Annotation of rpl/lapack/lapack/zgelq2.f, revision 1.21

1.13      bertrand    1: *> \brief \b ZGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
1.10      bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download ZGELQ2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelq2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelq2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelq2.f">
1.10      bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGELQ2( M, N, A, LDA, TAU, WORK, INFO )
1.17      bertrand   22: *
1.10      bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
1.17      bertrand   29: *
1.10      bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
1.20      bertrand   36: *> ZGELQ2 computes an LQ factorization of a complex m-by-n matrix A:
                     37: *>
                     38: *>    A = ( L 0 ) *  Q
                     39: *>
                     40: *> where:
                     41: *>
                     42: *>    Q is a n-by-n orthogonal matrix;
1.21    ! bertrand   43: *>    L is a lower-triangular m-by-m matrix;
1.20      bertrand   44: *>    0 is a m-by-(n-m) zero matrix, if m < n.
                     45: *>
1.10      bertrand   46: *> \endverbatim
                     47: *
                     48: *  Arguments:
                     49: *  ==========
                     50: *
                     51: *> \param[in] M
                     52: *> \verbatim
                     53: *>          M is INTEGER
                     54: *>          The number of rows of the matrix A.  M >= 0.
                     55: *> \endverbatim
                     56: *>
                     57: *> \param[in] N
                     58: *> \verbatim
                     59: *>          N is INTEGER
                     60: *>          The number of columns of the matrix A.  N >= 0.
                     61: *> \endverbatim
                     62: *>
                     63: *> \param[in,out] A
                     64: *> \verbatim
                     65: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     66: *>          On entry, the m by n matrix A.
                     67: *>          On exit, the elements on and below the diagonal of the array
                     68: *>          contain the m by min(m,n) lower trapezoidal matrix L (L is
                     69: *>          lower triangular if m <= n); the elements above the diagonal,
                     70: *>          with the array TAU, represent the unitary matrix Q as a
                     71: *>          product of elementary reflectors (see Further Details).
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] LDA
                     75: *> \verbatim
                     76: *>          LDA is INTEGER
                     77: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[out] TAU
                     81: *> \verbatim
                     82: *>          TAU is COMPLEX*16 array, dimension (min(M,N))
                     83: *>          The scalar factors of the elementary reflectors (see Further
                     84: *>          Details).
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[out] WORK
                     88: *> \verbatim
                     89: *>          WORK is COMPLEX*16 array, dimension (M)
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[out] INFO
                     93: *> \verbatim
                     94: *>          INFO is INTEGER
                     95: *>          = 0: successful exit
                     96: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                     97: *> \endverbatim
                     98: *
                     99: *  Authors:
                    100: *  ========
                    101: *
1.17      bertrand  102: *> \author Univ. of Tennessee
                    103: *> \author Univ. of California Berkeley
                    104: *> \author Univ. of Colorado Denver
                    105: *> \author NAG Ltd.
1.10      bertrand  106: *
                    107: *> \ingroup complex16GEcomputational
                    108: *
                    109: *> \par Further Details:
                    110: *  =====================
                    111: *>
                    112: *> \verbatim
                    113: *>
                    114: *>  The matrix Q is represented as a product of elementary reflectors
                    115: *>
                    116: *>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
                    117: *>
                    118: *>  Each H(i) has the form
                    119: *>
                    120: *>     H(i) = I - tau * v * v**H
                    121: *>
                    122: *>  where tau is a complex scalar, and v is a complex vector with
                    123: *>  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
                    124: *>  A(i,i+1:n), and tau in TAU(i).
                    125: *> \endverbatim
                    126: *>
                    127: *  =====================================================================
1.1       bertrand  128:       SUBROUTINE ZGELQ2( M, N, A, LDA, TAU, WORK, INFO )
                    129: *
1.21    ! bertrand  130: *  -- LAPACK computational routine --
1.1       bertrand  131: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    132: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    133: *
                    134: *     .. Scalar Arguments ..
                    135:       INTEGER            INFO, LDA, M, N
                    136: *     ..
                    137: *     .. Array Arguments ..
                    138:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                    139: *     ..
                    140: *
                    141: *  =====================================================================
                    142: *
                    143: *     .. Parameters ..
                    144:       COMPLEX*16         ONE
                    145:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    146: *     ..
                    147: *     .. Local Scalars ..
                    148:       INTEGER            I, K
                    149:       COMPLEX*16         ALPHA
                    150: *     ..
                    151: *     .. External Subroutines ..
1.5       bertrand  152:       EXTERNAL           XERBLA, ZLACGV, ZLARF, ZLARFG
1.1       bertrand  153: *     ..
                    154: *     .. Intrinsic Functions ..
                    155:       INTRINSIC          MAX, MIN
                    156: *     ..
                    157: *     .. Executable Statements ..
                    158: *
                    159: *     Test the input arguments
                    160: *
                    161:       INFO = 0
                    162:       IF( M.LT.0 ) THEN
                    163:          INFO = -1
                    164:       ELSE IF( N.LT.0 ) THEN
                    165:          INFO = -2
                    166:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    167:          INFO = -4
                    168:       END IF
                    169:       IF( INFO.NE.0 ) THEN
                    170:          CALL XERBLA( 'ZGELQ2', -INFO )
                    171:          RETURN
                    172:       END IF
                    173: *
                    174:       K = MIN( M, N )
                    175: *
                    176:       DO 10 I = 1, K
                    177: *
                    178: *        Generate elementary reflector H(i) to annihilate A(i,i+1:n)
                    179: *
                    180:          CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    181:          ALPHA = A( I, I )
1.5       bertrand  182:          CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
1.1       bertrand  183:      $                TAU( I ) )
                    184:          IF( I.LT.M ) THEN
                    185: *
                    186: *           Apply H(i) to A(i+1:m,i:n) from the right
                    187: *
                    188:             A( I, I ) = ONE
                    189:             CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, TAU( I ),
                    190:      $                  A( I+1, I ), LDA, WORK )
                    191:          END IF
                    192:          A( I, I ) = ALPHA
                    193:          CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    194:    10 CONTINUE
                    195:       RETURN
                    196: *
                    197: *     End of ZGELQ2
                    198: *
                    199:       END

CVSweb interface <joel.bertrand@systella.fr>