File:  [local] / rpl / lapack / lapack / zgelqf.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:04 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZGELQF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGELQF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelqf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelqf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelqf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, LWORK, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
   28: *       ..
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> ZGELQF computes an LQ factorization of a complex M-by-N matrix A:
   37: *>
   38: *>    A = ( L 0 ) *  Q
   39: *>
   40: *> where:
   41: *>
   42: *>    Q is a N-by-N orthogonal matrix;
   43: *>    L is an lower-triangular M-by-M matrix;
   44: *>    0 is a M-by-(N-M) zero matrix, if M < N.
   45: *>
   46: *> \endverbatim
   47: *
   48: *  Arguments:
   49: *  ==========
   50: *
   51: *> \param[in] M
   52: *> \verbatim
   53: *>          M is INTEGER
   54: *>          The number of rows of the matrix A.  M >= 0.
   55: *> \endverbatim
   56: *>
   57: *> \param[in] N
   58: *> \verbatim
   59: *>          N is INTEGER
   60: *>          The number of columns of the matrix A.  N >= 0.
   61: *> \endverbatim
   62: *>
   63: *> \param[in,out] A
   64: *> \verbatim
   65: *>          A is COMPLEX*16 array, dimension (LDA,N)
   66: *>          On entry, the M-by-N matrix A.
   67: *>          On exit, the elements on and below the diagonal of the array
   68: *>          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
   69: *>          lower triangular if m <= n); the elements above the diagonal,
   70: *>          with the array TAU, represent the unitary matrix Q as a
   71: *>          product of elementary reflectors (see Further Details).
   72: *> \endverbatim
   73: *>
   74: *> \param[in] LDA
   75: *> \verbatim
   76: *>          LDA is INTEGER
   77: *>          The leading dimension of the array A.  LDA >= max(1,M).
   78: *> \endverbatim
   79: *>
   80: *> \param[out] TAU
   81: *> \verbatim
   82: *>          TAU is COMPLEX*16 array, dimension (min(M,N))
   83: *>          The scalar factors of the elementary reflectors (see Further
   84: *>          Details).
   85: *> \endverbatim
   86: *>
   87: *> \param[out] WORK
   88: *> \verbatim
   89: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
   90: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] LWORK
   94: *> \verbatim
   95: *>          LWORK is INTEGER
   96: *>          The dimension of the array WORK.  LWORK >= max(1,M).
   97: *>          For optimum performance LWORK >= M*NB, where NB is the
   98: *>          optimal blocksize.
   99: *>
  100: *>          If LWORK = -1, then a workspace query is assumed; the routine
  101: *>          only calculates the optimal size of the WORK array, returns
  102: *>          this value as the first entry of the WORK array, and no error
  103: *>          message related to LWORK is issued by XERBLA.
  104: *> \endverbatim
  105: *>
  106: *> \param[out] INFO
  107: *> \verbatim
  108: *>          INFO is INTEGER
  109: *>          = 0:  successful exit
  110: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  111: *> \endverbatim
  112: *
  113: *  Authors:
  114: *  ========
  115: *
  116: *> \author Univ. of Tennessee
  117: *> \author Univ. of California Berkeley
  118: *> \author Univ. of Colorado Denver
  119: *> \author NAG Ltd.
  120: *
  121: *> \date November 2019
  122: *
  123: *> \ingroup complex16GEcomputational
  124: *
  125: *> \par Further Details:
  126: *  =====================
  127: *>
  128: *> \verbatim
  129: *>
  130: *>  The matrix Q is represented as a product of elementary reflectors
  131: *>
  132: *>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
  133: *>
  134: *>  Each H(i) has the form
  135: *>
  136: *>     H(i) = I - tau * v * v**H
  137: *>
  138: *>  where tau is a complex scalar, and v is a complex vector with
  139: *>  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
  140: *>  A(i,i+1:n), and tau in TAU(i).
  141: *> \endverbatim
  142: *>
  143: *  =====================================================================
  144:       SUBROUTINE ZGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
  145: *
  146: *  -- LAPACK computational routine (version 3.9.0) --
  147: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  148: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  149: *     November 2019
  150: *
  151: *     .. Scalar Arguments ..
  152:       INTEGER            INFO, LDA, LWORK, M, N
  153: *     ..
  154: *     .. Array Arguments ..
