Annotation of rpl/lapack/lapack/zgelqf.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            INFO, LDA, LWORK, M, N
        !            10: *     ..
        !            11: *     .. Array Arguments ..
        !            12:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
        !            13: *     ..
        !            14: *
        !            15: *  Purpose
        !            16: *  =======
        !            17: *
        !            18: *  ZGELQF computes an LQ factorization of a complex M-by-N matrix A:
        !            19: *  A = L * Q.
        !            20: *
        !            21: *  Arguments
        !            22: *  =========
        !            23: *
        !            24: *  M       (input) INTEGER
        !            25: *          The number of rows of the matrix A.  M >= 0.
        !            26: *
        !            27: *  N       (input) INTEGER
        !            28: *          The number of columns of the matrix A.  N >= 0.
        !            29: *
        !            30: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            31: *          On entry, the M-by-N matrix A.
        !            32: *          On exit, the elements on and below the diagonal of the array
        !            33: *          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
        !            34: *          lower triangular if m <= n); the elements above the diagonal,
        !            35: *          with the array TAU, represent the unitary matrix Q as a
        !            36: *          product of elementary reflectors (see Further Details).
        !            37: *
        !            38: *  LDA     (input) INTEGER
        !            39: *          The leading dimension of the array A.  LDA >= max(1,M).
        !            40: *
        !            41: *  TAU     (output) COMPLEX*16 array, dimension (min(M,N))
        !            42: *          The scalar factors of the elementary reflectors (see Further
        !            43: *          Details).
        !            44: *
        !            45: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !            46: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            47: *
        !            48: *  LWORK   (input) INTEGER
        !            49: *          The dimension of the array WORK.  LWORK >= max(1,M).
        !            50: *          For optimum performance LWORK >= M*NB, where NB is the
        !            51: *          optimal blocksize.
        !            52: *
        !            53: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            54: *          only calculates the optimal size of the WORK array, returns
        !            55: *          this value as the first entry of the WORK array, and no error
        !            56: *          message related to LWORK is issued by XERBLA.
        !            57: *
        !            58: *  INFO    (output) INTEGER
        !            59: *          = 0:  successful exit
        !            60: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            61: *
        !            62: *  Further Details
        !            63: *  ===============
        !            64: *
        !            65: *  The matrix Q is represented as a product of elementary reflectors
        !            66: *
        !            67: *     Q = H(k)' . . . H(2)' H(1)', where k = min(m,n).
        !            68: *
        !            69: *  Each H(i) has the form
        !            70: *
        !            71: *     H(i) = I - tau * v * v'
        !            72: *
        !            73: *  where tau is a complex scalar, and v is a complex vector with
        !            74: *  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
        !            75: *  A(i,i+1:n), and tau in TAU(i).
        !            76: *
        !            77: *  =====================================================================
        !            78: *
        !            79: *     .. Local Scalars ..
        !            80:       LOGICAL            LQUERY
        !            81:       INTEGER            I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
        !            82:      $                   NBMIN, NX
        !            83: *     ..
        !            84: *     .. External Subroutines ..
        !            85:       EXTERNAL           XERBLA, ZGELQ2, ZLARFB, ZLARFT
        !            86: *     ..
        !            87: *     .. Intrinsic Functions ..
        !            88:       INTRINSIC          MAX, MIN
        !            89: *     ..
        !            90: *     .. External Functions ..
        !            91:       INTEGER            ILAENV
        !            92:       EXTERNAL           ILAENV
        !            93: *     ..
        !            94: *     .. Executable Statements ..
        !            95: *
        !            96: *     Test the input arguments
        !            97: *
        !            98:       INFO = 0
        !            99:       NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 )
        !           100:       LWKOPT = M*NB
        !           101:       WORK( 1 ) = LWKOPT
        !           102:       LQUERY = ( LWORK.EQ.-1 )
        !           103:       IF( M.LT.0 ) THEN
        !           104:          INFO = -1
        !           105:       ELSE IF( N.LT.0 ) THEN
        !           106:          INFO = -2
        !           107:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           108:          INFO = -4
        !           109:       ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
        !           110:          INFO = -7
        !           111:       END IF
        !           112:       IF( INFO.NE.0 ) THEN
        !           113:          CALL XERBLA( 'ZGELQF', -INFO )
        !           114:          RETURN
        !           115:       ELSE IF( LQUERY ) THEN
        !           116:          RETURN
        !           117:       END IF
        !           118: *
        !           119: *     Quick return if possible
        !           120: *
        !           121:       K = MIN( M, N )
        !           122:       IF( K.EQ.0 ) THEN
        !           123:          WORK( 1 ) = 1
        !           124:          RETURN
        !           125:       END IF
        !           126: *
        !           127:       NBMIN = 2
        !           128:       NX = 0
        !           129:       IWS = M
        !           130:       IF( NB.GT.1 .AND. NB.LT.K ) THEN
        !           131: *
        !           132: *        Determine when to cross over from blocked to unblocked code.
        !           133: *
        !           134:          NX = MAX( 0, ILAENV( 3, 'ZGELQF', ' ', M, N, -1, -1 ) )
        !           135:          IF( NX.LT.K ) THEN
        !           136: *
        !           137: *           Determine if workspace is large enough for blocked code.
        !           138: *
        !           139:             LDWORK = M
        !           140:             IWS = LDWORK*NB
        !           141:             IF( LWORK.LT.IWS ) THEN
        !           142: *
        !           143: *              Not enough workspace to use optimal NB:  reduce NB and
        !           144: *              determine the minimum value of NB.
        !           145: *
        !           146:                NB = LWORK / LDWORK
        !           147:                NBMIN = MAX( 2, ILAENV( 2, 'ZGELQF', ' ', M, N, -1,
        !           148:      $                 -1 ) )
        !           149:             END IF
        !           150:          END IF
        !           151:       END IF
        !           152: *
        !           153:       IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
        !           154: *
        !           155: *        Use blocked code initially
        !           156: *
        !           157:          DO 10 I = 1, K - NX, NB
        !           158:             IB = MIN( K-I+1, NB )
        !           159: *
        !           160: *           Compute the LQ factorization of the current block
        !           161: *           A(i:i+ib-1,i:n)
        !           162: *
        !           163:             CALL ZGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
        !           164:      $                   IINFO )
        !           165:             IF( I+IB.LE.M ) THEN
        !           166: *
        !           167: *              Form the triangular factor of the block reflector
        !           168: *              H = H(i) H(i+1) . . . H(i+ib-1)
        !           169: *
        !           170:                CALL ZLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
        !           171:      $                      LDA, TAU( I ), WORK, LDWORK )
        !           172: *
        !           173: *              Apply H to A(i+ib:m,i:n) from the right
        !           174: *
        !           175:                CALL ZLARFB( 'Right', 'No transpose', 'Forward',
        !           176:      $                      'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
        !           177:      $                      LDA, WORK, LDWORK, A( I+IB, I ), LDA,
        !           178:      $                      WORK( IB+1 ), LDWORK )
        !           179:             END IF
        !           180:    10    CONTINUE
        !           181:       ELSE
        !           182:          I = 1
        !           183:       END IF
        !           184: *
        !           185: *     Use unblocked code to factor the last or only block.
        !           186: *
        !           187:       IF( I.LE.K )
        !           188:      $   CALL ZGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
        !           189:      $                IINFO )
        !           190: *
        !           191:       WORK( 1 ) = IWS
        !           192:       RETURN
        !           193: *
        !           194: *     End of ZGELQF
        !           195: *
        !           196:       END

CVSweb interface <joel.bertrand@systella.fr>