Annotation of rpl/lapack/lapack/zgelqt3.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b ZGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact WY representation of Q.
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGEQRT3 + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelqt3.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelqt3.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelqt3.f">
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       RECURSIVE SUBROUTINE ZGELQT3( M, N, A, LDA, T, LDT, INFO )
        !            22: *
        !            23: *       .. Scalar Arguments ..
        !            24: *       INTEGER   INFO, LDA, M, N, LDT
        !            25: *       ..
        !            26: *       .. Array Arguments ..
        !            27: *       COMPLEX*16   A( LDA, * ), T( LDT, * )
        !            28: *       ..
        !            29: *
        !            30: *
        !            31: *> \par Purpose:
        !            32: *  =============
        !            33: *>
        !            34: *> \verbatim
        !            35: *>
        !            36: *> DGELQT3 recursively computes a LQ factorization of a complex M-by-N
        !            37: *> matrix A, using the compact WY representation of Q.
        !            38: *>
        !            39: *> Based on the algorithm of Elmroth and Gustavson,
        !            40: *> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
        !            41: *> \endverbatim
        !            42: *
        !            43: *  Arguments:
        !            44: *  ==========
        !            45: *
        !            46: *> \param[in] M
        !            47: *> \verbatim
        !            48: *>          M is INTEGER
        !            49: *>          The number of rows of the matrix A.  M =< N.
        !            50: *> \endverbatim
        !            51: *>
        !            52: *> \param[in] N
        !            53: *> \verbatim
        !            54: *>          N is INTEGER
        !            55: *>          The number of columns of the matrix A.  N >= 0.
        !            56: *> \endverbatim
        !            57: *>
        !            58: *> \param[in,out] A
        !            59: *> \verbatim
        !            60: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            61: *>          On entry, the real M-by-N matrix A.  On exit, the elements on and
        !            62: *>          below the diagonal contain the N-by-N lower triangular matrix L; the
        !            63: *>          elements above the diagonal are the rows of V.  See below for
        !            64: *>          further details.
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in] LDA
        !            68: *> \verbatim
        !            69: *>          LDA is INTEGER
        !            70: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !            71: *> \endverbatim
        !            72: *>
        !            73: *> \param[out] T
        !            74: *> \verbatim
        !            75: *>          T is COMPLEX*16 array, dimension (LDT,N)
        !            76: *>          The N-by-N upper triangular factor of the block reflector.
        !            77: *>          The elements on and above the diagonal contain the block
        !            78: *>          reflector T; the elements below the diagonal are not used.
        !            79: *>          See below for further details.
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[in] LDT
        !            83: *> \verbatim
        !            84: *>          LDT is INTEGER
        !            85: *>          The leading dimension of the array T.  LDT >= max(1,N).
        !            86: *> \endverbatim
        !            87: *>
        !            88: *> \param[out] INFO
        !            89: *> \verbatim
        !            90: *>          INFO is INTEGER
        !            91: *>          = 0: successful exit
        !            92: *>          < 0: if INFO = -i, the i-th argument had an illegal value
        !            93: *> \endverbatim
        !            94: *
        !            95: *  Authors:
        !            96: *  ========
        !            97: *
        !            98: *> \author Univ. of Tennessee
        !            99: *> \author Univ. of California Berkeley
        !           100: *> \author Univ. of Colorado Denver
        !           101: *> \author NAG Ltd.
        !           102: *
        !           103: *> \date December 2016
        !           104: *
        !           105: *> \ingroup doubleGEcomputational
        !           106: *
        !           107: *> \par Further Details:
        !           108: *  =====================
        !           109: *>
        !           110: *> \verbatim
        !           111: *>
        !           112: *>  The matrix V stores the elementary reflectors H(i) in the i-th column
        !           113: *>  below the diagonal. For example, if M=5 and N=3, the matrix V is
        !           114: *>
        !           115: *>               V = (  1  v1 v1 v1 v1 )
        !           116: *>                   (     1  v2 v2 v2 )
        !           117: *>                   (     1  v3 v3 v3 )
        !           118: *>
        !           119: *>
        !           120: *>  where the vi's represent the vectors which define H(i), which are returned
        !           121: *>  in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
        !           122: *>  block reflector H is then given by
        !           123: *>
        !           124: *>               H = I - V * T * V**T
        !           125: *>
        !           126: *>  where V**T is the transpose of V.
        !           127: *>
        !           128: *>  For details of the algorithm, see Elmroth and Gustavson (cited above).
        !           129: *> \endverbatim
        !           130: *>
        !           131: *  =====================================================================
        !           132:       RECURSIVE SUBROUTINE ZGELQT3( M, N, A, LDA, T, LDT, INFO )
        !           133: *
        !           134: *  -- LAPACK computational routine (version 3.7.0) --
        !           135: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           136: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           137: *     December 2016
        !           138: *
        !           139: *     .. Scalar Arguments ..
        !           140:       INTEGER   INFO, LDA, M, N, LDT
        !           141: *     ..
        !           142: *     .. Array Arguments ..
        !           143:       COMPLEX*16   A( LDA, * ), T( LDT, * )
        !           144: *     ..
        !           145: *
        !           146: *  =====================================================================
        !           147: *
        !           148: *     .. Parameters ..
        !           149:       COMPLEX*16   ONE, ZERO
        !           150:       PARAMETER ( ONE = (1.0D+00,0.0D+00) )
        !           151:       PARAMETER ( ZERO = (0.0D+00,0.0D+00))
        !           152: *     ..
        !           153: *     .. Local Scalars ..
