File:  [local] / rpl / lapack / lapack / zgejsv.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:17 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGEJSV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGEJSV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgejsv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgejsv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgejsv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *     SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
   22: *                         M, N, A, LDA, SVA, U, LDU, V, LDV,
   23: *                         CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
   24: *
   25: *     .. Scalar Arguments ..
   26: *     IMPLICIT    NONE
   27: *     INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
   28: *     ..
   29: *     .. Array Arguments ..
   30: *     COMPLEX*16     A( LDA, * ),  U( LDU, * ), V( LDV, * ), CWORK( LWORK )
   31: *     DOUBLE PRECISION   SVA( N ), RWORK( LRWORK )
   32: *     INTEGER     IWORK( * )
   33: *     CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> ZGEJSV computes the singular value decomposition (SVD) of a complex M-by-N
   43: *> matrix [A], where M >= N. The SVD of [A] is written as
   44: *>
   45: *>              [A] = [U] * [SIGMA] * [V]^*,
   46: *>
   47: *> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
   48: *> diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and
   49: *> [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are
   50: *> the singular values of [A]. The columns of [U] and [V] are the left and
   51: *> the right singular vectors of [A], respectively. The matrices [U] and [V]
   52: *> are computed and stored in the arrays U and V, respectively. The diagonal
   53: *> of [SIGMA] is computed and stored in the array SVA.
   54: *> \endverbatim
   55: *>
   56: *>  Arguments:
   57: *>  ==========
   58: *>
   59: *> \param[in] JOBA
   60: *> \verbatim
   61: *>          JOBA is CHARACTER*1
   62: *>         Specifies the level of accuracy:
   63: *>       = 'C': This option works well (high relative accuracy) if A = B * D,
   64: *>              with well-conditioned B and arbitrary diagonal matrix D.
   65: *>              The accuracy cannot be spoiled by COLUMN scaling. The
   66: *>              accuracy of the computed output depends on the condition of
   67: *>              B, and the procedure aims at the best theoretical accuracy.
   68: *>              The relative error max_{i=1:N}|d sigma_i| / sigma_i is
   69: *>              bounded by f(M,N)*epsilon* cond(B), independent of D.
   70: *>              The input matrix is preprocessed with the QRF with column
   71: *>              pivoting. This initial preprocessing and preconditioning by
   72: *>              a rank revealing QR factorization is common for all values of
   73: *>              JOBA. Additional actions are specified as follows:
   74: *>       = 'E': Computation as with 'C' with an additional estimate of the
   75: *>              condition number of B. It provides a realistic error bound.
   76: *>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
   77: *>              D1, D2, and well-conditioned matrix C, this option gives
   78: *>              higher accuracy than the 'C' option. If the structure of the
   79: *>              input matrix is not known, and relative accuracy is
   80: *>              desirable, then this option is advisable. The input matrix A
   81: *>              is preprocessed with QR factorization with FULL (row and
   82: *>              column) pivoting.
   83: *>       = 'G': Computation as with 'F' with an additional estimate of the
   84: *>              condition number of B, where A=B*D. If A has heavily weighted
   85: *>              rows, then using this condition number gives too pessimistic
   86: *>              error bound.
   87: *>       = 'A': Small singular values are not well determined by the data 
   88: *>              and are considered as noisy; the matrix is treated as
   89: *>              numerically rank deficient. The error in the computed
   90: *>              singular values is bounded by f(m,n)*epsilon*||A||.
   91: *>              The computed SVD A = U * S * V^* restores A up to
   92: *>              f(m,n)*epsilon*||A||.
   93: *>              This gives the procedure the licence to discard (set to zero)
   94: *>              all singular values below N*epsilon*||A||.
   95: *>       = 'R': Similar as in 'A'. Rank revealing property of the initial
   96: *>              QR factorization is used do reveal (using triangular factor)
   97: *>              a gap sigma_{r+1} < epsilon * sigma_r in which case the
   98: *>              numerical RANK is declared to be r. The SVD is computed with
   99: *>              absolute error bounds, but more accurately than with 'A'.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] JOBU
  103: *> \verbatim
  104: *>          JOBU is CHARACTER*1
  105: *>         Specifies whether to compute the columns of U:
  106: *>       = 'U': N columns of U are returned in the array U.
  107: *>       = 'F': full set of M left sing. vectors is returned in the array U.
  108: *>       = 'W': U may be used as workspace of length M*N. See the description
  109: *>              of U.
  110: *>       = 'N': U is not computed.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] JOBV
  114: *> \verbatim
  115: *>          JOBV is CHARACTER*1
  116: *>         Specifies whether to compute the matrix V:
  117: *>       = 'V': N columns of V are returned in the array V; Jacobi rotations
  118: *>              are not explicitly accumulated.
  119: *>       = 'J': N columns of V are returned in the array V, but they are
  120: *>              computed as the product of Jacobi rotations, if JOBT = 'N'.
  121: *>       = 'W': V may be used as workspace of length N*N. See the description
  122: *>              of V.
  123: *>       = 'N': V is not computed.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] JOBR
  127: *> \verbatim
  128: *>          JOBR is CHARACTER*1
  129: *>         Specifies the RANGE for the singular values. Issues the licence to
  130: *>         set to zero small positive singular values if they are outside
  131: *>         specified range. If A .NE. 0 is scaled so that the largest singular
  132: *>         value of c*A is around SQRT(BIG), BIG=DLAMCH('O'), then JOBR issues
  133: *>         the licence to kill columns of A whose norm in c*A is less than
  134: *>         SQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN,
  135: *>         where SFMIN=DLAMCH('S'), EPSLN=DLAMCH('E').
  136: *>       = 'N': Do not kill small columns of c*A. This option assumes that
  137: *>              BLAS and QR factorizations and triangular solvers are
  138: *>              implemented to work in that range. If the condition of A
  139: *>              is greater than BIG, use ZGESVJ.
  140: *>       = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]
  141: *>              (roughly, as described above). This option is recommended.
  142: *>                                             ===========================
  143: *>         For computing the singular values in the FULL range [SFMIN,BIG]
  144: *>         use ZGESVJ.
  145: *> \endverbatim
  146: *>
  147: *> \param[in] JOBT
  148: *> \verbatim
  149: *>          JOBT is CHARACTER*1
  150: *>         If the matrix is square then the procedure may determine to use
  151: *>         transposed A if A^* seems to be better with respect to convergence.
  152: *>         If the matrix is not square, JOBT is ignored. 
  153: *>         The decision is based on two values of entropy over the adjoint
  154: *>         orbit of A^* * A. See the descriptions of WORK(6) and WORK(7).
  155: *>       = 'T': transpose if entropy test indicates possibly faster
  156: *>         convergence of Jacobi process if A^* is taken as input. If A is
  157: *>         replaced with A^*, then the row pivoting is included automatically.
  158: *>       = 'N': do not speculate.
  159: *>         The option 'T' can be used to compute only the singular values, or
  160: *>         the full SVD (U, SIGMA and V). For only one set of singular vectors
  161: *>         (U or V), the caller should provide both U and V, as one of the
  162: *>         matrices is used as workspace if the matrix A is transposed.
  163: *>         The implementer can easily remove this constraint and make the
  164: *>         code more complicated. See the descriptions of U and V.
  165: *>         In general, this option is considered experimental, and 'N'; should
  166: *>         be preferred. This is subject to changes in the future.
  167: *> \endverbatim
  168: *>
  169: *> \param[in] JOBP
  170: *> \verbatim
  171: *>          JOBP is CHARACTER*1
  172: *>         Issues the licence to introduce structured perturbations to drown
  173: *>         denormalized numbers. This licence should be active if the
  174: *>         denormals are poorly implemented, causing slow computation,
  175: *>         especially in cases of fast convergence (!). For details see [1,2].
  176: *>         For the sake of simplicity, this perturbations are included only
  177: *>         when the full SVD or only the singular values are requested. The
  178: *>         implementer/user can easily add the perturbation for the cases of
  179: *>         computing one set of singular vectors.
  180: *>       = 'P': introduce perturbation
  181: *>       = 'N': do not perturb
  182: *> \endverbatim
  183: *>
  184: *> \param[in] M
  185: *> \verbatim
  186: *>          M is INTEGER
  187: *>         The number of rows of the input matrix A.  M >= 0.
  188: *> \endverbatim
  189: *>
  190: *> \param[in] N
  191: *> \verbatim
  192: *>          N is INTEGER
  193: *>         The number of columns of the input matrix A. M >= N >= 0.
  194: *> \endverbatim
  195: *>
  196: *> \param[in,out] A
  197: *> \verbatim
  198: *>          A is COMPLEX*16 array, dimension (LDA,N)
  199: *>          On entry, the M-by-N matrix A.
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDA
  203: *> \verbatim
  204: *>          LDA is INTEGER
  205: *>          The leading dimension of the array A.  LDA >= max(1,M).