  155:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
  156: *     ..
  157: *
  158: *  =====================================================================
  159: *
  160: *     .. Local Scalars ..
  161:       LOGICAL            LQUERY
  162:       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
  163:      $                   NBMIN, NX
  164: *     ..
  165: *     .. External Subroutines ..
  166:       EXTERNAL           XERBLA, ZGELQ2, ZLARFB, ZLARFT
  167: *     ..
  168: *     .. Intrinsic Functions ..
  169:       INTRINSIC          MAX, MIN
  170: *     ..
  171: *     .. External Functions ..
  172:       INTEGER            ILAENV
  173:       EXTERNAL           ILAENV
  174: *     ..
  175: *     .. Executable Statements ..
  176: *
  177: *     Test the input arguments
  178: *
  179:       INFO = 0
  180:       NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
  181:       LWKOPT = M*NB
  182:       WORK( 1 ) = LWKOPT
  183:       LQUERY = ( LWORK.EQ.-1 )
  184:       IF( M.LT.0 ) THEN
  185:          INFO = -1
  186:       ELSE IF( N.LT.0 ) THEN
  187:          INFO = -2
  188:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  189:          INFO = -4
  190:       ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
  191:          INFO = -7
  192:       END IF
  193:       IF( INFO.NE.0 ) THEN
  194:          CALL XERBLA( 'ZGELQF', -INFO )
  195:          RETURN
  196:       ELSE IF( LQUERY ) THEN
  197:          RETURN
  198:       END IF
  199: *
  200: *     Quick return if possible
  201: *
  202:       K = MIN( M, N )
  203:       IF( K.EQ.0 ) THEN
  204:          WORK( 1 ) = 1
  205:          RETURN
  206:       END IF
  207: *
  208:       NBMIN = 2
  209:       NX = 0
  210:       IWS = M
  211:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
  212: *
  213: *        Determine when to cross over from blocked to unblocked code.
  214: *
  215:          NX = MAX( 0, ILAENV( 3, 'ZGELQF', ' ', M, N, -1, -1 ) )
  216:          IF( NX.LT.K ) THEN
  217: *
  218: *           Determine if workspace is large enough for blocked code.
  219: *
  220:             LDWORK = M
  221:             IWS = LDWORK*NB
  222:             IF( LWORK.LT.IWS ) THEN
  223: *
  224: *              Not enough workspace to use optimal NB:  reduce NB and
  225: *              determine the minimum value of NB.
  226: *
  227:                NB = LWORK / LDWORK
  228:                NBMIN = MAX( 2, ILAENV( 2, 'ZGELQF', ' ', M, N, -1,
  229:      $                 -1 ) )
  230:             END IF
  231:          END IF
  232:       END IF
  233: *
  234:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
  235: *
  236: *        Use blocked code initially
  237: *
  238:          DO 10 I = 1, K - NX, NB
  239:             IB = MIN( K-I+1, NB )
  240: *
  241: *           Compute the LQ factorization of the current block
  242: *           A(i:i+ib-1,i:n)
  243: *
  244:             CALL ZGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
  245:      $                   IINFO )
  246:             IF( I+IB.LE.M ) THEN
  247: *
  248: *              Form the triangular factor of the block reflector
  249: *              H = H(i) H(i+1) . . . H(i+ib-1)
  250: *
  251:                CALL ZLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
  252:      $                      LDA, TAU( I ), WORK, LDWORK )
  253: *
  254: *              Apply H to A(i+ib:m,i:n) from the right
  255: *
  256:                CALL ZLARFB( 'Right', 'No transpose', 'Forward',
  257:      $                      'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
  258:      $                      LDA, WORK, LDWORK, A( I+IB, I ), LDA,
  259:      $                      WORK( IB+1 ), LDWORK )
  260:             END IF
  261:    10    CONTINUE
  262:       ELSE
  263:          I = 1
  264:       END IF
  265: *
  266: *     Use unblocked code to factor the last or only block.
  267: *
  268:       IF( I.LE.K )
  269:      $   CALL ZGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
  270:      $                IINFO )
  271: *
  272:       WORK( 1 ) = IWS
  273:       RETURN
  274: *
  275: *     End of ZGELQF
  276: *
  277:       END

CVSweb interface <joel.bertrand@systella.fr>