           275:      $                          'QLC', M, NRHS, M, -1 ) )
        !           276:                   MAXWRK = MAX( MAXWRK, 2*M + M*ILAENV( 1, 'ZUNMBR',
        !           277:      $                          'PLN', N, NRHS, M, -1 ) )
        !           278:                   MAXWRK = MAX( MAXWRK, 2*M + M*NRHS )
        !           279:                END IF
        !           280:                MINWRK = MAX( 2*M + N, 2*M + M*NRHS )
        !           281:             END IF
        !           282:          END IF
        !           283:          MINWRK = MIN( MINWRK, MAXWRK )
        !           284:          WORK( 1 ) = MAXWRK
        !           285:          IWORK( 1 ) = LIWORK
        !           286:          RWORK( 1 ) = LRWORK
        !           287: *
        !           288:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
        !           289:             INFO = -12
        !           290:          END IF
        !           291:       END IF
        !           292: *
        !           293:       IF( INFO.NE.0 ) THEN
        !           294:          CALL XERBLA( 'ZGELSD', -INFO )
        !           295:          RETURN
        !           296:       ELSE IF( LQUERY ) THEN
        !           297:          RETURN
        !           298:       END IF
        !           299: *
        !           300: *     Quick return if possible.
        !           301: *
        !           302:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
        !           303:          RANK = 0
        !           304:          RETURN
        !           305:       END IF
        !           306: *
        !           307: *     Get machine parameters.
        !           308: *
        !           309:       EPS = DLAMCH( 'P' )
        !           310:       SFMIN = DLAMCH( 'S' )
        !           311:       SMLNUM = SFMIN / EPS
        !           312:       BIGNUM = ONE / SMLNUM
        !           313:       CALL DLABAD( SMLNUM, BIGNUM )
        !           314: *
        !           315: *     Scale A if max entry outside range [SMLNUM,BIGNUM].
        !           316: *
        !           317:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
        !           318:       IASCL = 0
        !           319:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           320: *
        !           321: *        Scale matrix norm up to SMLNUM
        !           322: *
        !           323:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
        !           324:          IASCL = 1
        !           325:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           326: *
        !           327: *        Scale matrix norm down to BIGNUM.
        !           328: *
        !           329:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
        !           330:          IASCL = 2
        !           331:       ELSE IF( ANRM.EQ.ZERO ) THEN
        !           332: *
        !           333: *        Matrix all zero. Return zero solution.
        !           334: *
        !           335:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
        !           336:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
        !           337:          RANK = 0
        !           338:          GO TO 10
        !           339:       END IF
        !           340: *
        !           341: *     Scale B if max entry outside range [SMLNUM,BIGNUM].
        !           342: *
        !           343:       BNRM = ZLANGE( 'M', M, NRHS, B, LDB, RWORK )
        !           344:       IBSCL = 0
        !           345:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           346: *
        !           347: *        Scale matrix norm up to SMLNUM.
        !           348: *
        !           349:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
        !           350:          IBSCL = 1
        !           351:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           352: *
        !           353: *        Scale matrix norm down to BIGNUM.
        !           354: *
        !           355:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
        !           356:          IBSCL = 2
        !           357:       END IF
        !           358: *
        !           359: *     If M < N make sure B(M+1:N,:) = 0
        !           360: *
        !           361:       IF( M.LT.N )
        !           362:      $   CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
        !           363: *
        !           364: *     Overdetermined case.
        !           365: *
        !           366:       IF( M.GE.N ) THEN
        !           367: *
        !           368: *        Path 1 - overdetermined or exactly determined.
        !           369: *
        !           370:          MM = M
        !           371:          IF( M.GE.MNTHR ) THEN
        !           372: *
        !           373: *           Path 1a - overdetermined, with many more rows than columns
        !           374: *
        !           375:             MM = N
        !           376:             ITAU = 1
        !           377:             NWORK = ITAU + N
        !           378: *
        !           379: *           Compute A=Q*R.
        !           380: *           (RWorkspace: need N)
        !           381: *           (CWorkspace: need N, prefer N*NB)
        !           382: *
        !           383:             CALL ZGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
        !           384:      $                   LWORK-NWORK+1, INFO )
        !           385: *
        !           386: *           Multiply B by transpose(Q).
        !           387: *           (RWorkspace: need N)
        !           388: *           (CWorkspace: need NRHS, prefer NRHS*NB)
        !           389: *
        !           390:             CALL ZUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
        !           391:      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
        !           392: *
        !           393: *           Zero out below R.
        !           394: *
        !           395:             IF( N.GT.1 ) THEN
        !           396:                CALL ZLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
        !           397:      $                      LDA )
        !           398:             END IF
        !           399:          END IF
        !           400: *
        !           401:          ITAUQ = 1
        !           402:          ITAUP = ITAUQ + N
        !           403:          NWORK = ITAUP + N
        !           404:          IE = 1
        !           405:          NRWORK = IE + N
        !           406: *
        !           407: *        Bidiagonalize R in A.
        !           408: *        (RWorkspace: need N)
        !           409: *        (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
        !           410: *
        !           411:          CALL ZGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
        !           412:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
        !           413:      $                INFO )
        !           414: *
        !           415: *        Multiply B by transpose of left bidiagonalizing vectors of R.
        !           416: *        (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
        !           417: *
        !           418:          CALL ZUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
        !           419:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
        !           420: *
        !           421: *        Solve the bidiagonal least squares problem.