  206: *> \endverbatim
  207: *>
  208: *> \param[out] SVA
  209: *> \verbatim
  210: *>          SVA is DOUBLE PRECISION array, dimension (N)
  211: *>          On exit,
  212: *>          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
  213: *>            computation SVA contains Euclidean column norms of the
  214: *>            iterated matrices in the array A.
  215: *>          - For WORK(1) .NE. WORK(2): The singular values of A are
  216: *>            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
  217: *>            sigma_max(A) overflows or if small singular values have been
  218: *>            saved from underflow by scaling the input matrix A.
  219: *>          - If JOBR='R' then some of the singular values may be returned
  220: *>            as exact zeros obtained by "set to zero" because they are
  221: *>            below the numerical rank threshold or are denormalized numbers.
  222: *> \endverbatim
  223: *>
  224: *> \param[out] U
  225: *> \verbatim
  226: *>          U is COMPLEX*16 array, dimension ( LDU, N )
  227: *>          If JOBU = 'U', then U contains on exit the M-by-N matrix of
  228: *>                         the left singular vectors.
  229: *>          If JOBU = 'F', then U contains on exit the M-by-M matrix of
  230: *>                         the left singular vectors, including an ONB
  231: *>                         of the orthogonal complement of the Range(A).
  232: *>          If JOBU = 'W'  .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N),
  233: *>                         then U is used as workspace if the procedure
  234: *>                         replaces A with A^*. In that case, [V] is computed
  235: *>                         in U as left singular vectors of A^* and then
  236: *>                         copied back to the V array. This 'W' option is just
  237: *>                         a reminder to the caller that in this case U is
  238: *>                         reserved as workspace of length N*N.
  239: *>          If JOBU = 'N'  U is not referenced, unless JOBT='T'.
  240: *> \endverbatim
  241: *>
  242: *> \param[in] LDU
  243: *> \verbatim
  244: *>          LDU is INTEGER
  245: *>          The leading dimension of the array U,  LDU >= 1.
  246: *>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
  247: *> \endverbatim
  248: *>
  249: *> \param[out] V
  250: *> \verbatim
  251: *>          V is COMPLEX*16 array, dimension ( LDV, N )
  252: *>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
  253: *>                         the right singular vectors;
  254: *>          If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N),
  255: *>                         then V is used as workspace if the pprocedure
  256: *>                         replaces A with A^*. In that case, [U] is computed
  257: *>                         in V as right singular vectors of A^* and then
  258: *>                         copied back to the U array. This 'W' option is just
  259: *>                         a reminder to the caller that in this case V is
  260: *>                         reserved as workspace of length N*N.
  261: *>          If JOBV = 'N'  V is not referenced, unless JOBT='T'.
  262: *> \endverbatim
  263: *>
  264: *> \param[in] LDV
  265: *> \verbatim
  266: *>          LDV is INTEGER
  267: *>          The leading dimension of the array V,  LDV >= 1.
  268: *>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
  269: *> \endverbatim
  270: *>
  271: *> \param[out] CWORK
  272: *> \verbatim
  273: *>          CWORK is COMPLEX*16 array, dimension (MAX(2,LWORK))
  274: *>          If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
  275: *>          LRWORK=-1), then on exit CWORK(1) contains the required length of
  276: *>          CWORK for the job parameters used in the call.
  277: *> \endverbatim
  278: *>
  279: *> \param[in] LWORK
  280: *> \verbatim
  281: *>          LWORK is INTEGER
  282: *>          Length of CWORK to confirm proper allocation of workspace.
  283: *>          LWORK depends on the job:
  284: *>
  285: *>          1. If only SIGMA is needed ( JOBU = 'N', JOBV = 'N' ) and
  286: *>            1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'):
  287: *>               LWORK >= 2*N+1. This is the minimal requirement.
  288: *>               ->> For optimal performance (blocked code) the optimal value
  289: *>               is LWORK >= N + (N+1)*NB. Here NB is the optimal
  290: *>               block size for ZGEQP3 and ZGEQRF.
  291: *>               In general, optimal LWORK is computed as
  292: *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ)).
  293: *>            1.2. .. an estimate of the scaled condition number of A is
  294: *>               required (JOBA='E', or 'G'). In this case, LWORK the minimal
  295: *>               requirement is LWORK >= N*N + 2*N.
  296: *>               ->> For optimal performance (blocked code) the optimal value
  297: *>               is LWORK >= max(N+(N+1)*NB, N*N+2*N)=N**2+2*N.
  298: *>               In general, the optimal length LWORK is computed as
  299: *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ),
  300: *>                            N*N+LWORK(ZPOCON)).
  301: *>          2. If SIGMA and the right singular vectors are needed (JOBV = 'V'),
  302: *>             (JOBU = 'N')
  303: *>            2.1   .. no scaled condition estimate requested (JOBE = 'N'):    
  304: *>            -> the minimal requirement is LWORK >= 3*N.
  305: *>            -> For optimal performance, 
  306: *>               LWORK >= max(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
  307: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQ,
  308: *>               ZUNMLQ. In general, the optimal length LWORK is computed as
  309: *>               LWORK >= max(N+LWORK(ZGEQP3), N+LWORK(ZGESVJ),
  310: *>                       N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).
  311: *>            2.2 .. an estimate of the scaled condition number of A is
  312: *>               required (JOBA='E', or 'G').
  313: *>            -> the minimal requirement is LWORK >= 3*N.      
  314: *>            -> For optimal performance, 
  315: *>               LWORK >= max(N+(N+1)*NB, 2*N,2*N+N*NB)=2*N+N*NB,
  316: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQ,
  317: *>               ZUNMLQ. In general, the optimal length LWORK is computed as
  318: *>               LWORK >= max(N+LWORK(ZGEQP3), LWORK(ZPOCON), N+LWORK(ZGESVJ),
  319: *>                       N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).   
  320: *>          3. If SIGMA and the left singular vectors are needed
  321: *>            3.1  .. no scaled condition estimate requested (JOBE = 'N'):
  322: *>            -> the minimal requirement is LWORK >= 3*N.
  323: *>            -> For optimal performance:
  324: *>               if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
  325: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
  326: *>               In general, the optimal length LWORK is computed as
  327: *>               LWORK >= max(N+LWORK(ZGEQP3), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)). 
  328: *>            3.2  .. an estimate of the scaled condition number of A is
  329: *>               required (JOBA='E', or 'G').
  330: *>            -> the minimal requirement is LWORK >= 3*N.
  331: *>            -> For optimal performance:
  332: *>               if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
  333: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
  334: *>               In general, the optimal length LWORK is computed as
  335: *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZPOCON),
  336: *>                        2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)).
  337: *>          4. If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and 
  338: *>            4.1. if JOBV = 'V'  
  339: *>               the minimal requirement is LWORK >= 5*N+2*N*N. 
  340: *>            4.2. if JOBV = 'J' the minimal requirement is 
  341: *>               LWORK >= 4*N+N*N.
  342: *>            In both cases, the allocated CWORK can accommodate blocked runs
  343: *>            of ZGEQP3, ZGEQRF, ZGELQF, SUNMQR, ZUNMLQ.
  344: *>
  345: *>          If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
  346: *>          LRWORK=-1), then on exit CWORK(1) contains the optimal and CWORK(2) contains the
  347: *>          minimal length of CWORK for the job parameters used in the call.
  348: *> \endverbatim
  349: *>
  350: *> \param[out] RWORK
  351: *> \verbatim
  352: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(7,LWORK))
  353: *>          On exit,
  354: *>          RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1)
  355: *>                    such that SCALE*SVA(1:N) are the computed singular values
  356: *>                    of A. (See the description of SVA().)
  357: *>          RWORK(2) = See the description of RWORK(1).
  358: *>          RWORK(3) = SCONDA is an estimate for the condition number of
  359: *>                    column equilibrated A. (If JOBA = 'E' or 'G')
  360: *>                    SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
  361: *>                    It is computed using ZPOCON. It holds
  362: *>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
  363: *>                    where R is the triangular factor from the QRF of A.
  364: *>                    However, if R is truncated and the numerical rank is
  365: *>                    determined to be strictly smaller than N, SCONDA is
  366: *>                    returned as -1, thus indicating that the smallest
  367: *>                    singular values might be lost.
  368: *>
  369: *>          If full SVD is needed, the following two condition numbers are
  370: *>          useful for the analysis of the algorithm. They are provided for
  371: *>          a developer/implementer who is familiar with the details of
  372: *>          the method.
  373: *>
  374: *>          RWORK(4) = an estimate of the scaled condition number of the
  375: *>                    triangular factor in the first QR factorization.
  376: *>          RWORK(5) = an estimate of the scaled condition number of the
  377: *>                    triangular factor in the second QR factorization.
  378: *>          The following two parameters are computed if JOBT = 'T'.
  379: *>          They are provided for a developer/implementer who is familiar
  380: *>          with the details of the method.
  381: *>          RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy
  382: *>                    of diag(A^* * A) / Trace(A^* * A) taken as point in the
  383: *>                    probability simplex.
  384: *>          RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).)
