File:  [local] / rpl / lapack / lapack / zgels.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:17 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZGELS solves overdetermined or underdetermined systems for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGELS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgels.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgels.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgels.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
   22: *                         INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          TRANS
   26: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZGELS solves overdetermined or underdetermined complex linear systems
   39: *> involving an M-by-N matrix A, or its conjugate-transpose, using a QR
   40: *> or LQ factorization of A.  It is assumed that A has full rank.
   41: *>
   42: *> The following options are provided:
   43: *>
   44: *> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
   45: *>    an overdetermined system, i.e., solve the least squares problem
   46: *>                 minimize || B - A*X ||.
   47: *>
   48: *> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
   49: *>    an underdetermined system A * X = B.
   50: *>
   51: *> 3. If TRANS = 'C' and m >= n:  find the minimum norm solution of
   52: *>    an underdetermined system A**H * X = B.
   53: *>
   54: *> 4. If TRANS = 'C' and m < n:  find the least squares solution of
   55: *>    an overdetermined system, i.e., solve the least squares problem
   56: *>                 minimize || B - A**H * X ||.
   57: *>
   58: *> Several right hand side vectors b and solution vectors x can be
   59: *> handled in a single call; they are stored as the columns of the
   60: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   61: *> matrix X.
   62: *> \endverbatim
   63: *
   64: *  Arguments:
   65: *  ==========
   66: *
   67: *> \param[in] TRANS
   68: *> \verbatim
   69: *>          TRANS is CHARACTER*1
   70: *>          = 'N': the linear system involves A;
   71: *>          = 'C': the linear system involves A**H.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] M
   75: *> \verbatim
   76: *>          M is INTEGER
   77: *>          The number of rows of the matrix A.  M >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The number of columns of the matrix A.  N >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] NRHS
   87: *> \verbatim
   88: *>          NRHS is INTEGER
   89: *>          The number of right hand sides, i.e., the number of
   90: *>          columns of the matrices B and X. NRHS >= 0.
   91: *> \endverbatim
   92: *>
   93: *> \param[in,out] A
   94: *> \verbatim
   95: *>          A is COMPLEX*16 array, dimension (LDA,N)
   96: *>          On entry, the M-by-N matrix A.
   97: *>            if M >= N, A is overwritten by details of its QR
   98: *>                       factorization as returned by ZGEQRF;
   99: *>            if M <  N, A is overwritten by details of its LQ
  100: *>                       factorization as returned by ZGELQF.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>          The leading dimension of the array A.  LDA >= max(1,M).
  107: *> \endverbatim
  108: *>
  109: *> \param[in,out] B
  110: *> \verbatim
  111: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  112: *>          On entry, the matrix B of right hand side vectors, stored
  113: *>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
  114: *>          if TRANS = 'C'.
  115: *>          On exit, if INFO = 0, B is overwritten by the solution
  116: *>          vectors, stored columnwise:
  117: *>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
  118: *>          squares solution vectors; the residual sum of squares for the
  119: *>          solution in each column is given by the sum of squares of the
  120: *>          modulus of elements N+1 to M in that column;
  121: *>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
  122: *>          minimum norm solution vectors;
  123: *>          if TRANS = 'C' and m >= n, rows 1 to M of B contain the
  124: *>          minimum norm solution vectors;
  125: *>          if TRANS = 'C' and m < n, rows 1 to M of B contain the
  126: *>          least squares solution vectors; the residual sum of squares
  127: *>          for the solution in each column is given by the sum of
  128: *>          squares of the modulus of elements M+1 to N in that column.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDB
  132: *> \verbatim
  133: *>          LDB is INTEGER
  134: *>          The leading dimension of the array B. LDB >= MAX(1,M,N).
  135: *> \endverbatim
  136: *>
  137: *> \param[out] WORK
  138: *> \verbatim
  139: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  140: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  141: *> \endverbatim
  142: *>
  143: *> \param[in] LWORK
  144: *> \verbatim
  145: *>          LWORK is INTEGER
  146: *>          The dimension of the array WORK.
  147: *>          LWORK >= max( 1, MN + max( MN, NRHS ) ).
  148: *>          For optimal performance,
  149: *>          LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
  150: *>          where MN = min(M,N) and NB is the optimum block size.
  151: *>
  152: *>          If LWORK = -1, then a workspace query is assumed; the routine
  153: *>          only calculates the optimal size of the WORK array, returns
  154: *>          this value as the first entry of the WORK array, and no error
  155: *>          message related to LWORK is issued by XERBLA.
  156: *> \endverbatim
  157: *>
  158: *> \param[out] INFO
  159: *> \verbatim
  160: *>          INFO is INTEGER
  161: *>          = 0:  successful exit
  162: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  163: *>          > 0:  if INFO =  i, the i-th diagonal element of the
  164: *>                triangular factor of A is zero, so that A does not have
  165: *>                full rank; the least squares solution could not be
  166: *>                computed.
