Annotation of rpl/lapack/lapack/zgelqf.f, revision 1.14

1.9       bertrand    1: *> \brief \b ZGELQF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZGELQF + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelqf.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelqf.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelqf.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, LWORK, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
                     29: *  
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> ZGELQF computes an LQ factorization of a complex M-by-N matrix A:
                     37: *> A = L * Q.
                     38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] M
                     44: *> \verbatim
                     45: *>          M is INTEGER
                     46: *>          The number of rows of the matrix A.  M >= 0.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] N
                     50: *> \verbatim
                     51: *>          N is INTEGER
                     52: *>          The number of columns of the matrix A.  N >= 0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in,out] A
                     56: *> \verbatim
                     57: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     58: *>          On entry, the M-by-N matrix A.
                     59: *>          On exit, the elements on and below the diagonal of the array
                     60: *>          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
                     61: *>          lower triangular if m <= n); the elements above the diagonal,
                     62: *>          with the array TAU, represent the unitary matrix Q as a
                     63: *>          product of elementary reflectors (see Further Details).
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in] LDA
                     67: *> \verbatim
                     68: *>          LDA is INTEGER
                     69: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[out] TAU
                     73: *> \verbatim
                     74: *>          TAU is COMPLEX*16 array, dimension (min(M,N))
                     75: *>          The scalar factors of the elementary reflectors (see Further
                     76: *>          Details).
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[out] WORK
                     80: *> \verbatim
                     81: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     82: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] LWORK
                     86: *> \verbatim
                     87: *>          LWORK is INTEGER
                     88: *>          The dimension of the array WORK.  LWORK >= max(1,M).
                     89: *>          For optimum performance LWORK >= M*NB, where NB is the
                     90: *>          optimal blocksize.
                     91: *>
                     92: *>          If LWORK = -1, then a workspace query is assumed; the routine
                     93: *>          only calculates the optimal size of the WORK array, returns
                     94: *>          this value as the first entry of the WORK array, and no error
                     95: *>          message related to LWORK is issued by XERBLA.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[out] INFO
                     99: *> \verbatim
                    100: *>          INFO is INTEGER
                    101: *>          = 0:  successful exit
                    102: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    103: *> \endverbatim
                    104: *
                    105: *  Authors:
                    106: *  ========
                    107: *
                    108: *> \author Univ. of Tennessee 
                    109: *> \author Univ. of California Berkeley 
                    110: *> \author Univ. of Colorado Denver 
                    111: *> \author NAG Ltd. 
                    112: *
                    113: *> \date November 2011
                    114: *
                    115: *> \ingroup complex16GEcomputational
                    116: *
                    117: *> \par Further Details:
                    118: *  =====================
                    119: *>
                    120: *> \verbatim
                    121: *>
                    122: *>  The matrix Q is represented as a product of elementary reflectors
                    123: *>
                    124: *>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
                    125: *>
                    126: *>  Each H(i) has the form
                    127: *>
                    128: *>     H(i) = I - tau * v * v**H
                    129: *>
                    130: *>  where tau is a complex scalar, and v is a complex vector with
                    131: *>  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
                    132: *>  A(i,i+1:n), and tau in TAU(i).
                    133: *> \endverbatim
                    134: *>
                    135: *  =====================================================================
1.1       bertrand  136:       SUBROUTINE ZGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
                    137: *
1.9       bertrand  138: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  139: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    140: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  141: *     November 2011
1.1       bertrand  142: *
                    143: *     .. Scalar Arguments ..
                    144:       INTEGER            INFO, LDA, LWORK, M, N
                    145: *     ..
                    146: *     .. Array Arguments ..
                    147:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                    148: *     ..
                    149: *
                    150: *  =====================================================================
                    151: *
                    152: *     .. Local Scalars ..
                    153:       LOGICAL            LQUERY
                    154:       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
                    155:      $                   NBMIN, NX
                    156: *     ..
                    157: *     .. External Subroutines ..
                    158:       EXTERNAL           XERBLA, ZGELQ2, ZLARFB, ZLARFT
                    159: *     ..
                    160: *     .. Intrinsic Functions ..