  385: *>          If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
  386: *>          LRWORK=-1), then on exit RWORK(1) contains the required length of
  387: *>          RWORK for the job parameters used in the call.
  388: *> \endverbatim
  389: *>
  390: *> \param[in] LRWORK
  391: *> \verbatim
  392: *>          LRWORK is INTEGER
  393: *>          Length of RWORK to confirm proper allocation of workspace.
  394: *>          LRWORK depends on the job:
  395: *>
  396: *>       1. If only the singular values are requested i.e. if
  397: *>          LSAME(JOBU,'N') .AND. LSAME(JOBV,'N')
  398: *>          then:
  399: *>          1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
  400: *>               then: LRWORK = max( 7, 2 * M ).
  401: *>          1.2. Otherwise, LRWORK  = max( 7,  N ).
  402: *>       2. If singular values with the right singular vectors are requested
  403: *>          i.e. if
  404: *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND.
  405: *>          .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F'))
  406: *>          then:
  407: *>          2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
  408: *>          then LRWORK = max( 7, 2 * M ).
  409: *>          2.2. Otherwise, LRWORK  = max( 7,  N ).
  410: *>       3. If singular values with the left singular vectors are requested, i.e. if
  411: *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
  412: *>          .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
  413: *>          then:
  414: *>          3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
  415: *>          then LRWORK = max( 7, 2 * M ).
  416: *>          3.2. Otherwise, LRWORK  = max( 7,  N ).
  417: *>       4. If singular values with both the left and the right singular vectors
  418: *>          are requested, i.e. if
  419: *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
  420: *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
  421: *>          then:
  422: *>          4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
  423: *>          then LRWORK = max( 7, 2 * M ).
  424: *>          4.2. Otherwise, LRWORK  = max( 7, N ).
  425: *>
  426: *>          If, on entry, LRWORK = -1 or LWORK=-1, a workspace query is assumed and 
  427: *>          the length of RWORK is returned in RWORK(1)  428: *> \endverbatim
  429: *>
  430: *> \param[out] IWORK
  431: *> \verbatim
  432: *>          IWORK is INTEGER array, of dimension at least 4, that further depends 
  433: *>          on the job:
  434: *>
  435: *>          1. If only the singular values are requested then:
  436: *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
  437: *>             then the length of IWORK is N+M; otherwise the length of IWORK is N.
  438: *>          2. If the singular values and the right singular vectors are requested then:
  439: *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
  440: *>             then the length of IWORK is N+M; otherwise the length of IWORK is N. 
  441: *>          3. If the singular values and the left singular vectors are requested then:
  442: *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
  443: *>             then the length of IWORK is N+M; otherwise the length of IWORK is N. 
  444: *>          4. If the singular values with both the left and the right singular vectors
  445: *>             are requested, then:      
  446: *>             4.1. If LSAME(JOBV,'J') the length of IWORK is determined as follows:
  447: *>                  If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
  448: *>                  then the length of IWORK is N+M; otherwise the length of IWORK is N. 
  449: *>             4.2. If LSAME(JOBV,'V') the length of IWORK is determined as follows:
  450: *>                  If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
  451: *>                  then the length of IWORK is 2*N+M; otherwise the length of IWORK is 2*N.
  452: *>        
  453: *>          On exit,
  454: *>          IWORK(1) = the numerical rank determined after the initial
  455: *>                     QR factorization with pivoting. See the descriptions
  456: *>                     of JOBA and JOBR.
  457: *>          IWORK(2) = the number of the computed nonzero singular values
  458: *>          IWORK(3) = if nonzero, a warning message:
  459: *>                     If IWORK(3) = 1 then some of the column norms of A
  460: *>                     were denormalized floats. The requested high accuracy
  461: *>                     is not warranted by the data.
  462: *>          IWORK(4) = 1 or -1. If IWORK(4) = 1, then the procedure used A^* to
  463: *>                     do the job as specified by the JOB parameters.
  464: *>          If the call to ZGEJSV is a workspace query (indicated by LWORK = -1 or
  465: *>          LRWORK = -1), then on exit IWORK(1) contains the required length of 
  466: *>          IWORK for the job parameters used in the call.
  467: *> \endverbatim
  468: *>
  469: *> \param[out] INFO
  470: *> \verbatim
  471: *>          INFO is INTEGER
  472: *>           < 0:  if INFO = -i, then the i-th argument had an illegal value.
  473: *>           = 0:  successful exit;
  474: *>           > 0:  ZGEJSV  did not converge in the maximal allowed number
  475: *>                 of sweeps. The computed values may be inaccurate.
  476: *> \endverbatim
  477: *
  478: *  Authors:
  479: *  ========
  480: *
  481: *> \author Univ. of Tennessee
  482: *> \author Univ. of California Berkeley
  483: *> \author Univ. of Colorado Denver
  484: *> \author NAG Ltd.
  485: *
  486: *> \ingroup complex16GEsing
  487: *
  488: *> \par Further Details:
  489: *  =====================
  490: *>
  491: *> \verbatim
  492: *>
  493: *>  ZGEJSV implements a preconditioned Jacobi SVD algorithm. It uses ZGEQP3,
  494: *>  ZGEQRF, and ZGELQF as preprocessors and preconditioners. Optionally, an
  495: *>  additional row pivoting can be used as a preprocessor, which in some
  496: *>  cases results in much higher accuracy. An example is matrix A with the
  497: *>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
  498: *>  diagonal matrices and C is well-conditioned matrix. In that case, complete
  499: *>  pivoting in the first QR factorizations provides accuracy dependent on the
  500: *>  condition number of C, and independent of D1, D2. Such higher accuracy is
  501: *>  not completely understood theoretically, but it works well in practice.
  502: *>  Further, if A can be written as A = B*D, with well-conditioned B and some
  503: *>  diagonal D, then the high accuracy is guaranteed, both theoretically and
  504: *>  in software, independent of D. For more details see [1], [2].
  505: *>     The computational range for the singular values can be the full range
  506: *>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
  507: *>  & LAPACK routines called by ZGEJSV are implemented to work in that range.
  508: *>  If that is not the case, then the restriction for safe computation with
  509: *>  the singular values in the range of normalized IEEE numbers is that the
  510: *>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
  511: *>  overflow. This code (ZGEJSV) is best used in this restricted range,
  512: *>  meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
  513: *>  returned as zeros. See JOBR for details on this.
  514: *>     Further, this implementation is somewhat slower than the one described
  515: *>  in [1,2] due to replacement of some non-LAPACK components, and because
  516: *>  the choice of some tuning parameters in the iterative part (ZGESVJ) is
  517: *>  left to the implementer on a particular machine.
  518: *>     The rank revealing QR factorization (in this code: ZGEQP3) should be
  519: *>  implemented as in [3]. We have a new version of ZGEQP3 under development
  520: *>  that is more robust than the current one in LAPACK, with a cleaner cut in
  521: *>  rank deficient cases. It will be available in the SIGMA library [4].
  522: *>  If M is much larger than N, it is obvious that the initial QRF with
  523: *>  column pivoting can be preprocessed by the QRF without pivoting. That
  524: *>  well known trick is not used in ZGEJSV because in some cases heavy row
  525: *>  weighting can be treated with complete pivoting. The overhead in cases
  526: *>  M much larger than N is then only due to pivoting, but the benefits in
  527: *>  terms of accuracy have prevailed. The implementer/user can incorporate
  528: *>  this extra QRF step easily. The implementer can also improve data movement
  529: *>  (matrix transpose, matrix copy, matrix transposed copy) - this
  530: *>  implementation of ZGEJSV uses only the simplest, naive data movement.
  531: *> \endverbatim
  532: *
  533: *> \par Contributor:
  534: *  ==================
  535: *>
  536: *>  Zlatko Drmac, Department of Mathematics, Faculty of Science,
  537: *>  University of Zagreb (Zagreb, Croatia); drmac@math.hr
  538: *
  539: *> \par References:
  540: *  ================
  541: *>
  542: *> \verbatim
  543: *>
  544: *> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
  545: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
  546: *>     LAPACK Working note 169.
  547: *> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
  548: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
  549: *>     LAPACK Working note 170.
  550: *> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
  551: *>     factorization software - a case study.
  552: *>     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
  553: *>     LAPACK Working note 176.
  554: *> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
  555: *>     QSVD, (H,K)-SVD computations.
  556: *>     Department of Mathematics, University of Zagreb, 2008, 2016.
  557: *> \endverbatim
  558: *
  559: *>  \par Bugs, examples and comments:
  560: *   =================================
  561: *>
  562: *>  Please report all bugs and send interesting examples and/or comments to
  563: *>  drmac@math.hr. Thank you.
  564: *>
  565: *  =====================================================================
  566:       SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
  567:      $                   M, N, A, LDA, SVA, U, LDU, V, LDV,
  568:      $                   CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
  569: *
  570: *  -- LAPACK computational routine --
  571: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  572: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  573: *
  574: *     .. Scalar Arguments ..
  575:       IMPLICIT    NONE
  576:       INTEGER     INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N
  577: *     ..