  167: *> \endverbatim
  168: *
  169: *  Authors:
  170: *  ========
  171: *
  172: *> \author Univ. of Tennessee
  173: *> \author Univ. of California Berkeley
  174: *> \author Univ. of Colorado Denver
  175: *> \author NAG Ltd.
  176: *
  177: *> \ingroup complex16GEsolve
  178: *
  179: *  =====================================================================
  180:       SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
  181:      $                  INFO )
  182: *
  183: *  -- LAPACK driver routine --
  184: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  185: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  186: *
  187: *     .. Scalar Arguments ..
  188:       CHARACTER          TRANS
  189:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
  190: *     ..
  191: *     .. Array Arguments ..
  192:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
  193: *     ..
  194: *
  195: *  =====================================================================
  196: *
  197: *     .. Parameters ..
  198:       DOUBLE PRECISION   ZERO, ONE
  199:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  200:       COMPLEX*16         CZERO
  201:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  202: *     ..
  203: *     .. Local Scalars ..
  204:       LOGICAL            LQUERY, TPSD
  205:       INTEGER            BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
  206:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM
  207: *     ..
  208: *     .. Local Arrays ..
  209:       DOUBLE PRECISION   RWORK( 1 )
  210: *     ..
  211: *     .. External Functions ..
  212:       LOGICAL            LSAME
  213:       INTEGER            ILAENV
  214:       DOUBLE PRECISION   DLAMCH, ZLANGE
  215:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
  216: *     ..
  217: *     .. External Subroutines ..
  218:       EXTERNAL           DLABAD, XERBLA, ZGELQF, ZGEQRF, ZLASCL, ZLASET,
  219:      $                   ZTRTRS, ZUNMLQ, ZUNMQR
  220: *     ..
  221: *     .. Intrinsic Functions ..
  222:       INTRINSIC          DBLE, MAX, MIN
  223: *     ..
  224: *     .. Executable Statements ..
  225: *
  226: *     Test the input arguments.
  227: *
  228:       INFO = 0
  229:       MN = MIN( M, N )
  230:       LQUERY = ( LWORK.EQ.-1 )
  231:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
  232:          INFO = -1
  233:       ELSE IF( M.LT.0 ) THEN
  234:          INFO = -2
  235:       ELSE IF( N.LT.0 ) THEN
  236:          INFO = -3
  237:       ELSE IF( NRHS.LT.0 ) THEN
  238:          INFO = -4
  239:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  240:          INFO = -6
  241:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  242:          INFO = -8
  243:       ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
  244:      $          THEN
  245:          INFO = -10
  246:       END IF
  247: *
  248: *     Figure out optimal block size
  249: *
  250:       IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
  251: *
  252:          TPSD = .TRUE.
  253:          IF( LSAME( TRANS, 'N' ) )
  254:      $      TPSD = .FALSE.
  255: *
  256:          IF( M.GE.N ) THEN
  257:             NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
  258:             IF( TPSD ) THEN
  259:                NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LN', M, NRHS, N,
  260:      $              -1 ) )
  261:             ELSE
  262:                NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LC', M, NRHS, N,
  263:      $              -1 ) )
  264:             END IF
  265:          ELSE
  266:             NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
  267:             IF( TPSD ) THEN
  268:                NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LC', N, NRHS, M,
  269:      $              -1 ) )
  270:             ELSE
  271:                NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LN', N, NRHS, M,
  272:      $              -1 ) )
  273:             END IF
  274:          END IF
  275: *
  276:          WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
  277:          WORK( 1 ) = DBLE( WSIZE )
  278: *
  279:       END IF
  280: *
  281:       IF( INFO.NE.0 ) THEN
  282:          CALL XERBLA( 'ZGELS ', -INFO )
  283:          RETURN
  284:       ELSE IF( LQUERY ) THEN
  285:          RETURN
  286:       END IF
  287: *
  288: *     Quick return if possible
  289: *
  290:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  291:          CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  292:          RETURN
  293:       END IF
  294: *
  295: *     Get machine parameters
  296: *
  297:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  298:       BIGNUM = ONE / SMLNUM
  299:       CALL DLABAD( SMLNUM, BIGNUM )
  300: *
  301: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
  302: *
  303:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
  304:       IASCL = 0
  305:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  306: *
  307: *        Scale matrix norm up to SMLNUM
  308: *
  309:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  310:          IASCL = 1
  311:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  312: *
  313: *        Scale matrix norm down to BIGNUM
  314: *
  315:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  316:          IASCL = 2
  317:       ELSE IF( ANRM.EQ.ZERO ) THEN
  318: *
  319: *        Matrix all zero. Return zero solution.
