File:  [local] / rpl / lapack / lapack / zgelqf.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:28 2010 UTC (14 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE ZGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            INFO, LDA, LWORK, M, N
   10: *     ..
   11: *     .. Array Arguments ..
   12:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
   13: *     ..
   14: *
   15: *  Purpose
   16: *  =======
   17: *
   18: *  ZGELQF computes an LQ factorization of a complex M-by-N matrix A:
   19: *  A = L * Q.
   20: *
   21: *  Arguments
   22: *  =========
   23: *
   24: *  M       (input) INTEGER
   25: *          The number of rows of the matrix A.  M >= 0.
   26: *
   27: *  N       (input) INTEGER
   28: *          The number of columns of the matrix A.  N >= 0.
   29: *
   30: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
   31: *          On entry, the M-by-N matrix A.
   32: *          On exit, the elements on and below the diagonal of the array
   33: *          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
   34: *          lower triangular if m <= n); the elements above the diagonal,
   35: *          with the array TAU, represent the unitary matrix Q as a
   36: *          product of elementary reflectors (see Further Details).
   37: *
   38: *  LDA     (input) INTEGER
   39: *          The leading dimension of the array A.  LDA >= max(1,M).
   40: *
   41: *  TAU     (output) COMPLEX*16 array, dimension (min(M,N))
   42: *          The scalar factors of the elementary reflectors (see Further
   43: *          Details).
   44: *
   45: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
   46: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   47: *
   48: *  LWORK   (input) INTEGER
   49: *          The dimension of the array WORK.  LWORK >= max(1,M).
   50: *          For optimum performance LWORK >= M*NB, where NB is the
   51: *          optimal blocksize.
   52: *
   53: *          If LWORK = -1, then a workspace query is assumed; the routine
   54: *          only calculates the optimal size of the WORK array, returns
   55: *          this value as the first entry of the WORK array, and no error
   56: *          message related to LWORK is issued by XERBLA.
   57: *
   58: *  INFO    (output) INTEGER
   59: *          = 0:  successful exit
   60: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   61: *
   62: *  Further Details
   63: *  ===============
   64: *
   65: *  The matrix Q is represented as a product of elementary reflectors
   66: *
   67: *     Q = H(k)' . . . H(2)' H(1)', where k = min(m,n).
   68: *
   69: *  Each H(i) has the form
   70: *
   71: *     H(i) = I - tau * v * v'
   72: *
   73: *  where tau is a complex scalar, and v is a complex vector with
   74: *  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
   75: *  A(i,i+1:n), and tau in TAU(i).
   76: *
   77: *  =====================================================================
   78: *
   79: *     .. Local Scalars ..
   80:       LOGICAL            LQUERY
   81:       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
   82:      $                   NBMIN, NX
   83: *     ..
   84: *     .. External Subroutines ..
   85:       EXTERNAL           XERBLA, ZGELQ2, ZLARFB, ZLARFT
   86: *     ..
   87: *     .. Intrinsic Functions ..
   88:       INTRINSIC          MAX, MIN
   89: *     ..
   90: *     .. External Functions ..
   91:       INTEGER            ILAENV
   92:       EXTERNAL           ILAENV
   93: *     ..
   94: *     .. Executable Statements ..
   95: *
   96: *     Test the input arguments
   97: *
   98:       INFO = 0
   99:       NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
  100:       LWKOPT = M*NB
  101:       WORK( 1 ) = LWKOPT
  102:       LQUERY = ( LWORK.EQ.-1 )
  103:       IF( M.LT.0 ) THEN
  104:          INFO = -1
  105:       ELSE IF( N.LT.0 ) THEN
  106:          INFO = -2
  107:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  108:          INFO = -4
  109:       ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
  110:          INFO = -7
  111:       END IF
  112:       IF( INFO.NE.0 ) THEN
  113:          CALL XERBLA( 'ZGELQF', -INFO )
  114:          RETURN
  115:       ELSE IF( LQUERY ) THEN
  116:          RETURN
  117:       END IF
  118: *
  119: *     Quick return if possible
  120: *
  121:       K = MIN( M, N )
  122:       IF( K.EQ.0 ) THEN
  123:          WORK( 1 ) = 1
  124:          RETURN
  125:       END IF
  126: *
  127:       NBMIN = 2
  128:       NX = 0
  129:       IWS = M
  130:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
  131: *
  132: *        Determine when to cross over from blocked to unblocked code.
  133: *
  134:          NX = MAX( 0, ILAENV( 3, 'ZGELQF', ' ', M, N, -1, -1 ) )
  135:          IF( NX.LT.K ) THEN
  136: *
  137: *           Determine if workspace is large enough for blocked code.
  138: *
  139:             LDWORK = M
  140:             IWS = LDWORK*NB
  141:             IF( LWORK.LT.IWS ) THEN
  142: *
  143: *              Not enough workspace to use optimal NB:  reduce NB and
  144: *              determine the minimum value of NB.
  145: *
  146:                NB = LWORK / LDWORK
  147:                NBMIN = MAX( 2, ILAENV( 2, 'ZGELQF', ' ', M, N, -1,
  148:      $                 -1 ) )
  149:             END IF
  150:          END IF
  151:       END IF
  152: *
  153:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
  154: *
  155: *        Use blocked code initially
  156: *
  157:          DO 10 I = 1, K - NX, NB
  158:             IB = MIN( K-I+1, NB )
  159: *
  160: *           Compute the LQ factorization of the current block
  161: *           A(i:i+ib-1,i:n)
  162: *
  163:             CALL ZGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
  164:      $                   IINFO )
  165:             IF( I+IB.LE.M ) THEN
  166: *
  167: *              Form the triangular factor of the block reflector
  168: *              H = H(i) H(i+1) . . . H(i+ib-1)
  169: *
  170:                CALL ZLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
  171:      $                      LDA, TAU( I ), WORK, LDWORK )
  172: *
  173: *              Apply H to A(i+ib:m,i:n) from the right
  174: *
  175:                CALL ZLARFB( 'Right', 'No transpose', 'Forward',
  176:      $                      'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
  177:      $                      LDA, WORK, LDWORK, A( I+IB, I ), LDA,
  178:      $                      WORK( IB+1 ), LDWORK )
  179:             END IF
  180:    10    CONTINUE
  181:       ELSE
  182:          I = 1
  183:       END IF
  184: *
  185: *     Use unblocked code to factor the last or only block.
  186: *
  187:       IF( I.LE.K )
  188:      $   CALL ZGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
  189:      $                IINFO )
  190: *
  191:       WORK( 1 ) = IWS
  192:       RETURN
  193: *
  194: *     End of ZGELQF
  195: *
  196:       END

CVSweb interface <joel.bertrand@systella.fr>