File:  [local] / rpl / lapack / lapack / zgels.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:14 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
    2:      $                  INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.3.1) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *  -- April 2011                                                      --
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          TRANS
   11:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
   12: *     ..
   13: *     .. Array Arguments ..
   14:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  ZGELS solves overdetermined or underdetermined complex linear systems
   21: *  involving an M-by-N matrix A, or its conjugate-transpose, using a QR
   22: *  or LQ factorization of A.  It is assumed that A has full rank.
   23: *
   24: *  The following options are provided:
   25: *
   26: *  1. If TRANS = 'N' and m >= n:  find the least squares solution of
   27: *     an overdetermined system, i.e., solve the least squares problem
   28: *                  minimize || B - A*X ||.
   29: *
   30: *  2. If TRANS = 'N' and m < n:  find the minimum norm solution of
   31: *     an underdetermined system A * X = B.
   32: *
   33: *  3. If TRANS = 'C' and m >= n:  find the minimum norm solution of
   34: *     an undetermined system A**H * X = B.
   35: *
   36: *  4. If TRANS = 'C' and m < n:  find the least squares solution of
   37: *     an overdetermined system, i.e., solve the least squares problem
   38: *                  minimize || B - A**H * X ||.
   39: *
   40: *  Several right hand side vectors b and solution vectors x can be
   41: *  handled in a single call; they are stored as the columns of the
   42: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   43: *  matrix X.
   44: *
   45: *  Arguments
   46: *  =========
   47: *
   48: *  TRANS   (input) CHARACTER*1
   49: *          = 'N': the linear system involves A;
   50: *          = 'C': the linear system involves A**H.
   51: *
   52: *  M       (input) INTEGER
   53: *          The number of rows of the matrix A.  M >= 0.
   54: *
   55: *  N       (input) INTEGER
   56: *          The number of columns of the matrix A.  N >= 0.
   57: *
   58: *  NRHS    (input) INTEGER
   59: *          The number of right hand sides, i.e., the number of
   60: *          columns of the matrices B and X. NRHS >= 0.
   61: *
   62: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   63: *          On entry, the M-by-N matrix A.
   64: *            if M >= N, A is overwritten by details of its QR
   65: *                       factorization as returned by ZGEQRF;
   66: *            if M <  N, A is overwritten by details of its LQ
   67: *                       factorization as returned by ZGELQF.
   68: *
   69: *  LDA     (input) INTEGER
   70: *          The leading dimension of the array A.  LDA >= max(1,M).
   71: *
   72: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
   73: *          On entry, the matrix B of right hand side vectors, stored
   74: *          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
   75: *          if TRANS = 'C'.
   76: *          On exit, if INFO = 0, B is overwritten by the solution
   77: *          vectors, stored columnwise:
   78: *          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
   79: *          squares solution vectors; the residual sum of squares for the
   80: *          solution in each column is given by the sum of squares of the
   81: *          modulus of elements N+1 to M in that column;
   82: *          if TRANS = 'N' and m < n, rows 1 to N of B contain the
   83: *          minimum norm solution vectors;
   84: *          if TRANS = 'C' and m >= n, rows 1 to M of B contain the
   85: *          minimum norm solution vectors;
   86: *          if TRANS = 'C' and m < n, rows 1 to M of B contain the
   87: *          least squares solution vectors; the residual sum of squares
   88: *          for the solution in each column is given by the sum of
   89: *          squares of the modulus of elements M+1 to N in that column.
   90: *
   91: *  LDB     (input) INTEGER
   92: *          The leading dimension of the array B. LDB >= MAX(1,M,N).
   93: *
   94: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
   95: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   96: *
   97: *  LWORK   (input) INTEGER
   98: *          The dimension of the array WORK.
   99: *          LWORK >= max( 1, MN + max( MN, NRHS ) ).
  100: *          For optimal performance,
  101: *          LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
  102: *          where MN = min(M,N) and NB is the optimum block size.
  103: *
  104: *          If LWORK = -1, then a workspace query is assumed; the routine
  105: *          only calculates the optimal size of the WORK array, returns
  106: *          this value as the first entry of the WORK array, and no error
  107: *          message related to LWORK is issued by XERBLA.
  108: *
  109: *  INFO    (output) INTEGER
  110: *          = 0:  successful exit
  111: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  112: *          > 0:  if INFO =  i, the i-th diagonal element of the
  113: *                triangular factor of A is zero, so that A does not have
  114: *                full rank; the least squares solution could not be
  115: *                computed.
  116: *
  117: *  =====================================================================
  118: *
  119: *     .. Parameters ..