  578: *     .. Array Arguments ..
  579:       COMPLEX*16       A( LDA, * ), U( LDU, * ), V( LDV, * ),
  580:      $                 CWORK( LWORK )
  581:       DOUBLE PRECISION SVA( N ), RWORK( LRWORK )
  582:       INTEGER          IWORK( * )
  583:       CHARACTER*1      JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
  584: *     ..
  585: *
  586: *  ===========================================================================
  587: *
  588: *     .. Local Parameters ..
  589:       DOUBLE PRECISION ZERO, ONE
  590:       PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  591:       COMPLEX*16 CZERO, CONE
  592:       PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ), CONE = ( 1.0D0, 0.0D0 ) )
  593: *     ..
  594: *     .. Local Scalars ..
  595:       COMPLEX*16       CTEMP
  596:       DOUBLE PRECISION AAPP,    AAQQ,   AATMAX, AATMIN, BIG,    BIG1,
  597:      $                 COND_OK, CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,
  598:      $                 MAXPRJ,  SCALEM, SCONDA, SFMIN,  SMALL,  TEMP1,
  599:      $                 USCAL1,  USCAL2, XSC
  600:       INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
  601:       LOGICAL ALMORT, DEFR,   ERREST, GOSCAL,  JRACC,  KILL,   LQUERY,
  602:      $        LSVEC,  L2ABER, L2KILL, L2PERT,  L2RANK, L2TRAN, NOSCAL,
  603:      $        ROWPIV, RSVEC,  TRANSP
  604: *
  605:       INTEGER OPTWRK, MINWRK, MINRWRK, MINIWRK
  606:       INTEGER LWCON,  LWLQF, LWQP3, LWQRF, LWUNMLQ, LWUNMQR, LWUNMQRM,
  607:      $        LWSVDJ, LWSVDJV, LRWQP3, LRWCON, LRWSVDJ, IWOFF
  608:       INTEGER LWRK_ZGELQF, LWRK_ZGEQP3,  LWRK_ZGEQP3N, LWRK_ZGEQRF,  
  609:      $        LWRK_ZGESVJ, LWRK_ZGESVJV, LWRK_ZGESVJU, LWRK_ZUNMLQ, 
  610:      $        LWRK_ZUNMQR, LWRK_ZUNMQRM    
  611: *     ..
  612: *     .. Local Arrays
  613:       COMPLEX*16         CDUMMY(1)
  614:       DOUBLE PRECISION   RDUMMY(1)
  615: *
  616: *     .. Intrinsic Functions ..
  617:       INTRINSIC ABS, DCMPLX, CONJG, DLOG, MAX, MIN, DBLE, NINT, SQRT
  618: *     ..
  619: *     .. External Functions ..
  620:       DOUBLE PRECISION      DLAMCH, DZNRM2
  621:       INTEGER   IDAMAX, IZAMAX
  622:       LOGICAL   LSAME
  623:       EXTERNAL  IDAMAX, IZAMAX, LSAME, DLAMCH, DZNRM2
  624: *     ..
  625: *     .. External Subroutines ..
  626:       EXTERNAL  DLASSQ, ZCOPY,  ZGELQF, ZGEQP3, ZGEQRF, ZLACPY, ZLAPMR,
  627:      $          ZLASCL, DLASCL, ZLASET, ZLASSQ, ZLASWP, ZUNGQR, ZUNMLQ,
  628:      $          ZUNMQR, ZPOCON, DSCAL,  ZDSCAL, ZSWAP,  ZTRSM,  ZLACGV,
  629:      $          XERBLA
  630: *
  631:       EXTERNAL  ZGESVJ
  632: *     ..
  633: *
  634: *     Test the input arguments
  635: *
  636:       LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
  637:       JRACC  = LSAME( JOBV, 'J' )
  638:       RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
  639:       ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
  640:       L2RANK = LSAME( JOBA, 'R' )
  641:       L2ABER = LSAME( JOBA, 'A' )
  642:       ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
  643:       L2TRAN = LSAME( JOBT, 'T' ) .AND. ( M .EQ. N )
  644:       L2KILL = LSAME( JOBR, 'R' )
  645:       DEFR   = LSAME( JOBR, 'N' )
  646:       L2PERT = LSAME( JOBP, 'P' )
  647: *
  648:       LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 )
  649: *
  650:       IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
  651:      $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
  652:          INFO = - 1
  653:       ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.
  654:      $   ( LSAME( JOBU, 'W' ) .AND. RSVEC .AND. L2TRAN ) ) ) THEN
  655:          INFO = - 2
  656:       ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
  657:      $   ( LSAME( JOBV, 'W' ) .AND. LSVEC .AND. L2TRAN ) ) ) THEN
  658:          INFO = - 3
  659:       ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
  660:          INFO = - 4
  661:       ELSE IF ( .NOT. ( LSAME(JOBT,'T') .OR. LSAME(JOBT,'N') ) ) THEN
  662:          INFO = - 5
  663:       ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
  664:          INFO = - 6
  665:       ELSE IF ( M .LT. 0 ) THEN
  666:          INFO = - 7
  667:       ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
  668:          INFO = - 8
  669:       ELSE IF ( LDA .LT. M ) THEN
  670:          INFO = - 10
  671:       ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
  672:          INFO = - 13
  673:       ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
  674:          INFO = - 15
  675:       ELSE
  676: *        #:)
  677:          INFO = 0
  678:       END IF
  679: *
  680:       IF ( INFO .EQ. 0 ) THEN 
  681: *         .. compute the minimal and the optimal workspace lengths 
  682: *         [[The expressions for computing the minimal and the optimal
  683: *         values of LCWORK, LRWORK are written with a lot of redundancy and
  684: *         can be simplified. However, this verbose form is useful for
  685: *         maintenance and modifications of the code.]]
  686: *
  687: *        .. minimal workspace length for ZGEQP3 of an M x N matrix,
  688: *         ZGEQRF of an N x N matrix, ZGELQF of an N x N matrix,
  689: *         ZUNMLQ for computing N x N matrix, ZUNMQR for computing N x N
  690: *         matrix, ZUNMQR for computing M x N matrix, respectively.
  691:           LWQP3 = N+1   
  692:           LWQRF = MAX( 1, N )
  693:           LWLQF = MAX( 1, N )
  694:           LWUNMLQ  = MAX( 1, N )
  695:           LWUNMQR  = MAX( 1, N )
  696:           LWUNMQRM = MAX( 1, M )
  697: *        .. minimal workspace length for ZPOCON of an N x N matrix
  698:           LWCON = 2 * N 
  699: *        .. minimal workspace length for ZGESVJ of an N x N matrix,
  700: *         without and with explicit accumulation of Jacobi rotations
  701:           LWSVDJ  = MAX( 2 * N, 1 )         
  702:           LWSVDJV = MAX( 2 * N, 1 )
  703: *         .. minimal REAL workspace length for ZGEQP3, ZPOCON, ZGESVJ
  704:           LRWQP3  = 2 * N 
  705:           LRWCON  = N 
  706:           LRWSVDJ = N 
  707:           IF ( LQUERY ) THEN 
  708:               CALL ZGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1, 
  709:      $             RDUMMY, IERR )
  710:               LWRK_ZGEQP3 = INT( CDUMMY(1) )
  711:               CALL ZGEQRF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
  712:               LWRK_ZGEQRF = INT( CDUMMY(1) )
  713:               CALL ZGELQF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
  714:               LWRK_ZGELQF = INT( CDUMMY(1) )
  715:           END IF
  716:           MINWRK  = 2
  717:           OPTWRK  = 2
  718:           MINIWRK = N 
  719:           IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN
  720: *             .. minimal and optimal sizes of the complex workspace if
  721: *             only the singular values are requested
  722:               IF ( ERREST ) THEN 
  723:                   MINWRK = MAX( N+LWQP3, N**2+LWCON, N+LWQRF, LWSVDJ )
  724:               ELSE
  725:                   MINWRK = MAX( N+LWQP3, N+LWQRF, LWSVDJ )
  726:               END IF
  727:               IF ( LQUERY ) THEN 
  728:                   CALL ZGESVJ( 'L', 'N', 'N', N, N, A, LDA, SVA, N, V, 
  729:      $                 LDV, CDUMMY, -1, RDUMMY, -1, IERR )
  730:                   LWRK_ZGESVJ = INT( CDUMMY(1) )
  731:                   IF ( ERREST ) THEN 
  732:                       OPTWRK = MAX( N+LWRK_ZGEQP3, N**2+LWCON, 
  733:      $                              N+LWRK_ZGEQRF, LWRK_ZGESVJ )
  734:                   ELSE
  735:                       OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWRK_ZGEQRF, 
  736:      $                              LWRK_ZGESVJ )
  737:                   END IF
  738:               END IF
  739:               IF ( L2TRAN .OR. ROWPIV ) THEN 
  740:                   IF ( ERREST ) THEN 
  741:                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWCON, LRWSVDJ )
  742:                   ELSE
  743:                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
  744:                   END IF                 
  745:               ELSE
  746:                   IF ( ERREST ) THEN 
  747:                      MINRWRK = MAX( 7, LRWQP3, LRWCON, LRWSVDJ )
  748:                   ELSE
  749:                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
  750:                   END IF
  751:               END IF   
  752:               IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M 
  753:           ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
  754: *            .. minimal and optimal sizes of the complex workspace if the
