Annotation of rpl/lapack/lapack/zgelqf.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE ZGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            INFO, LDA, LWORK, M, N
                     10: *     ..
                     11: *     .. Array Arguments ..
                     12:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                     13: *     ..
                     14: *
                     15: *  Purpose
                     16: *  =======
                     17: *
                     18: *  ZGELQF computes an LQ factorization of a complex M-by-N matrix A:
                     19: *  A = L * Q.
                     20: *
                     21: *  Arguments
                     22: *  =========
                     23: *
                     24: *  M       (input) INTEGER
                     25: *          The number of rows of the matrix A.  M >= 0.
                     26: *
                     27: *  N       (input) INTEGER
                     28: *          The number of columns of the matrix A.  N >= 0.
                     29: *
                     30: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     31: *          On entry, the M-by-N matrix A.
                     32: *          On exit, the elements on and below the diagonal of the array
                     33: *          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
                     34: *          lower triangular if m <= n); the elements above the diagonal,
                     35: *          with the array TAU, represent the unitary matrix Q as a
                     36: *          product of elementary reflectors (see Further Details).
                     37: *
                     38: *  LDA     (input) INTEGER
                     39: *          The leading dimension of the array A.  LDA >= max(1,M).
                     40: *
                     41: *  TAU     (output) COMPLEX*16 array, dimension (min(M,N))
                     42: *          The scalar factors of the elementary reflectors (see Further
                     43: *          Details).
                     44: *
                     45: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     46: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     47: *
                     48: *  LWORK   (input) INTEGER
                     49: *          The dimension of the array WORK.  LWORK >= max(1,M).
                     50: *          For optimum performance LWORK >= M*NB, where NB is the
                     51: *          optimal blocksize.
                     52: *
                     53: *          If LWORK = -1, then a workspace query is assumed; the routine
                     54: *          only calculates the optimal size of the WORK array, returns
                     55: *          this value as the first entry of the WORK array, and no error
                     56: *          message related to LWORK is issued by XERBLA.
                     57: *
                     58: *  INFO    (output) INTEGER
                     59: *          = 0:  successful exit
                     60: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     61: *
                     62: *  Further Details
                     63: *  ===============
                     64: *
                     65: *  The matrix Q is represented as a product of elementary reflectors
                     66: *
                     67: *     Q = H(k)' . . . H(2)' H(1)', where k = min(m,n).
                     68: *
                     69: *  Each H(i) has the form
                     70: *
                     71: *     H(i) = I - tau * v * v'
                     72: *
                     73: *  where tau is a complex scalar, and v is a complex vector with
                     74: *  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
                     75: *  A(i,i+1:n), and tau in TAU(i).
                     76: *
                     77: *  =====================================================================
                     78: *
                     79: *     .. Local Scalars ..
                     80:       LOGICAL            LQUERY
                     81:       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
                     82:      $                   NBMIN, NX
                     83: *     ..
                     84: *     .. External Subroutines ..
                     85:       EXTERNAL           XERBLA, ZGELQ2, ZLARFB, ZLARFT
                     86: *     ..
                     87: *     .. Intrinsic Functions ..
                     88:       INTRINSIC          MAX, MIN
                     89: *     ..
                     90: *     .. External Functions ..
                     91:       INTEGER            ILAENV
                     92:       EXTERNAL           ILAENV
                     93: *     ..
                     94: *     .. Executable Statements ..
                     95: *
                     96: *     Test the input arguments
                     97: *
                     98:       INFO = 0
                     99:       NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
                    100:       LWKOPT = M*NB
                    101:       WORK( 1 ) = LWKOPT
                    102:       LQUERY = ( LWORK.EQ.-1 )
                    103:       IF( M.LT.0 ) THEN
                    104:          INFO = -1
                    105:       ELSE IF( N.LT.0 ) THEN
                    106:          INFO = -2
                    107:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    108:          INFO = -4
                    109:       ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
                    110:          INFO = -7
                    111:       END IF
                    112:       IF( INFO.NE.0 ) THEN
                    113:          CALL XERBLA( 'ZGELQF', -INFO )
                    114:          RETURN
                    115:       ELSE IF( LQUERY ) THEN
                    116:          RETURN
                    117:       END IF
                    118: *
                    119: *     Quick return if possible
                    120: *
                    121:       K = MIN( M, N )
                    122:       IF( K.EQ.0 ) THEN
                    123:          WORK( 1 ) = 1
                    124:          RETURN
                    125:       END IF
                    126: *
                    127:       NBMIN = 2
                    128:       NX = 0
                    129:       IWS = M
                    130:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
                    131: *
                    132: *        Determine when to cross over from blocked to unblocked code.
                    133: *
                    134:          NX = MAX( 0, ILAENV( 3, 'ZGELQF', ' ', M, N, -1, -1 ) )
                    135:          IF( NX.LT.K ) THEN
                    136: *
                    137: *           Determine if workspace is large enough for blocked code.
                    138: *
                    139:             LDWORK = M
                    140:             IWS = LDWORK*NB
                    141:             IF( LWORK.LT.IWS ) THEN
                    142: *
                    143: *              Not enough workspace to use optimal NB:  reduce NB and
                    144: *              determine the minimum value of NB.
                    145: *
                    146:                NB = LWORK / LDWORK
                    147:                NBMIN = MAX( 2, ILAENV( 2, 'ZGELQF', ' ', M, N, -1,
                    148:      $                 -1 ) )
                    149:             END IF
                    150:          END IF
                    151:       END IF
                    152: *
                    153:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
                    154: *
                    155: *        Use blocked code initially
                    156: *
                    157:          DO 10 I = 1, K - NX, NB
                    158:             IB = MIN( K-I+1, NB )
                    159: *
                    160: *           Compute the LQ factorization of the current block
                    161: *           A(i:i+ib-1,i:n)
                    162: *
                    163:             CALL ZGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
                    164:      $                   IINFO )
                    165:             IF( I+IB.LE.M ) THEN
                    166: *
                    167: *              Form the triangular factor of the block reflector
                    168: *              H = H(i) H(i+1) . . . H(i+ib-1)
                    169: *
                    170:                CALL ZLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
                    171:      $                      LDA, TAU( I ), WORK, LDWORK )
                    172: *
                    173: *              Apply H to A(i+ib:m,i:n) from the right
                    174: *
                    175:                CALL ZLARFB( 'Right', 'No transpose', 'Forward',
                    176:      $                      'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
                    177:      $                      LDA, WORK, LDWORK, A( I+IB, I ), LDA,
                    178:      $                      WORK( IB+1 ), LDWORK )
                    179:             END IF
                    180:    10    CONTINUE
                    181:       ELSE
                    182:          I = 1
                    183:       END IF
                    184: *
                    185: *     Use unblocked code to factor the last or only block.
                    186: *
                    187:       IF( I.LE.K )
                    188:      $   CALL ZGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
                    189:      $                IINFO )
                    190: *
                    191:       WORK( 1 ) = IWS
                    192:       RETURN
                    193: *
                    194: *     End of ZGELQF
                    195: *
                    196:       END

CVSweb interface <joel.bertrand@systella.fr>