                    161:       INTRINSIC          MAX, MIN
                    162: *     ..
                    163: *     .. External Functions ..
                    164:       INTEGER            ILAENV
                    165:       EXTERNAL           ILAENV
                    166: *     ..
                    167: *     .. Executable Statements ..
                    168: *
                    169: *     Test the input arguments
                    170: *
                    171:       INFO = 0
                    172:       NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
                    173:       LWKOPT = M*NB
                    174:       WORK( 1 ) = LWKOPT
                    175:       LQUERY = ( LWORK.EQ.-1 )
                    176:       IF( M.LT.0 ) THEN
                    177:          INFO = -1
                    178:       ELSE IF( N.LT.0 ) THEN
                    179:          INFO = -2
                    180:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    181:          INFO = -4
                    182:       ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
                    183:          INFO = -7
                    184:       END IF
                    185:       IF( INFO.NE.0 ) THEN
                    186:          CALL XERBLA( 'ZGELQF', -INFO )
                    187:          RETURN
                    188:       ELSE IF( LQUERY ) THEN
                    189:          RETURN
                    190:       END IF
                    191: *
                    192: *     Quick return if possible
                    193: *
                    194:       K = MIN( M, N )
                    195:       IF( K.EQ.0 ) THEN
                    196:          WORK( 1 ) = 1
                    197:          RETURN
                    198:       END IF
                    199: *
                    200:       NBMIN = 2
                    201:       NX = 0
                    202:       IWS = M
                    203:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
                    204: *
                    205: *        Determine when to cross over from blocked to unblocked code.
                    206: *
                    207:          NX = MAX( 0, ILAENV( 3, 'ZGELQF', ' ', M, N, -1, -1 ) )
                    208:          IF( NX.LT.K ) THEN
                    209: *
                    210: *           Determine if workspace is large enough for blocked code.
                    211: *
                    212:             LDWORK = M
                    213:             IWS = LDWORK*NB
                    214:             IF( LWORK.LT.IWS ) THEN
                    215: *
                    216: *              Not enough workspace to use optimal NB:  reduce NB and
                    217: *              determine the minimum value of NB.
                    218: *
                    219:                NB = LWORK / LDWORK
                    220:                NBMIN = MAX( 2, ILAENV( 2, 'ZGELQF', ' ', M, N, -1,
                    221:      $                 -1 ) )
                    222:             END IF
                    223:          END IF
                    224:       END IF
                    225: *
                    226:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
                    227: *
                    228: *        Use blocked code initially
                    229: *
                    230:          DO 10 I = 1, K - NX, NB
                    231:             IB = MIN( K-I+1, NB )
                    232: *
                    233: *           Compute the LQ factorization of the current block
                    234: *           A(i:i+ib-1,i:n)
                    235: *
                    236:             CALL ZGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
                    237:      $                   IINFO )
                    238:             IF( I+IB.LE.M ) THEN
                    239: *
                    240: *              Form the triangular factor of the block reflector
                    241: *              H = H(i) H(i+1) . . . H(i+ib-1)
                    242: *
                    243:                CALL ZLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
                    244:      $                      LDA, TAU( I ), WORK, LDWORK )
                    245: *
                    246: *              Apply H to A(i+ib:m,i:n) from the right
                    247: *
                    248:                CALL ZLARFB( 'Right', 'No transpose', 'Forward',
                    249:      $                      'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
                    250:      $                      LDA, WORK, LDWORK, A( I+IB, I ), LDA,
                    251:      $                      WORK( IB+1 ), LDWORK )
                    252:             END IF
                    253:    10    CONTINUE
                    254:       ELSE
                    255:          I = 1
                    256:       END IF
                    257: *
                    258: *     Use unblocked code to factor the last or only block.
                    259: *
                    260:       IF( I.LE.K )
                    261:      $   CALL ZGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
                    262:      $                IINFO )
                    263: *
                    264:       WORK( 1 ) = IWS
                    265:       RETURN
                    266: *
                    267: *     End of ZGELQF
                    268: *
                    269:       END

CVSweb interface <joel.bertrand@systella.fr>