  755: *            singular values and the right singular vectors are requested
  756:              IF ( ERREST ) THEN 
  757:                  MINWRK = MAX( N+LWQP3, LWCON, LWSVDJ, N+LWLQF,  
  758:      $                         2*N+LWQRF, N+LWSVDJ, N+LWUNMLQ )
  759:              ELSE
  760:                  MINWRK = MAX( N+LWQP3, LWSVDJ, N+LWLQF, 2*N+LWQRF, 
  761:      $                         N+LWSVDJ, N+LWUNMLQ )
  762:              END IF
  763:              IF ( LQUERY ) THEN
  764:                  CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
  765:      $                LDA, CDUMMY, -1, RDUMMY, -1, IERR )
  766:                  LWRK_ZGESVJ = INT( CDUMMY(1) )
  767:                  CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
  768:      $                V, LDV, CDUMMY, -1, IERR )
  769:                  LWRK_ZUNMLQ = INT( CDUMMY(1) )
  770:                  IF ( ERREST ) THEN 
  771:                  OPTWRK = MAX( N+LWRK_ZGEQP3, LWCON, LWRK_ZGESVJ, 
  772:      $                         N+LWRK_ZGELQF, 2*N+LWRK_ZGEQRF,
  773:      $                         N+LWRK_ZGESVJ,  N+LWRK_ZUNMLQ )
  774:                  ELSE
  775:                  OPTWRK = MAX( N+LWRK_ZGEQP3, LWRK_ZGESVJ,N+LWRK_ZGELQF,
  776:      $                         2*N+LWRK_ZGEQRF, N+LWRK_ZGESVJ, 
  777:      $                         N+LWRK_ZUNMLQ )
  778:                  END IF
  779:              END IF
  780:              IF ( L2TRAN .OR. ROWPIV ) THEN 
  781:                   IF ( ERREST ) THEN 
  782:                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
  783:                   ELSE
  784:                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ ) 
  785:                   END IF                  
  786:              ELSE
  787:                   IF ( ERREST ) THEN 
  788:                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
  789:                   ELSE
  790:                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ ) 
  791:                   END IF                 
  792:              END IF
  793:              IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
  794:           ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN  
  795: *            .. minimal and optimal sizes of the complex workspace if the
  796: *            singular values and the left singular vectors are requested
  797:              IF ( ERREST ) THEN
  798:                  MINWRK = N + MAX( LWQP3,LWCON,N+LWQRF,LWSVDJ,LWUNMQRM )
  799:              ELSE
  800:                  MINWRK = N + MAX( LWQP3, N+LWQRF, LWSVDJ, LWUNMQRM )
  801:              END IF
  802:              IF ( LQUERY ) THEN
  803:                  CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
  804:      $                LDA, CDUMMY, -1, RDUMMY, -1, IERR )
  805:                  LWRK_ZGESVJ = INT( CDUMMY(1) )
  806:                  CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
  807:      $               LDU, CDUMMY, -1, IERR )
  808:                  LWRK_ZUNMQRM = INT( CDUMMY(1) )
  809:                  IF ( ERREST ) THEN
  810:                  OPTWRK = N + MAX( LWRK_ZGEQP3, LWCON, N+LWRK_ZGEQRF,
  811:      $                             LWRK_ZGESVJ, LWRK_ZUNMQRM )
  812:                  ELSE
  813:                  OPTWRK = N + MAX( LWRK_ZGEQP3, N+LWRK_ZGEQRF,
  814:      $                             LWRK_ZGESVJ, LWRK_ZUNMQRM )
  815:                  END IF
  816:              END IF
  817:              IF ( L2TRAN .OR. ROWPIV ) THEN 
  818:                  IF ( ERREST ) THEN 
  819:                     MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
  820:                  ELSE
  821:                     MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
  822:                  END IF                 
  823:              ELSE
  824:                  IF ( ERREST ) THEN 
  825:                     MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
  826:                  ELSE
  827:                     MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
  828:                  END IF                
  829:              END IF 
  830:              IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
  831:           ELSE
  832: *            .. minimal and optimal sizes of the complex workspace if the
  833: *            full SVD is requested
  834:              IF ( .NOT. JRACC ) THEN                
  835:                  IF ( ERREST ) THEN 
  836:                     MINWRK = MAX( N+LWQP3, N+LWCON,  2*N+N**2+LWCON, 
  837:      $                         2*N+LWQRF,         2*N+LWQP3, 
  838:      $                         2*N+N**2+N+LWLQF,  2*N+N**2+N+N**2+LWCON,
  839:      $                         2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV, 
  840:      $                         2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ, 
  841:      $                         N+N**2+LWSVDJ,   N+LWUNMQRM )
  842:                  ELSE
  843:                     MINWRK = MAX( N+LWQP3,        2*N+N**2+LWCON, 
  844:      $                         2*N+LWQRF,         2*N+LWQP3, 
  845:      $                         2*N+N**2+N+LWLQF,  2*N+N**2+N+N**2+LWCON,
  846:      $                         2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
  847:      $                         2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
  848:      $                         N+N**2+LWSVDJ,      N+LWUNMQRM ) 
  849:                  END IF 
  850:                  MINIWRK = MINIWRK + N 
  851:                  IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
  852:              ELSE
  853:                  IF ( ERREST ) THEN 
  854:                     MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+LWQRF, 
  855:      $                         2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, 
  856:      $                         N+LWUNMQRM )
  857:                  ELSE
  858:                     MINWRK = MAX( N+LWQP3, 2*N+LWQRF, 
  859:      $                         2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, 
  860:      $                         N+LWUNMQRM ) 
  861:                  END IF   
  862:                  IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
  863:              END IF
  864:              IF ( LQUERY ) THEN
  865:                  CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
  866:      $                LDU, CDUMMY, -1, IERR )
  867:                  LWRK_ZUNMQRM = INT( CDUMMY(1) )
  868:                  CALL ZUNMQR( 'L', 'N', N, N, N, A, LDA, CDUMMY, U,
  869:      $                LDU, CDUMMY, -1, IERR )
  870:                  LWRK_ZUNMQR = INT( CDUMMY(1) )
  871:                  IF ( .NOT. JRACC ) THEN
  872:                      CALL ZGEQP3( N,N, A, LDA, IWORK, CDUMMY,CDUMMY, -1,
  873:      $                    RDUMMY, IERR )
  874:                      LWRK_ZGEQP3N = INT( CDUMMY(1) )
  875:                      CALL ZGESVJ( 'L', 'U', 'N', N, N, U, LDU, SVA,
  876:      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
  877:                      LWRK_ZGESVJ = INT( CDUMMY(1) )
  878:                      CALL ZGESVJ( 'U', 'U', 'N', N, N, U, LDU, SVA,
  879:      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
  880:                      LWRK_ZGESVJU = INT( CDUMMY(1) )
  881:                      CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
  882:      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
  883:                      LWRK_ZGESVJV = INT( CDUMMY(1) )
  884:                      CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
  885:      $                    V, LDV, CDUMMY, -1, IERR )
  886:                      LWRK_ZUNMLQ = INT( CDUMMY(1) )
  887:                      IF ( ERREST ) THEN 
  888:                        OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON, 
  889:      $                          2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF, 
  890:      $                          2*N+LWRK_ZGEQP3N, 
  891:      $                          2*N+N**2+N+LWRK_ZGELQF,  
  892:      $                          2*N+N**2+N+N**2+LWCON,
  893:      $                          2*N+N**2+N+LWRK_ZGESVJ, 
  894:      $                          2*N+N**2+N+LWRK_ZGESVJV,               
  895:      $                          2*N+N**2+N+LWRK_ZUNMQR,
  896:      $                          2*N+N**2+N+LWRK_ZUNMLQ, 
  897:      $                          N+N**2+LWRK_ZGESVJU,                  
  898:      $                          N+LWRK_ZUNMQRM )
  899:                      ELSE
  900:                        OPTWRK = MAX( N+LWRK_ZGEQP3,  
  901:      $                          2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF, 