  120:       DOUBLE PRECISION   ZERO, ONE
  121:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  122:       COMPLEX*16         CZERO
  123:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  124: *     ..
  125: *     .. Local Scalars ..
  126:       LOGICAL            LQUERY, TPSD
  127:       INTEGER            BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
  128:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM
  129: *     ..
  130: *     .. Local Arrays ..
  131:       DOUBLE PRECISION   RWORK( 1 )
  132: *     ..
  133: *     .. External Functions ..
  134:       LOGICAL            LSAME
  135:       INTEGER            ILAENV
  136:       DOUBLE PRECISION   DLAMCH, ZLANGE
  137:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
  138: *     ..
  139: *     .. External Subroutines ..
  140:       EXTERNAL           DLABAD, XERBLA, ZGELQF, ZGEQRF, ZLASCL, ZLASET,
  141:      $                   ZTRTRS, ZUNMLQ, ZUNMQR
  142: *     ..
  143: *     .. Intrinsic Functions ..
  144:       INTRINSIC          DBLE, MAX, MIN
  145: *     ..
  146: *     .. Executable Statements ..
  147: *
  148: *     Test the input arguments.
  149: *
  150:       INFO = 0
  151:       MN = MIN( M, N )
  152:       LQUERY = ( LWORK.EQ.-1 )
  153:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
  154:          INFO = -1
  155:       ELSE IF( M.LT.0 ) THEN
  156:          INFO = -2
  157:       ELSE IF( N.LT.0 ) THEN
  158:          INFO = -3
  159:       ELSE IF( NRHS.LT.0 ) THEN
  160:          INFO = -4
  161:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  162:          INFO = -6
  163:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  164:          INFO = -8
  165:       ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
  166:      $          THEN
  167:          INFO = -10
  168:       END IF
  169: *
  170: *     Figure out optimal block size
  171: *
  172:       IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
  173: *
  174:          TPSD = .TRUE.
  175:          IF( LSAME( TRANS, 'N' ) )
  176:      $      TPSD = .FALSE.
  177: *
  178:          IF( M.GE.N ) THEN
  179:             NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
  180:             IF( TPSD ) THEN
  181:                NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LN', M, NRHS, N,
  182:      $              -1 ) )
  183:             ELSE
  184:                NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LC', M, NRHS, N,
  185:      $              -1 ) )
  186:             END IF
  187:          ELSE
  188:             NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
  189:             IF( TPSD ) THEN
  190:                NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LC', N, NRHS, M,
  191:      $              -1 ) )
  192:             ELSE
  193:                NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LN', N, NRHS, M,
  194:      $              -1 ) )
  195:             END IF
  196:          END IF
  197: *
  198:          WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
  199:          WORK( 1 ) = DBLE( WSIZE )
  200: *
  201:       END IF
  202: *
  203:       IF( INFO.NE.0 ) THEN
  204:          CALL XERBLA( 'ZGELS ', -INFO )
  205:          RETURN
  206:       ELSE IF( LQUERY ) THEN
  207:          RETURN
  208:       END IF
  209: *
  210: *     Quick return if possible
  211: *
  212:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  213:          CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  214:          RETURN
  215:       END IF
  216: *
  217: *     Get machine parameters
  218: *
  219:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  220:       BIGNUM = ONE / SMLNUM
  221:       CALL DLABAD( SMLNUM, BIGNUM )
  222: *
  223: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
  224: *
  225:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  226:       IASCL = 0
  227:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  228: *
  229: *        Scale matrix norm up to SMLNUM
  230: *
  231:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  232:          IASCL = 1
  233:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  234: *
  235: *        Scale matrix norm down to BIGNUM
  236: *
  237:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  238:          IASCL = 2
  239:       ELSE IF( ANRM.EQ.ZERO ) THEN
  240: *
  241: *        Matrix all zero. Return zero solution.
