Annotation of rpl/lapack/lapack/zgels.f, revision 1.5

1.1       bertrand    1:       SUBROUTINE ZGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
                      2:      $                  INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          TRANS
                     11:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  ZGELS solves overdetermined or underdetermined complex linear systems
                     21: *  involving an M-by-N matrix A, or its conjugate-transpose, using a QR
                     22: *  or LQ factorization of A.  It is assumed that A has full rank.
                     23: *
                     24: *  The following options are provided:
                     25: *
                     26: *  1. If TRANS = 'N' and m >= n:  find the least squares solution of
                     27: *     an overdetermined system, i.e., solve the least squares problem
                     28: *                  minimize || B - A*X ||.
                     29: *
                     30: *  2. If TRANS = 'N' and m < n:  find the minimum norm solution of
                     31: *     an underdetermined system A * X = B.
                     32: *
                     33: *  3. If TRANS = 'C' and m >= n:  find the minimum norm solution of
                     34: *     an undetermined system A**H * X = B.
                     35: *
                     36: *  4. If TRANS = 'C' and m < n:  find the least squares solution of
                     37: *     an overdetermined system, i.e., solve the least squares problem
                     38: *                  minimize || B - A**H * X ||.
                     39: *
                     40: *  Several right hand side vectors b and solution vectors x can be
                     41: *  handled in a single call; they are stored as the columns of the
                     42: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     43: *  matrix X.
                     44: *
                     45: *  Arguments
                     46: *  =========
                     47: *
                     48: *  TRANS   (input) CHARACTER*1
                     49: *          = 'N': the linear system involves A;
                     50: *          = 'C': the linear system involves A**H.
                     51: *
                     52: *  M       (input) INTEGER
                     53: *          The number of rows of the matrix A.  M >= 0.
                     54: *
                     55: *  N       (input) INTEGER
                     56: *          The number of columns of the matrix A.  N >= 0.
                     57: *
                     58: *  NRHS    (input) INTEGER
                     59: *          The number of right hand sides, i.e., the number of
                     60: *          columns of the matrices B and X. NRHS >= 0.
                     61: *
                     62: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     63: *          On entry, the M-by-N matrix A.
                     64: *            if M >= N, A is overwritten by details of its QR
                     65: *                       factorization as returned by ZGEQRF;
                     66: *            if M <  N, A is overwritten by details of its LQ
                     67: *                       factorization as returned by ZGELQF.
                     68: *
                     69: *  LDA     (input) INTEGER
                     70: *          The leading dimension of the array A.  LDA >= max(1,M).
                     71: *
                     72: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
                     73: *          On entry, the matrix B of right hand side vectors, stored
                     74: *          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
                     75: *          if TRANS = 'C'.
                     76: *          On exit, if INFO = 0, B is overwritten by the solution
                     77: *          vectors, stored columnwise:
                     78: *          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
                     79: *          squares solution vectors; the residual sum of squares for the
                     80: *          solution in each column is given by the sum of squares of the
                     81: *          modulus of elements N+1 to M in that column;
                     82: *          if TRANS = 'N' and m < n, rows 1 to N of B contain the
                     83: *          minimum norm solution vectors;
                     84: *          if TRANS = 'C' and m >= n, rows 1 to M of B contain the
                     85: *          minimum norm solution vectors;
                     86: *          if TRANS = 'C' and m < n, rows 1 to M of B contain the
                     87: *          least squares solution vectors; the residual sum of squares
                     88: *          for the solution in each column is given by the sum of
                     89: *          squares of the modulus of elements M+1 to N in that column.
                     90: *
                     91: *  LDB     (input) INTEGER
                     92: *          The leading dimension of the array B. LDB >= MAX(1,M,N).
                     93: *
                     94: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     95: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     96: *
                     97: *  LWORK   (input) INTEGER
                     98: *          The dimension of the array WORK.
                     99: *          LWORK >= max( 1, MN + max( MN, NRHS ) ).
                    100: *          For optimal performance,
                    101: *          LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
                    102: *          where MN = min(M,N) and NB is the optimum block size.
                    103: *
                    104: *          If LWORK = -1, then a workspace query is assumed; the routine
                    105: *          only calculates the optimal size of the WORK array, returns
                    106: *          this value as the first entry of the WORK array, and no error
                    107: *          message related to LWORK is issued by XERBLA.
                    108: *
                    109: *  INFO    (output) INTEGER
                    110: *          = 0:  successful exit
                    111: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    112: *          > 0:  if INFO =  i, the i-th diagonal element of the
                    113: *                triangular factor of A is zero, so that A does not have
                    114: *                full rank; the least squares solution could not be
                    115: *                computed.
                    116: *
                    117: *  =====================================================================
                    118: *
                    119: *     .. Parameters ..
                    120:       DOUBLE PRECISION   ZERO, ONE
                    121:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    122:       COMPLEX*16         CZERO
                    123:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
                    124: *     ..
                    125: *     .. Local Scalars ..