  902:      $                          2*N+LWRK_ZGEQP3N, 
  903:      $                          2*N+N**2+N+LWRK_ZGELQF,  
  904:      $                          2*N+N**2+N+N**2+LWCON,
  905:      $                          2*N+N**2+N+LWRK_ZGESVJ,               
  906:      $                          2*N+N**2+N+LWRK_ZGESVJV, 
  907:      $                          2*N+N**2+N+LWRK_ZUNMQR,
  908:      $                          2*N+N**2+N+LWRK_ZUNMLQ, 
  909:      $                          N+N**2+LWRK_ZGESVJU,
  910:      $                          N+LWRK_ZUNMQRM )
  911:                      END IF                    
  912:                  ELSE
  913:                      CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
  914:      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
  915:                      LWRK_ZGESVJV = INT( CDUMMY(1) )
  916:                      CALL ZUNMQR( 'L', 'N', N, N, N, CDUMMY, N, CDUMMY,
  917:      $                    V, LDV, CDUMMY, -1, IERR )
  918:                      LWRK_ZUNMQR = INT( CDUMMY(1) )
  919:                      CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
  920:      $                    LDU, CDUMMY, -1, IERR )
  921:                      LWRK_ZUNMQRM = INT( CDUMMY(1) )
  922:                      IF ( ERREST ) THEN 
  923:                         OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON,   
  924:      $                           2*N+LWRK_ZGEQRF, 2*N+N**2,  
  925:      $                           2*N+N**2+LWRK_ZGESVJV,  
  926:      $                           2*N+N**2+N+LWRK_ZUNMQR,N+LWRK_ZUNMQRM )
  927:                      ELSE
  928:                         OPTWRK = MAX( N+LWRK_ZGEQP3, 2*N+LWRK_ZGEQRF,  
  929:      $                           2*N+N**2, 2*N+N**2+LWRK_ZGESVJV, 
  930:      $                           2*N+N**2+N+LWRK_ZUNMQR, 
  931:      $                           N+LWRK_ZUNMQRM )   
  932:                      END IF                  
  933:                  END IF               
  934:              END IF 
  935:              IF ( L2TRAN .OR. ROWPIV ) THEN 
  936:                  MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
  937:              ELSE
  938:                  MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
  939:              END IF 
  940:           END IF
  941:           MINWRK = MAX( 2, MINWRK )
  942:           OPTWRK = MAX( MINWRK, OPTWRK )
  943:           IF ( LWORK  .LT. MINWRK  .AND. (.NOT.LQUERY) ) INFO = - 17
  944:           IF ( LRWORK .LT. MINRWRK .AND. (.NOT.LQUERY) ) INFO = - 19   
  945:       END IF
  946: *      
  947:       IF ( INFO .NE. 0 ) THEN
  948: *       #:(
  949:          CALL XERBLA( 'ZGEJSV', - INFO )
  950:          RETURN
  951:       ELSE IF ( LQUERY ) THEN
  952:           CWORK(1) = OPTWRK
  953:           CWORK(2) = MINWRK
  954:           RWORK(1) = MINRWRK
  955:           IWORK(1) = MAX( 4, MINIWRK )
  956:           RETURN   
  957:       END IF
  958: *
  959: *     Quick return for void matrix (Y3K safe)
  960: * #:)
  961:       IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
  962:          IWORK(1:4) = 0
  963:          RWORK(1:7) = 0
  964:          RETURN
  965:       ENDIF
  966: *
  967: *     Determine whether the matrix U should be M x N or M x M
  968: *
  969:       IF ( LSVEC ) THEN
  970:          N1 = N
  971:          IF ( LSAME( JOBU, 'F' ) ) N1 = M
  972:       END IF
  973: *
  974: *     Set numerical parameters
  975: *
  976: *!    NOTE: Make sure DLAMCH() does not fail on the target architecture.
  977: *
  978:       EPSLN = DLAMCH('Epsilon')
  979:       SFMIN = DLAMCH('SafeMinimum')
  980:       SMALL = SFMIN / EPSLN
  981:       BIG   = DLAMCH('O')
  982: *     BIG   = ONE / SFMIN
  983: *
  984: *     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
  985: *
  986: *(!)  If necessary, scale SVA() to protect the largest norm from
  987: *     overflow. It is possible that this scaling pushes the smallest
  988: *     column norm left from the underflow threshold (extreme case).
  989: *
  990:       SCALEM  = ONE / SQRT(DBLE(M)*DBLE(N))
  991:       NOSCAL  = .TRUE.
  992:       GOSCAL  = .TRUE.
  993:       DO 1874 p = 1, N
  994:          AAPP = ZERO
  995:          AAQQ = ONE
  996:          CALL ZLASSQ( M, A(1,p), 1, AAPP, AAQQ )
  997:          IF ( AAPP .GT. BIG ) THEN
  998:             INFO = - 9
  999:             CALL XERBLA( 'ZGEJSV', -INFO )
 1000:             RETURN
 1001:          END IF
 1002:          AAQQ = SQRT(AAQQ)
 1003:          IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
 1004:             SVA(p)  = AAPP * AAQQ
 1005:          ELSE
 1006:             NOSCAL  = .FALSE.
 1007:             SVA(p)  = AAPP * ( AAQQ * SCALEM )
 1008:             IF ( GOSCAL ) THEN
 1009:                GOSCAL = .FALSE.
 1010:                CALL DSCAL( p-1, SCALEM, SVA, 1 )
 1011:             END IF
 1012:          END IF
 1013:  1874 CONTINUE
 1014: *
 1015:       IF ( NOSCAL ) SCALEM = ONE
 1016: *
 1017:       AAPP = ZERO
 1018:       AAQQ = BIG
 1019:       DO 4781 p = 1, N
 1020:          AAPP = MAX( AAPP, SVA(p) )
 1021:          IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
 1022:  4781 CONTINUE
 1023: *
 1024: *     Quick return for zero M x N matrix
 1025: * #:)
 1026:       IF ( AAPP .EQ. ZERO ) THEN
 1027:          IF ( LSVEC ) CALL ZLASET( 'G', M, N1, CZERO, CONE, U, LDU )
 1028:          IF ( RSVEC ) CALL ZLASET( 'G', N, N,  CZERO, CONE, V, LDV )
 1029:          RWORK(1) = ONE
 1030:          RWORK(2) = ONE
 1031:          IF ( ERREST ) RWORK(3) = ONE
 1032:          IF ( LSVEC .AND. RSVEC ) THEN
 1033:             RWORK(4) = ONE
 1034:             RWORK(5) = ONE
 1035:          END IF
 1036:          IF ( L2TRAN ) THEN
 1037:             RWORK(6) = ZERO
 1038:             RWORK(7) = ZERO
 1039:          END IF
 1040:          IWORK(1) = 0
 1041:          IWORK(2) = 0
 1042:          IWORK(3) = 0
 1043:          IWORK(4) = -1
 1044:          RETURN
 1045:       END IF
 1046: *
 1047: *     Issue warning if denormalized column norms detected. Override the
 1048: *     high relative accuracy request. Issue licence to kill nonzero columns
 1049: *     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
 1050: * #:(
 1051:       WARNING = 0
 1052:       IF ( AAQQ .LE. SFMIN ) THEN
 1053:          L2RANK = .TRUE.
 1054:          L2KILL = .TRUE.
 1055:          WARNING = 1
 1056:       END IF
 1057: *
 1058: *     Quick return for one-column matrix
 1059: * #:)
 1060:       IF ( N .EQ. 1 ) THEN
 1061: *
 1062:          IF ( LSVEC ) THEN
 1063:             CALL ZLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
 1064:             CALL ZLACPY( 'A', M, 1, A, LDA, U, LDU )
 1065: *           computing all M left singular vectors of the M x 1 matrix
 1066:             IF ( N1 .NE. N  ) THEN
 1067:               CALL ZGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,IERR )
 1068:               CALL ZUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,IERR )
 1069:               CALL ZCOPY( M, A(1,1), 1, U(1,1), 1 )
 1070:             END IF
 1071:          END IF
 1072:          IF ( RSVEC ) THEN
 1073:              V(1,1) = CONE
 1074:          END IF
 1075:          IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
 1076:             SVA(1)  = SVA(1) / SCALEM
 1077:             SCALEM  = ONE
 1078:          END IF
 1079:          RWORK(1) = ONE / SCALEM
 1080:          RWORK(2) = ONE
 1081:          IF ( SVA(1) .NE. ZERO ) THEN
 1082:             IWORK(1) = 1
 1083:             IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
 1084:                IWORK(2) = 1
 1085:             ELSE
 1086:                IWORK(2) = 0
 1087:             END IF
 1088:          ELSE
 1089:             IWORK(1) = 0
 1090:             IWORK(2) = 0
 1091:          END IF
 1092:          IWORK(3) = 0
 1093:          IWORK(4) = -1
 1094:          IF ( ERREST ) RWORK(3) = ONE
 1095:          IF ( LSVEC .AND. RSVEC ) THEN
 1096:             RWORK(4) = ONE
 1097:             RWORK(5) = ONE
 1098:          END IF
 1099:          IF ( L2TRAN ) THEN
 1100:             RWORK(6) = ZERO
 1101:             RWORK(7) = ZERO
 1102:          END IF
 1103:          RETURN
 1104: *
 1105:       END IF
 1106: *
 1107:       TRANSP = .FALSE.
 1108: *
 1109:       AATMAX = -ONE
 1110:       AATMIN =  BIG
 1111:       IF ( ROWPIV .OR. L2TRAN ) THEN
 1112: *
 1113: *     Compute the row norms, needed to determine row pivoting sequence
 1114: *     (in the case of heavily row weighted A, row pivoting is strongly
 1115: *     advised) and to collect information needed to compare the
 1116: *     structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.).