        !           154:       INTEGER   I, I1, J, J1, M1, M2, N1, N2, IINFO
        !           155: *     ..
        !           156: *     .. External Subroutines ..
        !           157:       EXTERNAL  ZLARFG, ZTRMM, ZGEMM, XERBLA
        !           158: *     ..
        !           159: *     .. Executable Statements ..
        !           160: *
        !           161:       INFO = 0
        !           162:       IF( M .LT. 0 ) THEN
        !           163:          INFO = -1
        !           164:       ELSE IF( N .LT. M ) THEN
        !           165:          INFO = -2
        !           166:       ELSE IF( LDA .LT. MAX( 1, M ) ) THEN
        !           167:          INFO = -4
        !           168:       ELSE IF( LDT .LT. MAX( 1, M ) ) THEN
        !           169:          INFO = -6
        !           170:       END IF
        !           171:       IF( INFO.NE.0 ) THEN
        !           172:          CALL XERBLA( 'ZGELQT3', -INFO )
        !           173:          RETURN
        !           174:       END IF
        !           175: *
        !           176:       IF( M.EQ.1 ) THEN
        !           177: *
        !           178: *        Compute Householder transform when N=1
        !           179: *
        !           180:          CALL ZLARFG( N, A, A( 1, MIN( 2, N ) ), LDA, T )
        !           181:          T(1,1)=CONJG(T(1,1))
        !           182: *
        !           183:       ELSE
        !           184: *
        !           185: *        Otherwise, split A into blocks...
        !           186: *
        !           187:          M1 = M/2
        !           188:          M2 = M-M1
        !           189:          I1 = MIN( M1+1, M )
        !           190:          J1 = MIN( M+1, N )
        !           191: *
        !           192: *        Compute A(1:M1,1:N) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
        !           193: *
        !           194:          CALL ZGELQT3( M1, N, A, LDA, T, LDT, IINFO )
        !           195: *
        !           196: *        Compute A(J1:M,1:N) =  A(J1:M,1:N) Q1^H [workspace: T(1:N1,J1:N)]
        !           197: *
        !           198:          DO I=1,M2
        !           199:             DO J=1,M1
        !           200:                T(  I+M1, J ) = A( I+M1, J )
        !           201:             END DO
        !           202:          END DO
        !           203:          CALL ZTRMM( 'R', 'U', 'C', 'U', M2, M1, ONE,
        !           204:      &               A, LDA, T( I1, 1 ), LDT )
        !           205: *
        !           206:          CALL ZGEMM( 'N', 'C', M2, M1, N-M1, ONE, A( I1, I1 ), LDA,
        !           207:      &               A( 1, I1 ), LDA, ONE, T( I1, 1 ), LDT)
        !           208: *
        !           209:          CALL ZTRMM( 'R', 'U', 'N', 'N', M2, M1, ONE,
        !           210:      &               T, LDT, T( I1, 1 ), LDT )
        !           211: *
        !           212:          CALL ZGEMM( 'N', 'N', M2, N-M1, M1, -ONE, T( I1, 1 ), LDT,
        !           213:      &                A( 1, I1 ), LDA, ONE, A( I1, I1 ), LDA )
        !           214: *
        !           215:          CALL ZTRMM( 'R', 'U', 'N', 'U', M2, M1 , ONE,
        !           216:      &               A, LDA, T( I1, 1 ), LDT )
        !           217: *
        !           218:          DO I=1,M2
        !           219:             DO J=1,M1
        !           220:                A(  I+M1, J ) = A( I+M1, J ) - T( I+M1, J )
        !           221:                T( I+M1, J )= ZERO
        !           222:             END DO
        !           223:          END DO
        !           224: *
        !           225: *        Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
        !           226: *
        !           227:          CALL ZGELQT3( M2, N-M1, A( I1, I1 ), LDA,
        !           228:      &                T( I1, I1 ), LDT, IINFO )
        !           229: *
        !           230: *        Compute T3 = T(J1:N1,1:N) = -T1 Y1^H Y2 T2
        !           231: *
        !           232:          DO I=1,M2
        !           233:             DO J=1,M1
        !           234:                T( J, I+M1  ) = (A( J, I+M1 ))
        !           235:             END DO
        !           236:          END DO
        !           237: *
        !           238:          CALL ZTRMM( 'R', 'U', 'C', 'U', M1, M2, ONE,
        !           239:      &               A( I1, I1 ), LDA, T( 1, I1 ), LDT )
        !           240: *
        !           241:          CALL ZGEMM( 'N', 'C', M1, M2, N-M, ONE, A( 1, J1 ), LDA,
        !           242:      &               A( I1, J1 ), LDA, ONE, T( 1, I1 ), LDT )
        !           243: *
        !           244:          CALL ZTRMM( 'L', 'U', 'N', 'N', M1, M2, -ONE, T, LDT,
        !           245:      &               T( 1, I1 ), LDT )
        !           246: *
        !           247:          CALL ZTRMM( 'R', 'U', 'N', 'N', M1, M2, ONE,
        !           248:      &               T( I1, I1 ), LDT, T( 1, I1 ), LDT )
        !           249: *
        !           250: *
        !           251: *
        !           252: *        Y = (Y1,Y2); L = [ L1            0  ];  T = [T1 T3]
        !           253: *                         [ A(1:N1,J1:N)  L2 ]       [ 0 T2]
        !           254: *
        !           255:       END IF
        !           256: *
        !           257:       RETURN
        !           258: *
        !           259: *     End of ZGELQT3
        !           260: *
        !           261:       END

CVSweb interface <joel.bertrand@systella.fr>