File:  [local] / rpl / lapack / lapack / zgelq.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:17 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGELQ
    2: *
    3: *  Definition:
    4: *  ===========
    5: *
    6: *       SUBROUTINE ZGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK,
    7: *                         INFO )
    8: *
    9: *       .. Scalar Arguments ..
   10: *       INTEGER           INFO, LDA, M, N, TSIZE, LWORK
   11: *       ..
   12: *       .. Array Arguments ..
   13: *       COMPLEX*16       A( LDA, * ), T( * ), WORK( * )
   14: *       ..
   15: *
   16: *
   17: *> \par Purpose:
   18: *  =============
   19: *>
   20: *> \verbatim
   21: *>
   22: *> ZGELQ computes an LQ factorization of a complex M-by-N matrix A:
   23: *>
   24: *>    A = ( L 0 ) *  Q
   25: *>
   26: *> where:
   27: *>
   28: *>    Q is a N-by-N orthogonal matrix;
   29: *>    L is a lower-triangular M-by-M matrix;
   30: *>    0 is a M-by-(N-M) zero matrix, if M < N.
   31: *>
   32: *> \endverbatim
   33: *
   34: *  Arguments:
   35: *  ==========
   36: *
   37: *> \param[in] M
   38: *> \verbatim
   39: *>          M is INTEGER
   40: *>          The number of rows of the matrix A.  M >= 0.
   41: *> \endverbatim
   42: *>
   43: *> \param[in] N
   44: *> \verbatim
   45: *>          N is INTEGER
   46: *>          The number of columns of the matrix A.  N >= 0.
   47: *> \endverbatim
   48: *>
   49: *> \param[in,out] A
   50: *> \verbatim
   51: *>          A is COMPLEX*16 array, dimension (LDA,N)
   52: *>          On entry, the M-by-N matrix A.
   53: *>          On exit, the elements on and below the diagonal of the array
   54: *>          contain the M-by-min(M,N) lower trapezoidal matrix L
   55: *>          (L is lower triangular if M <= N);
   56: *>          the elements above the diagonal are used to store part of the 
   57: *>          data structure to represent Q.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] LDA
   61: *> \verbatim
   62: *>          LDA is INTEGER
   63: *>          The leading dimension of the array A.  LDA >= max(1,M).
   64: *> \endverbatim
   65: *>
   66: *> \param[out] T
   67: *> \verbatim
   68: *>          T is COMPLEX*16 array, dimension (MAX(5,TSIZE))
   69: *>          On exit, if INFO = 0, T(1) returns optimal (or either minimal 
   70: *>          or optimal, if query is assumed) TSIZE. See TSIZE for details.
   71: *>          Remaining T contains part of the data structure used to represent Q.
   72: *>          If one wants to apply or construct Q, then one needs to keep T 
   73: *>          (in addition to A) and pass it to further subroutines.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] TSIZE
   77: *> \verbatim
   78: *>          TSIZE is INTEGER
   79: *>          If TSIZE >= 5, the dimension of the array T.
   80: *>          If TSIZE = -1 or -2, then a workspace query is assumed. The routine
   81: *>          only calculates the sizes of the T and WORK arrays, returns these
   82: *>          values as the first entries of the T and WORK arrays, and no error
   83: *>          message related to T or WORK is issued by XERBLA.
   84: *>          If TSIZE = -1, the routine calculates optimal size of T for the 
   85: *>          optimum performance and returns this value in T(1).
   86: *>          If TSIZE = -2, the routine calculates minimal size of T and 
   87: *>          returns this value in T(1).
   88: *> \endverbatim
   89: *>
   90: *> \param[out] WORK
   91: *> \verbatim
   92: *>          (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
   93: *>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
   94: *>          or optimal, if query was assumed) LWORK.
   95: *>          See LWORK for details.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] LWORK
   99: *> \verbatim
  100: *>          LWORK is INTEGER
  101: *>          The dimension of the array WORK.
  102: *>          If LWORK = -1 or -2, then a workspace query is assumed. The routine
  103: *>          only calculates the sizes of the T and WORK arrays, returns these
  104: *>          values as the first entries of the T and WORK arrays, and no error
  105: *>          message related to T or WORK is issued by XERBLA.
  106: *>          If LWORK = -1, the routine calculates optimal size of WORK for the
  107: *>          optimal performance and returns this value in WORK(1).