 1117: *
 1118:          IF ( L2TRAN ) THEN
 1119:             DO 1950 p = 1, M
 1120:                XSC   = ZERO
 1121:                TEMP1 = ONE
 1122:                CALL ZLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
 1123: *              ZLASSQ gets both the ell_2 and the ell_infinity norm
 1124: *              in one pass through the vector
 1125:                RWORK(M+p)  = XSC * SCALEM
 1126:                RWORK(p)    = XSC * (SCALEM*SQRT(TEMP1))
 1127:                AATMAX = MAX( AATMAX, RWORK(p) )
 1128:                IF (RWORK(p) .NE. ZERO) 
 1129:      $            AATMIN = MIN(AATMIN,RWORK(p))
 1130:  1950       CONTINUE
 1131:          ELSE
 1132:             DO 1904 p = 1, M
 1133:                RWORK(M+p) = SCALEM*ABS( A(p,IZAMAX(N,A(p,1),LDA)) )
 1134:                AATMAX = MAX( AATMAX, RWORK(M+p) )
 1135:                AATMIN = MIN( AATMIN, RWORK(M+p) )
 1136:  1904       CONTINUE
 1137:          END IF
 1138: *
 1139:       END IF
 1140: *
 1141: *     For square matrix A try to determine whether A^*  would be better
 1142: *     input for the preconditioned Jacobi SVD, with faster convergence.
 1143: *     The decision is based on an O(N) function of the vector of column
 1144: *     and row norms of A, based on the Shannon entropy. This should give
 1145: *     the right choice in most cases when the difference actually matters.
 1146: *     It may fail and pick the slower converging side.
 1147: *
 1148:       ENTRA  = ZERO
 1149:       ENTRAT = ZERO
 1150:       IF ( L2TRAN ) THEN
 1151: *
 1152:          XSC   = ZERO
 1153:          TEMP1 = ONE
 1154:          CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
 1155:          TEMP1 = ONE / TEMP1
 1156: *
 1157:          ENTRA = ZERO
 1158:          DO 1113 p = 1, N
 1159:             BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
 1160:             IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
 1161:  1113    CONTINUE
 1162:          ENTRA = - ENTRA / DLOG(DBLE(N))
 1163: *
 1164: *        Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex.
 1165: *        It is derived from the diagonal of  A^* * A.  Do the same with the
 1166: *        diagonal of A * A^*, compute the entropy of the corresponding
 1167: *        probability distribution. Note that A * A^* and A^* * A have the
 1168: *        same trace.
 1169: *
 1170:          ENTRAT = ZERO
 1171:          DO 1114 p = 1, M
 1172:             BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1
 1173:             IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
 1174:  1114    CONTINUE
 1175:          ENTRAT = - ENTRAT / DLOG(DBLE(M))
 1176: *
 1177: *        Analyze the entropies and decide A or A^*. Smaller entropy
 1178: *        usually means better input for the algorithm.
 1179: *
 1180:          TRANSP = ( ENTRAT .LT. ENTRA )
 1181:  1182: *        If A^* is better than A, take the adjoint of A. This is allowed
 1183: *        only for square matrices, M=N.
 1184:          IF ( TRANSP ) THEN
 1185: *           In an optimal implementation, this trivial transpose
 1186: *           should be replaced with faster transpose.
 1187:             DO 1115 p = 1, N - 1
 1188:                A(p,p) = CONJG(A(p,p))
 1189:                DO 1116 q = p + 1, N
 1190:                    CTEMP = CONJG(A(q,p))
 1191:                   A(q,p) = CONJG(A(p,q))
 1192:                   A(p,q) = CTEMP
 1193:  1116          CONTINUE
 1194:  1115       CONTINUE
 1195:             A(N,N) = CONJG(A(N,N))
 1196:             DO 1117 p = 1, N
 1197:                RWORK(M+p) = SVA(p)
 1198:                SVA(p)     = RWORK(p)
 1199: *              previously computed row 2-norms are now column 2-norms
 1200: *              of the transposed matrix
 1201:  1117       CONTINUE
 1202:             TEMP1  = AAPP
 1203:             AAPP   = AATMAX
 1204:             AATMAX = TEMP1
 1205:             TEMP1  = AAQQ
 1206:             AAQQ   = AATMIN
 1207:             AATMIN = TEMP1
 1208:             KILL   = LSVEC
 1209:             LSVEC  = RSVEC
 1210:             RSVEC  = KILL
 1211:             IF ( LSVEC ) N1 = N
 1212: *
 1213:             ROWPIV = .TRUE.
 1214:          END IF
 1215: *
 1216:       END IF
 1217: *     END IF L2TRAN
 1218: *
 1219: *     Scale the matrix so that its maximal singular value remains less
 1220: *     than SQRT(BIG) -- the matrix is scaled so that its maximal column
 1221: *     has Euclidean norm equal to SQRT(BIG/N). The only reason to keep
 1222: *     SQRT(BIG) instead of BIG is the fact that ZGEJSV uses LAPACK and
 1223: *     BLAS routines that, in some implementations, are not capable of
 1224: *     working in the full interval [SFMIN,BIG] and that they may provoke
 1225: *     overflows in the intermediate results. If the singular values spread
 1226: *     from SFMIN to BIG, then ZGESVJ will compute them. So, in that case,
 1227: *     one should use ZGESVJ instead of ZGEJSV.
 1228: *     >> change in the April 2016 update: allow bigger range, i.e. the
 1229: *     largest column is allowed up to BIG/N and ZGESVJ will do the rest.
 1230:       BIG1   = SQRT( BIG )
 1231:       TEMP1  = SQRT( BIG / DBLE(N) ) 
 1232: *      TEMP1  = BIG/DBLE(N)
 1233: *
 1234:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
 1235:       IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
 1236:           AAQQ = ( AAQQ / AAPP ) * TEMP1
 1237:       ELSE
 1238:           AAQQ = ( AAQQ * TEMP1 ) / AAPP
 1239:       END IF
 1240:       TEMP1 = TEMP1 * SCALEM
 1241:       CALL ZLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
 1242: *
 1243: *     To undo scaling at the end of this procedure, multiply the
 1244: *     computed singular values with USCAL2 / USCAL1.
 1245: *
 1246:       USCAL1 = TEMP1
 1247:       USCAL2 = AAPP
 1248: *
 1249:       IF ( L2KILL ) THEN
 1250: *        L2KILL enforces computation of nonzero singular values in
 1251: *        the restricted range of condition number of the initial A,
 1252: *        sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).
 1253:          XSC = SQRT( SFMIN )
 1254:       ELSE
 1255:          XSC = SMALL
 1256: *
 1257: *        Now, if the condition number of A is too big,
 1258: *        sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,
 1259: *        as a precaution measure, the full SVD is computed using ZGESVJ
 1260: *        with accumulated Jacobi rotations. This provides numerically
 1261: *        more robust computation, at the cost of slightly increased run
 1262: *        time. Depending on the concrete implementation of BLAS and LAPACK
 1263: *        (i.e. how they behave in presence of extreme ill-conditioning) the
 1264: *        implementor may decide to remove this switch.
 1265:          IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
 1266:             JRACC = .TRUE.
 1267:          END IF
 1268: *
 1269:       END IF
 1270:       IF ( AAQQ .LT. XSC ) THEN
 1271:          DO 700 p = 1, N
 1272:             IF ( SVA(p) .LT. XSC ) THEN
 1273:                CALL ZLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA )
 1274:                SVA(p) = ZERO
 1275:             END IF
 1276:  700     CONTINUE
 1277:       END IF
 1278: *
 1279: *     Preconditioning using QR factorization with pivoting
 1280: *
 1281:       IF ( ROWPIV ) THEN
 1282: *        Optional row permutation (Bjoerck row pivoting):
 1283: *        A result by Cox and Higham shows that the Bjoerck's
 1284: *        row pivoting combined with standard column pivoting
 1285: *        has similar effect as Powell-Reid complete pivoting.
 1286: *        The ell-infinity norms of A are made nonincreasing.
 1287:          IF ( ( LSVEC .AND. RSVEC ) .AND. .NOT.( JRACC ) ) THEN 
 1288:               IWOFF = 2*N
 1289:          ELSE
 1290:               IWOFF = N
 1291:          END IF
 1292:          DO 1952 p = 1, M - 1
 1293:             q = IDAMAX( M-p+1, RWORK(M+p), 1 ) + p - 1
 1294:             IWORK(IWOFF+p) = q
 1295:             IF ( p .NE. q ) THEN
 1296:                TEMP1      = RWORK(M+p)
 1297:                RWORK(M+p) = RWORK(M+q)
 1298:                RWORK(M+q) = TEMP1
 1299:             END IF
 1300:  1952    CONTINUE
 1301:          CALL ZLASWP( N, A, LDA, 1, M-1, IWORK(IWOFF+1), 1 )
 1302:       END IF
 1303: *
 1304: *     End of the preparation phase (scaling, optional sorting and
 1305: *     transposing, optional flushing of small columns).