        !           422: *
        !           423:          CALL ZLALSD( 'U', SMLSIZ, N, NRHS, S, RWORK( IE ), B, LDB,
        !           424:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
        !           425:      $                IWORK, INFO )
        !           426:          IF( INFO.NE.0 ) THEN
        !           427:             GO TO 10
        !           428:          END IF
        !           429: *
        !           430: *        Multiply B by right bidiagonalizing vectors of R.
        !           431: *
        !           432:          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
        !           433:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
        !           434: *
        !           435:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
        !           436:      $         MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
        !           437: *
        !           438: *        Path 2a - underdetermined, with many more columns than rows
        !           439: *        and sufficient workspace for an efficient algorithm.
        !           440: *
        !           441:          LDWORK = M
        !           442:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
        !           443:      $       M*LDA+M+M*NRHS ) )LDWORK = LDA
        !           444:          ITAU = 1
        !           445:          NWORK = M + 1
        !           446: *
        !           447: *        Compute A=L*Q.
        !           448: *        (CWorkspace: need 2*M, prefer M+M*NB)
        !           449: *
        !           450:          CALL ZGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
        !           451:      $                LWORK-NWORK+1, INFO )
        !           452:          IL = NWORK
        !           453: *
        !           454: *        Copy L to WORK(IL), zeroing out above its diagonal.
        !           455: *
        !           456:          CALL ZLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
        !           457:          CALL ZLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
        !           458:      $                LDWORK )
        !           459:          ITAUQ = IL + LDWORK*M
        !           460:          ITAUP = ITAUQ + M
        !           461:          NWORK = ITAUP + M
        !           462:          IE = 1
        !           463:          NRWORK = IE + M
        !           464: *
        !           465: *        Bidiagonalize L in WORK(IL).
        !           466: *        (RWorkspace: need M)
        !           467: *        (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB)
        !           468: *
        !           469:          CALL ZGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
        !           470:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
        !           471:      $                LWORK-NWORK+1, INFO )
        !           472: *
        !           473: *        Multiply B by transpose of left bidiagonalizing vectors of L.
        !           474: *        (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
        !           475: *
        !           476:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
        !           477:      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
        !           478:      $                LWORK-NWORK+1, INFO )
        !           479: *
        !           480: *        Solve the bidiagonal least squares problem.
        !           481: *
        !           482:          CALL ZLALSD( 'U', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
        !           483:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
        !           484:      $                IWORK, INFO )
        !           485:          IF( INFO.NE.0 ) THEN
        !           486:             GO TO 10
        !           487:          END IF
        !           488: *
        !           489: *        Multiply B by right bidiagonalizing vectors of L.
        !           490: *
        !           491:          CALL ZUNMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
        !           492:      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
        !           493:      $                LWORK-NWORK+1, INFO )
        !           494: *
        !           495: *        Zero out below first M rows of B.
        !           496: *
        !           497:          CALL ZLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
        !           498:          NWORK = ITAU + M
        !           499: *
        !           500: *        Multiply transpose(Q) by B.
        !           501: *        (CWorkspace: need NRHS, prefer NRHS*NB)
        !           502: *
        !           503:          CALL ZUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
        !           504:      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
        !           505: *
        !           506:       ELSE
        !           507: *
        !           508: *        Path 2 - remaining underdetermined cases.
        !           509: *
        !           510:          ITAUQ = 1
        !           511:          ITAUP = ITAUQ + M
        !           512:          NWORK = ITAUP + M
        !           513:          IE = 1
        !           514:          NRWORK = IE + M
        !           515: *
        !           516: *        Bidiagonalize A.
        !           517: *        (RWorkspace: need M)
        !           518: *        (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
        !           519: *
        !           520:          CALL ZGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
        !           521:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
        !           522:      $                INFO )
        !           523: *
        !           524: *        Multiply B by transpose of left bidiagonalizing vectors.
        !           525: *        (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
        !           526: *
        !           527:          CALL ZUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
        !           528:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
        !           529: *
        !           530: *        Solve the bidiagonal least squares problem.
        !           531: *
        !           532:          CALL ZLALSD( 'L', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
        !           533:      $                RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
        !           534:      $                IWORK, INFO )
        !           535:          IF( INFO.NE.0 ) THEN
        !           536:             GO TO 10
        !           537:          END IF
        !           538: *
        !           539: *        Multiply B by right bidiagonalizing vectors of A.
        !           540: *
        !           541:          CALL ZUNMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
        !           542:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
        !           543: *
        !           544:       END IF
        !           545: *
        !           546: *     Undo scaling.
        !           547: *
        !           548:       IF( IASCL.EQ.1 ) THEN
        !           549:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
        !           550:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
        !           551:      $                INFO )
        !           552:       ELSE IF( IASCL.EQ.2 ) THEN
        !           553:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
        !           554:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
        !           555:      $                INFO )
        !           556:       END IF
        !           557:       IF( IBSCL.EQ.1 ) THEN
        !           558:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
        !           559:       ELSE IF( IBSCL.EQ.2 ) THEN
        !           560:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
        !           561:       END IF
        !           562: *
        !           563:    10 CONTINUE
        !           564:       WORK( 1 ) = MAXWRK
        !           565:       IWORK( 1 ) = LIWORK
        !           566:       RWORK( 1 ) = LRWORK
        !           567:       RETURN
        !           568: *
        !           569: *     End of ZGELSD
        !           570: *
        !           571:       END

CVSweb interface <joel.bertrand@systella.fr>