                    126:       LOGICAL            LQUERY, TPSD
                    127:       INTEGER            BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
                    128:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM
                    129: *     ..
                    130: *     .. Local Arrays ..
                    131:       DOUBLE PRECISION   RWORK( 1 )
                    132: *     ..
                    133: *     .. External Functions ..
                    134:       LOGICAL            LSAME
                    135:       INTEGER            ILAENV
                    136:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    137:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    138: *     ..
                    139: *     .. External Subroutines ..
                    140:       EXTERNAL           DLABAD, XERBLA, ZGELQF, ZGEQRF, ZLASCL, ZLASET,
                    141:      $                   ZTRTRS, ZUNMLQ, ZUNMQR
                    142: *     ..
                    143: *     .. Intrinsic Functions ..
                    144:       INTRINSIC          DBLE, MAX, MIN
                    145: *     ..
                    146: *     .. Executable Statements ..
                    147: *
                    148: *     Test the input arguments.
                    149: *
                    150:       INFO = 0
                    151:       MN = MIN( M, N )
                    152:       LQUERY = ( LWORK.EQ.-1 )
                    153:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'C' ) ) ) THEN
                    154:          INFO = -1
                    155:       ELSE IF( M.LT.0 ) THEN
                    156:          INFO = -2
                    157:       ELSE IF( N.LT.0 ) THEN
                    158:          INFO = -3
                    159:       ELSE IF( NRHS.LT.0 ) THEN
                    160:          INFO = -4
                    161:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    162:          INFO = -6
                    163:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    164:          INFO = -8
                    165:       ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
                    166:      $          THEN
                    167:          INFO = -10
                    168:       END IF
                    169: *
                    170: *     Figure out optimal block size
                    171: *
                    172:       IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
                    173: *
                    174:          TPSD = .TRUE.
                    175:          IF( LSAME( TRANS, 'N' ) )
                    176:      $      TPSD = .FALSE.
                    177: *
                    178:          IF( M.GE.N ) THEN
                    179:             NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
                    180:             IF( TPSD ) THEN
                    181:                NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LN', M, NRHS, N,
                    182:      $              -1 ) )
                    183:             ELSE
                    184:                NB = MAX( NB, ILAENV( 1, 'ZUNMQR', 'LC', M, NRHS, N,
                    185:      $              -1 ) )
                    186:             END IF
                    187:          ELSE
                    188:             NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
                    189:             IF( TPSD ) THEN
                    190:                NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LC', N, NRHS, M,
                    191:      $              -1 ) )
                    192:             ELSE
                    193:                NB = MAX( NB, ILAENV( 1, 'ZUNMLQ', 'LN', N, NRHS, M,
                    194:      $              -1 ) )
                    195:             END IF
                    196:          END IF
                    197: *
                    198:          WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
                    199:          WORK( 1 ) = DBLE( WSIZE )
                    200: *
                    201:       END IF
                    202: *
                    203:       IF( INFO.NE.0 ) THEN
                    204:          CALL XERBLA( 'ZGELS ', -INFO )
                    205:          RETURN
                    206:       ELSE IF( LQUERY ) THEN
                    207:          RETURN
                    208:       END IF
                    209: *
                    210: *     Quick return if possible
                    211: *
                    212:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
                    213:          CALL ZLASET( 'Full', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    214:          RETURN
                    215:       END IF
                    216: *
                    217: *     Get machine parameters
                    218: *
                    219:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    220:       BIGNUM = ONE / SMLNUM
                    221:       CALL DLABAD( SMLNUM, BIGNUM )
                    222: *
                    223: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
                    224: *
                    225:       ANRM = ZLANGE( 'M', M, N, A, LDA, RWORK )
                    226:       IASCL = 0
                    227:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    228: *
                    229: *        Scale matrix norm up to SMLNUM
                    230: *
                    231:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    232:          IASCL = 1
                    233:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    234: *
                    235: *        Scale matrix norm down to BIGNUM
                    236: *
                    237:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    238:          IASCL = 2
                    239:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    240: *
                    241: *        Matrix all zero. Return zero solution.