  108: *>          If LWORK = -2, the routine calculates minimal size of WORK and 
  109: *>          returns this value in WORK(1).
  110: *> \endverbatim
  111: *>
  112: *> \param[out] INFO
  113: *> \verbatim
  114: *>          INFO is INTEGER
  115: *>          = 0:  successful exit
  116: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  117: *> \endverbatim
  118: *
  119: *  Authors:
  120: *  ========
  121: *
  122: *> \author Univ. of Tennessee
  123: *> \author Univ. of California Berkeley
  124: *> \author Univ. of Colorado Denver
  125: *> \author NAG Ltd.
  126: *
  127: *> \par Further Details
  128: *  ====================
  129: *>
  130: *> \verbatim
  131: *>
  132: *> The goal of the interface is to give maximum freedom to the developers for
  133: *> creating any LQ factorization algorithm they wish. The triangular 
  134: *> (trapezoidal) L has to be stored in the lower part of A. The lower part of A
  135: *> and the array T can be used to store any relevant information for applying or
  136: *> constructing the Q factor. The WORK array can safely be discarded after exit.
  137: *>
  138: *> Caution: One should not expect the sizes of T and WORK to be the same from one 
  139: *> LAPACK implementation to the other, or even from one execution to the other.
  140: *> A workspace query (for T and WORK) is needed at each execution. However, 
  141: *> for a given execution, the size of T and WORK are fixed and will not change 
  142: *> from one query to the next.
  143: *>
  144: *> \endverbatim
  145: *>
  146: *> \par Further Details particular to this LAPACK implementation:
  147: *  ==============================================================
  148: *>
  149: *> \verbatim
  150: *>
  151: *> These details are particular for this LAPACK implementation. Users should not 
  152: *> take them for granted. These details may change in the future, and are not likely
  153: *> true for another LAPACK implementation. These details are relevant if one wants
  154: *> to try to understand the code. They are not part of the interface.
  155: *>
  156: *> In this version,
  157: *>
  158: *>          T(2): row block size (MB)
  159: *>          T(3): column block size (NB)
  160: *>          T(6:TSIZE): data structure needed for Q, computed by
  161: *>                           ZLASWLQ or ZGELQT
  162: *>
  163: *>  Depending on the matrix dimensions M and N, and row and column
  164: *>  block sizes MB and NB returned by ILAENV, ZGELQ will use either
  165: *>  ZLASWLQ (if the matrix is short-and-wide) or ZGELQT to compute
  166: *>  the LQ factorization.
  167: *> \endverbatim
  168: *>
  169: *  =====================================================================
  170:       SUBROUTINE ZGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK,
  171:      $                  INFO )
  172: *
  173: *  -- LAPACK computational routine --
  174: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  175: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
  176: *
  177: *     .. Scalar Arguments ..
  178:       INTEGER            INFO, LDA, M, N, TSIZE, LWORK
  179: *     ..
  180: *     .. Array Arguments ..
  181:       COMPLEX*16         A( LDA, * ), T( * ), WORK( * )
  182: *     ..
  183: *
  184: *  =====================================================================
  185: *
  186: *     ..
  187: *     .. Local Scalars ..
  188:       LOGICAL            LQUERY, LMINWS, MINT, MINW
  189:       INTEGER            MB, NB, MINTSZ, NBLCKS, LWMIN, LWOPT, LWREQ
  190: *     ..
  191: *     .. External Functions ..
  192:       LOGICAL            LSAME
  193:       EXTERNAL           LSAME
  194: *     ..
  195: *     .. External Subroutines ..
  196:       EXTERNAL           ZGELQT, ZLASWLQ, XERBLA
  197: *     ..
  198: *     .. Intrinsic Functions ..
  199:       INTRINSIC          MAX, MIN, MOD
  200: *     ..
  201: *     .. External Functions ..
  202:       INTEGER            ILAENV
  203:       EXTERNAL           ILAENV
  204: *     ..
  205: *     .. Executable Statements ..
  206: *
  207: *     Test the input arguments
  208: *
  209:       INFO = 0
  210: *
  211:       LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR.
  212:      $           LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
  213: *
  214:       MINT = .FALSE.
  215:       MINW = .FALSE.
  216:       IF( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) THEN
  217:         IF( TSIZE.NE.-1 ) MINT = .TRUE.
  218:         IF( LWORK.NE.-1 ) MINW = .TRUE.