  242: *
  243:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  244:          GO TO 50
  245:       END IF
  246: *
  247:       BROW = M
  248:       IF( TPSD )
  249:      $   BROW = N
  250:       BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
  251:       IBSCL = 0
  252:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  253: *
  254: *        Scale matrix norm up to SMLNUM
  255: *
  256:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  257:      $                INFO )
  258:          IBSCL = 1
  259:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  260: *
  261: *        Scale matrix norm down to BIGNUM
  262: *
  263:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  264:      $                INFO )
  265:          IBSCL = 2
  266:       END IF
  267: *
  268:       IF( M.GE.N ) THEN
  269: *
  270: *        compute QR factorization of A
  271: *
  272:          CALL ZGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
  273:      $                INFO )
  274: *
  275: *        workspace at least N, optimally N*NB
  276: *
  277:          IF( .NOT.TPSD ) THEN
  278: *
  279: *           Least-Squares Problem min || A * X - B ||
  280: *
  281: *           B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
  282: *
  283:             CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, N, A,
  284:      $                   LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  285:      $                   INFO )
  286: *
  287: *           workspace at least NRHS, optimally NRHS*NB
  288: *
  289: *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  290: *
  291:             CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
  292:      $                   A, LDA, B, LDB, INFO )
  293: *
  294:             IF( INFO.GT.0 ) THEN
  295:                RETURN
  296:             END IF
  297: *
  298:             SCLLEN = N
  299: *
  300:          ELSE
  301: *
  302: *           Overdetermined system of equations A**H * X = B
  303: *
  304: *           B(1:N,1:NRHS) := inv(R**H) * B(1:N,1:NRHS)
  305: *
  306:             CALL ZTRTRS( 'Upper', 'Conjugate transpose','Non-unit',
  307:      $                   N, NRHS, A, LDA, B, LDB, INFO )
  308: *
  309:             IF( INFO.GT.0 ) THEN
  310:                RETURN
  311:             END IF
  312: *
  313: *           B(N+1:M,1:NRHS) = ZERO
  314: *
  315:             DO 20 J = 1, NRHS
  316:                DO 10 I = N + 1, M
  317:                   B( I, J ) = CZERO
  318:    10          CONTINUE
  319:    20       CONTINUE
  320: *
  321: *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  322: *
  323:             CALL ZUNMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
  324:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  325:      $                   INFO )
  326: *
  327: *           workspace at least NRHS, optimally NRHS*NB
  328: *
  329:             SCLLEN = M
  330: *
  331:          END IF
  332: *
  333:       ELSE
  334: *
  335: *        Compute LQ factorization of A
  336: *
  337:          CALL ZGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
  338:      $                INFO )
  339: *
  340: *        workspace at least M, optimally M*NB.
  341: *
  342:          IF( .NOT.TPSD ) THEN
  343: *
  344: *           underdetermined system of equations A * X = B
  345: *
  346: *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  347: *
  348:             CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
  349:      $                   A, LDA, B, LDB, INFO )
  350: *
  351:             IF( INFO.GT.0 ) THEN
  352:                RETURN
  353:             END IF
  354: *
  355: *           B(M+1:N,1:NRHS) = 0
  356: *
  357:             DO 40 J = 1, NRHS
  358:                DO 30 I = M + 1, N
  359:                   B( I, J ) = CZERO
  360:    30          CONTINUE
  361:    40       CONTINUE
  362: *
  363: *           B(1:N,1:NRHS) := Q(1:N,:)**H * B(1:M,1:NRHS)
  364: *
  365:             CALL ZUNMLQ( 'Left', 'Conjugate transpose', N, NRHS, M, A,
  366:      $                   LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  367:      $                   INFO )
  368: *
  369: *           workspace at least NRHS, optimally NRHS*NB
  370: *
  371:             SCLLEN = N
  372: *
  373:          ELSE
  374: *
  375: *           overdetermined system min || A**H * X - B ||
  376: *
  377: *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  378: *
  379:             CALL ZUNMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
  380:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  381:      $                   INFO )
  382: *
  383: *           workspace at least NRHS, optimally NRHS*NB
  384: *
  385: *           B(1:M,1:NRHS) := inv(L**H) * B(1:M,1:NRHS)
  386: *
  387:             CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
  388:      $                   M, NRHS, A, LDA, B, LDB, INFO )
  389: *
  390:             IF( INFO.GT.0 ) THEN
  391:                RETURN
  392:             END IF
  393: *
  394:             SCLLEN = M
  395: *
  396:          END IF
  397: *
  398:       END IF
  399: *
  400: *     Undo scaling
  401: *
  402:       IF( IASCL.EQ.1 ) THEN
  403:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  404:      $                INFO )
  405:       ELSE IF( IASCL.EQ.2 ) THEN
  406:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  407:      $                INFO )
  408:       END IF
  409:       IF( IBSCL.EQ.1 ) THEN
  410:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  411:      $                INFO )
  412:       ELSE IF( IBSCL.EQ.2 ) THEN
  413:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  414:      $                INFO )
  415:       END IF
  416: *
  417:    50 CONTINUE
  418:       WORK( 1 ) = DBLE( WSIZE )
  419: *
  420:       RETURN
  421: *
  422: *     End of ZGELS
  423: *
  424:       END

CVSweb interface <joel.bertrand@systella.fr>