                    242: *
                    243:          CALL ZLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
                    244:          GO TO 50
                    245:       END IF
                    246: *
                    247:       BROW = M
                    248:       IF( TPSD )
                    249:      $   BROW = N
                    250:       BNRM = ZLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
                    251:       IBSCL = 0
                    252:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    253: *
                    254: *        Scale matrix norm up to SMLNUM
                    255: *
                    256:          CALL ZLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
                    257:      $                INFO )
                    258:          IBSCL = 1
                    259:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    260: *
                    261: *        Scale matrix norm down to BIGNUM
                    262: *
                    263:          CALL ZLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
                    264:      $                INFO )
                    265:          IBSCL = 2
                    266:       END IF
                    267: *
                    268:       IF( M.GE.N ) THEN
                    269: *
                    270: *        compute QR factorization of A
                    271: *
                    272:          CALL ZGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
                    273:      $                INFO )
                    274: *
                    275: *        workspace at least N, optimally N*NB
                    276: *
                    277:          IF( .NOT.TPSD ) THEN
                    278: *
                    279: *           Least-Squares Problem min || A * X - B ||
                    280: *
                    281: *           B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
                    282: *
                    283:             CALL ZUNMQR( 'Left', 'Conjugate transpose', M, NRHS, N, A,
                    284:      $                   LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
                    285:      $                   INFO )
                    286: *
                    287: *           workspace at least NRHS, optimally NRHS*NB
                    288: *
                    289: *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
                    290: *
                    291:             CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
                    292:      $                   A, LDA, B, LDB, INFO )
                    293: *
                    294:             IF( INFO.GT.0 ) THEN
                    295:                RETURN
                    296:             END IF
                    297: *
                    298:             SCLLEN = N
                    299: *
                    300:          ELSE
                    301: *
                    302: *           Overdetermined system of equations A' * X = B
                    303: *
                    304: *           B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS)
                    305: *
                    306:             CALL ZTRTRS( 'Upper', 'Conjugate transpose','Non-unit',
                    307:      $                   N, NRHS, A, LDA, B, LDB, INFO )
                    308: *
                    309:             IF( INFO.GT.0 ) THEN
                    310:                RETURN
                    311:             END IF
                    312: *
                    313: *           B(N+1:M,1:NRHS) = ZERO
                    314: *
                    315:             DO 20 J = 1, NRHS
                    316:                DO 10 I = N + 1, M
                    317:                   B( I, J ) = CZERO
                    318:    10          CONTINUE
                    319:    20       CONTINUE
                    320: *
                    321: *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
                    322: *
                    323:             CALL ZUNMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
                    324:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
                    325:      $                   INFO )
                    326: *
                    327: *           workspace at least NRHS, optimally NRHS*NB
                    328: *
                    329:             SCLLEN = M
                    330: *
                    331:          END IF
                    332: *
                    333:       ELSE
                    334: *
                    335: *        Compute LQ factorization of A
                    336: *
                    337:          CALL ZGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
                    338:      $                INFO )
                    339: *
                    340: *        workspace at least M, optimally M*NB.
                    341: *
                    342:          IF( .NOT.TPSD ) THEN
                    343: *
                    344: *           underdetermined system of equations A * X = B
                    345: *
                    346: *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
                    347: *
                    348:             CALL ZTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
                    349:      $                   A, LDA, B, LDB, INFO )
                    350: *
                    351:             IF( INFO.GT.0 ) THEN
                    352:                RETURN
                    353:             END IF
                    354: *
                    355: *           B(M+1:N,1:NRHS) = 0
                    356: *
                    357:             DO 40 J = 1, NRHS
                    358:                DO 30 I = M + 1, N
                    359:                   B( I, J ) = CZERO
                    360:    30          CONTINUE
                    361:    40       CONTINUE
                    362: *
                    363: *           B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS)
                    364: *
                    365:             CALL ZUNMLQ( 'Left', 'Conjugate transpose', N, NRHS, M, A,
                    366:      $                   LDA, WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
                    367:      $                   INFO )
                    368: *
                    369: *           workspace at least NRHS, optimally NRHS*NB
                    370: *
                    371:             SCLLEN = N
                    372: *
                    373:          ELSE
                    374: *
                    375: *           overdetermined system min || A' * X - B ||
                    376: *
                    377: *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
                    378: *
                    379:             CALL ZUNMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
                    380:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
                    381:      $                   INFO )
                    382: *
                    383: *           workspace at least NRHS, optimally NRHS*NB
                    384: *
                    385: *           B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS)
                    386: *
                    387:             CALL ZTRTRS( 'Lower', 'Conjugate transpose', 'Non-unit',
                    388:      $                   M, NRHS, A, LDA, B, LDB, INFO )
                    389: *
                    390:             IF( INFO.GT.0 ) THEN
                    391:                RETURN
                    392:             END IF
                    393: *
                    394:             SCLLEN = M
                    395: *
                    396:          END IF
                    397: *
                    398:       END IF
                    399: *
                    400: *     Undo scaling
                    401: *
                    402:       IF( IASCL.EQ.1 ) THEN
                    403:          CALL ZLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
                    404:      $                INFO )
                    405:       ELSE IF( IASCL.EQ.2 ) THEN
                    406:          CALL ZLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
                    407:      $                INFO )
                    408:       END IF
                    409:       IF( IBSCL.EQ.1 ) THEN
                    410:          CALL ZLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
                    411:      $                INFO )
                    412:       ELSE IF( IBSCL.EQ.2 ) THEN
                    413:          CALL ZLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
                    414:      $                INFO )
                    415:       END IF
                    416: *
                    417:    50 CONTINUE
                    418:       WORK( 1 ) = DBLE( WSIZE )
                    419: *
                    420:       RETURN
                    421: *
                    422: *     End of ZGELS
                    423: *
                    424:       END

CVSweb interface <joel.bertrand@systella.fr>