  219:       END IF
  220: *
  221: *     Determine the block size
  222: *
  223:       IF( MIN( M, N ).GT.0 ) THEN
  224:         MB = ILAENV( 1, 'ZGELQ ', ' ', M, N, 1, -1 )
  225:         NB = ILAENV( 1, 'ZGELQ ', ' ', M, N, 2, -1 )
  226:       ELSE
  227:         MB = 1
  228:         NB = N
  229:       END IF
  230:       IF( MB.GT.MIN( M, N ) .OR. MB.LT.1 ) MB = 1
  231:       IF( NB.GT.N .OR. NB.LE.M ) NB = N
  232:       MINTSZ = M + 5
  233:       IF ( NB.GT.M .AND. N.GT.M ) THEN
  234:         IF( MOD( N - M, NB - M ).EQ.0 ) THEN
  235:           NBLCKS = ( N - M ) / ( NB - M )
  236:         ELSE
  237:           NBLCKS = ( N - M ) / ( NB - M ) + 1
  238:         END IF
  239:       ELSE
  240:         NBLCKS = 1
  241:       END IF
  242: *
  243: *     Determine if the workspace size satisfies minimal size
  244: *
  245:       IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN
  246:          LWMIN = MAX( 1, N )
  247:          LWOPT = MAX( 1, MB*N )
  248:       ELSE
  249:          LWMIN = MAX( 1, M )
  250:          LWOPT = MAX( 1, MB*M )
  251:       END IF
  252:       LMINWS = .FALSE.
  253:       IF( ( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) .OR. LWORK.LT.LWOPT )
  254:      $    .AND. ( LWORK.GE.LWMIN ) .AND. ( TSIZE.GE.MINTSZ )
  255:      $    .AND. ( .NOT.LQUERY ) ) THEN
  256:         IF( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) ) THEN
  257:             LMINWS = .TRUE.
  258:             MB = 1
  259:             NB = N
  260:         END IF
  261:         IF( LWORK.LT.LWOPT ) THEN
  262:             LMINWS = .TRUE.
  263:             MB = 1
  264:         END IF
  265:       END IF
  266:       IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN
  267:          LWREQ = MAX( 1, MB*N )
  268:       ELSE
  269:          LWREQ = MAX( 1, MB*M )
  270:       END IF
  271: *
  272:       IF( M.LT.0 ) THEN
  273:         INFO = -1
  274:       ELSE IF( N.LT.0 ) THEN
  275:         INFO = -2
  276:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  277:         INFO = -4
  278:       ELSE IF( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 )
  279:      $   .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN
  280:         INFO = -6
  281:       ELSE IF( ( LWORK.LT.LWREQ ) .AND .( .NOT.LQUERY )
  282:      $   .AND. ( .NOT.LMINWS ) ) THEN
  283:         INFO = -8
  284:       END IF
  285: *
  286:       IF( INFO.EQ.0 ) THEN
  287:         IF( MINT ) THEN
  288:           T( 1 ) = MINTSZ
  289:         ELSE
  290:           T( 1 ) = MB*M*NBLCKS + 5
  291:         END IF
  292:         T( 2 ) = MB
  293:         T( 3 ) = NB
  294:         IF( MINW ) THEN
  295:           WORK( 1 ) = LWMIN
  296:         ELSE
  297:           WORK( 1 ) = LWREQ
  298:         END IF
  299:       END IF
  300:       IF( INFO.NE.0 ) THEN
  301:         CALL XERBLA( 'ZGELQ', -INFO )
  302:         RETURN
  303:       ELSE IF( LQUERY ) THEN
  304:         RETURN
  305:       END IF
  306: *
  307: *     Quick return if possible
  308: *
  309:       IF( MIN( M, N ).EQ.0 ) THEN
  310:         RETURN
  311:       END IF
  312: *
  313: *     The LQ Decomposition
  314: *
  315:       IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN
  316:         CALL ZGELQT( M, N, MB, A, LDA, T( 6 ), MB, WORK, INFO )
  317:       ELSE
  318:         CALL ZLASWLQ( M, N, MB, NB, A, LDA, T( 6 ), MB, WORK,
  319:      $                LWORK, INFO )
  320:       END IF
  321: *
  322:       WORK( 1 ) = LWREQ
  323: *
  324:       RETURN
  325: *
  326: *     End of ZGELQ
  327: *
  328:       END

CVSweb interface <joel.bertrand@systella.fr>