  320: *
  321:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
  322:          GO TO 50
  323:       END IF
  324: *
  325:       BROW = M
  326:       IF( TPSD )
  327:      $   BROW = N
  328:       BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
  329:       IBSCL = 0
  330:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  331: *
  332: *        Scale matrix norm up to SMLNUM
  333: *
  334:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
  335:      $                INFO )
  336:          IBSCL = 1
  337:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  338: *
  339: *        Scale matrix norm down to BIGNUM
  340: *
  341:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
  342:      $                INFO )
  343:          IBSCL = 2
  344:       END IF
  345: *
  346:       IF( M.GE.N ) THEN
  347: *
  348: *        compute QR factorization of A
  349: *
  350:          CALL ZGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
  351:      $                INFO )
  352: *
  353: *        workspace at least N, optimally N*NB
  354: *
  355:          IF( .NOT.TPSD ) THEN
  356: *
  357: *           Least-Squares Problem min || A * X - B ||
  358: *
  359: *           B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
  360: *
  361:             CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, N, A,
  362:      $                   LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  363:      $                   INFO )
  364: *
  365: *           workspace at least NRHS, optimally NRHS*NB
  366: *
  367: *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
  368: *
  369:             CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
  370:      $                   A, LDA, B, LDB, INFO )
  371: *
  372:             IF( INFO.GT.0 ) THEN
  373:                RETURN
  374:             END IF
  375: *
  376:             SCLLEN = N
  377: *
  378:          ELSE
  379: *
  380: *           Underdetermined system of equations A**T * X = B
  381: *
  382: *           B(1:N,1:NRHS) := inv(R**H) * B(1:N,1:NRHS)
  383: *
  384:             CALL ZTRTRS( 'Upper', 'Conjugate transpose','Non-unit',
  385:      $                   N, NRHS, A, LDA, B, LDB, INFO )
  386: *
  387:             IF( INFO.GT.0 ) THEN
  388:                RETURN
  389:             END IF
  390: *
  391: *           B(N+1:M,1:NRHS) = ZERO
  392: *
  393:             DO 20 J = 1, NRHS
  394:                DO 10 I = N + 1, M
  395:                   B( I, J ) = CZERO
  396:    10          CONTINUE
  397:    20       CONTINUE
  398: *
  399: *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
  400: *
  401:             CALL ZUNMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
  402:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  403:      $                   INFO )
  404: *
  405: *           workspace at least NRHS, optimally NRHS*NB
  406: *
  407:             SCLLEN = M
  408: *
  409:          END IF
  410: *
  411:       ELSE
  412: *
  413: *        Compute LQ factorization of A
  414: *
  415:          CALL ZGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
  416:      $                INFO )
  417: *
  418: *        workspace at least M, optimally M*NB.
  419: *
  420:          IF( .NOT.TPSD ) THEN
  421: *
  422: *           underdetermined system of equations A * X = B
  423: *
  424: *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
  425: *
  426:             CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
  427:      $                   A, LDA, B, LDB, INFO )
  428: *
  429:             IF( INFO.GT.0 ) THEN
  430:                RETURN
  431:             END IF
  432: *
  433: *           B(M+1:N,1:NRHS) = 0
  434: *
  435:             DO 40 J = 1, NRHS
  436:                DO 30 I = M + 1, N
  437:                   B( I, J ) = CZERO
  438:    30          CONTINUE
  439:    40       CONTINUE
  440: *
  441: *           B(1:N,1:NRHS) := Q(1:N,:)**H * B(1:M,1:NRHS)
  442: *
  443:             CALL ZUNMLQ( 'Left', 'Conjugate transpose', N, NRHS, M, A,
  444:      $                   LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  445:      $                   INFO )
  446: *
  447: *           workspace at least NRHS, optimally NRHS*NB
  448: *
  449:             SCLLEN = N
  450: *
  451:          ELSE
  452: *
  453: *           overdetermined system min || A**H * X - B ||
  454: *
  455: *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
  456: *
  457:             CALL ZUNMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
  458:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
  459:      $                   INFO )
  460: *
  461: *           workspace at least NRHS, optimally NRHS*NB
  462: *
  463: *           B(1:M,1:NRHS) := inv(L**H) * B(1:M,1:NRHS)
  464: *
  465:             CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
  466:      $                   M, NRHS, A, LDA, B, LDB, INFO )
  467: *
  468:             IF( INFO.GT.0 ) THEN
  469:                RETURN
  470:             END IF
  471: *
  472:             SCLLEN = M
  473: *
  474:          END IF
  475: *
  476:       END IF
  477: *
  478: *     Undo scaling
  479: *
  480:       IF( IASCL.EQ.1 ) THEN
  481:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
  482:      $                INFO )
  483:       ELSE IF( IASCL.EQ.2 ) THEN
  484:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
  485:      $                INFO )
  486:       END IF
  487:       IF( IBSCL.EQ.1 ) THEN
  488:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
  489:      $                INFO )
  490:       ELSE IF( IBSCL.EQ.2 ) THEN
  491:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
  492:      $                INFO )
  493:       END IF
  494: *
  495:    50 CONTINUE
  496:       WORK( 1 ) = DBLE( WSIZE )
  497: *
  498:       RETURN
  499: *
  500: *     End of ZGELS
  501: *
  502:       END

CVSweb interface <joel.bertrand@systella.fr>