 1306: *
 1307: *     Preconditioning
 1308: *
 1309: *     If the full SVD is needed, the right singular vectors are computed
 1310: *     from a matrix equation, and for that we need theoretical analysis
 1311: *     of the Businger-Golub pivoting. So we use ZGEQP3 as the first RR QRF.
 1312: *     In all other cases the first RR QRF can be chosen by other criteria
 1313: *     (eg speed by replacing global with restricted window pivoting, such
 1314: *     as in xGEQPX from TOMS # 782). Good results will be obtained using
 1315: *     xGEQPX with properly (!) chosen numerical parameters.
 1316: *     Any improvement of ZGEQP3 improves overall performance of ZGEJSV.
 1317: *
 1318: *     A * P1 = Q1 * [ R1^* 0]^*:
 1319:       DO 1963 p = 1, N
 1320: *        .. all columns are free columns
 1321:          IWORK(p) = 0
 1322:  1963 CONTINUE
 1323:       CALL ZGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N,
 1324:      $             RWORK, IERR )
 1325: *
 1326: *     The upper triangular matrix R1 from the first QRF is inspected for
 1327: *     rank deficiency and possibilities for deflation, or possible
 1328: *     ill-conditioning. Depending on the user specified flag L2RANK,
 1329: *     the procedure explores possibilities to reduce the numerical
 1330: *     rank by inspecting the computed upper triangular factor. If
 1331: *     L2RANK or L2ABER are up, then ZGEJSV will compute the SVD of
 1332: *     A + dA, where ||dA|| <= f(M,N)*EPSLN.
 1333: *
 1334:       NR = 1
 1335:       IF ( L2ABER ) THEN
 1336: *        Standard absolute error bound suffices. All sigma_i with
 1337: *        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
 1338: *        aggressive enforcement of lower numerical rank by introducing a
 1339: *        backward error of the order of N*EPSLN*||A||.
 1340:          TEMP1 = SQRT(DBLE(N))*EPSLN
 1341:          DO 3001 p = 2, N
 1342:             IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN
 1343:                NR = NR + 1
 1344:             ELSE
 1345:                GO TO 3002
 1346:             END IF
 1347:  3001    CONTINUE
 1348:  3002    CONTINUE
 1349:       ELSE IF ( L2RANK ) THEN
 1350: *        .. similarly as above, only slightly more gentle (less aggressive).
 1351: *        Sudden drop on the diagonal of R1 is used as the criterion for
 1352: *        close-to-rank-deficient.
 1353:          TEMP1 = SQRT(SFMIN)
 1354:          DO 3401 p = 2, N
 1355:             IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
 1356:      $           ( ABS(A(p,p)) .LT. SMALL ) .OR.
 1357:      $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
 1358:             NR = NR + 1
 1359:  3401    CONTINUE
 1360:  3402    CONTINUE
 1361: *
 1362:       ELSE
 1363: *        The goal is high relative accuracy. However, if the matrix
 1364: *        has high scaled condition number the relative accuracy is in
 1365: *        general not feasible. Later on, a condition number estimator
 1366: *        will be deployed to estimate the scaled condition number.
 1367: *        Here we just remove the underflowed part of the triangular
 1368: *        factor. This prevents the situation in which the code is
 1369: *        working hard to get the accuracy not warranted by the data.
 1370:          TEMP1  = SQRT(SFMIN)
 1371:          DO 3301 p = 2, N
 1372:             IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.
 1373:      $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
 1374:             NR = NR + 1
 1375:  3301    CONTINUE
 1376:  3302    CONTINUE
 1377: *
 1378:       END IF
 1379: *
 1380:       ALMORT = .FALSE.
 1381:       IF ( NR .EQ. N ) THEN
 1382:          MAXPRJ = ONE
 1383:          DO 3051 p = 2, N
 1384:             TEMP1  = ABS(A(p,p)) / SVA(IWORK(p))
 1385:             MAXPRJ = MIN( MAXPRJ, TEMP1 )
 1386:  3051    CONTINUE
 1387:          IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
 1388:       END IF
 1389: *
 1390: *
 1391:       SCONDA = - ONE
 1392:       CONDR1 = - ONE
 1393:       CONDR2 = - ONE
 1394: *
 1395:       IF ( ERREST ) THEN
 1396:          IF ( N .EQ. NR ) THEN
 1397:             IF ( RSVEC ) THEN
 1398: *              .. V is available as workspace
 1399:                CALL ZLACPY( 'U', N, N, A, LDA, V, LDV )
 1400:                DO 3053 p = 1, N
 1401:                   TEMP1 = SVA(IWORK(p))
 1402:                   CALL ZDSCAL( p, ONE/TEMP1, V(1,p), 1 )
 1403:  3053          CONTINUE
 1404:                IF ( LSVEC )THEN
 1405:                    CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
 1406:      $                  CWORK(N+1), RWORK, IERR )
 1407:                ELSE
 1408:                    CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
 1409:      $                  CWORK, RWORK, IERR )
 1410:                END IF               
 1411: *          
 1412:             ELSE IF ( LSVEC ) THEN
 1413: *              .. U is available as workspace
 1414:                CALL ZLACPY( 'U', N, N, A, LDA, U, LDU )
 1415:                DO 3054 p = 1, N
 1416:                   TEMP1 = SVA(IWORK(p))
 1417:                   CALL ZDSCAL( p, ONE/TEMP1, U(1,p), 1 )
 1418:  3054          CONTINUE
 1419:                CALL ZPOCON( 'U', N, U, LDU, ONE, TEMP1,
 1420:      $              CWORK(N+1), RWORK, IERR )
 1421:             ELSE
 1422:                CALL ZLACPY( 'U', N, N, A, LDA, CWORK, N )
 1423: *[]            CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
 1424: *              Change: here index shifted by N to the left, CWORK(1:N) 
 1425: *              not needed for SIGMA only computation
 1426:                DO 3052 p = 1, N
 1427:                   TEMP1 = SVA(IWORK(p))
 1428: *[]               CALL ZDSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 )
 1429:                   CALL ZDSCAL( p, ONE/TEMP1, CWORK((p-1)*N+1), 1 )
 1430:  3052          CONTINUE
 1431: *           .. the columns of R are scaled to have unit Euclidean lengths.
 1432: *[]               CALL ZPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1,
 1433: *[]     $              CWORK(N+N*N+1), RWORK, IERR )
 1434:                CALL ZPOCON( 'U', N, CWORK, N, ONE, TEMP1,
 1435:      $              CWORK(N*N+1), RWORK, IERR )               
 1436: *              
 1437:             END IF
 1438:             IF ( TEMP1 .NE. ZERO ) THEN 
 1439:                SCONDA = ONE / SQRT(TEMP1)
 1440:             ELSE
 1441:                SCONDA = - ONE
 1442:             END IF
 1443: *           SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
 1444: *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
 1445:          ELSE
 1446:             SCONDA = - ONE
 1447:          END IF
 1448:       END IF
 1449: *
 1450:       L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) )
 1451: *     If there is no violent scaling, artificial perturbation is not needed.
 1452: *
 1453: *     Phase 3:
 1454: *
 1455:       IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
 1456: *
 1457: *         Singular Values only
 1458: *
 1459: *         .. transpose A(1:NR,1:N)
 1460:          DO 1946 p = 1, MIN( N-1, NR )
 1461:             CALL ZCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
 1462:             CALL ZLACGV( N-p+1, A(p,p), 1 )
 1463:  1946    CONTINUE
 1464:          IF ( NR .EQ. N ) A(N,N) = CONJG(A(N,N))
 1465: *
 1466: *        The following two DO-loops introduce small relative perturbation
 1467: *        into the strict upper triangle of the lower triangular matrix.
 1468: *        Small entries below the main diagonal are also changed.
 1469: *        This modification is useful if the computing environment does not
 1470: *        provide/allow FLUSH TO ZERO underflow, for it prevents many
 1471: *        annoying denormalized numbers in case of strongly scaled matrices.
 1472: *        The perturbation is structured so that it does not introduce any
 1473: *        new perturbation of the singular values, and it does not destroy
 1474: *        the job done by the preconditioner.
 1475: *        The licence for this perturbation is in the variable L2PERT, which
 1476: *        should be .FALSE. if FLUSH TO ZERO underflow is active.
 1477: *
 1478:          IF ( .NOT. ALMORT ) THEN
 1479: *
 1480:             IF ( L2PERT ) THEN
 1481: *              XSC = SQRT(SMALL)
 1482:                XSC = EPSLN / DBLE(N)
 1483:                DO 4947 q = 1, NR
 1484:                   CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
 1485:                   DO 4949 p = 1, N
 1486:                      IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
 1487:      $                    .OR. ( p .LT. q ) )
 1488: *     $                     A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
 1489:      $                     A(p,q) = CTEMP
 1490:  4949             CONTINUE
 1491:  4947          CONTINUE
 1492:             ELSE
 1493:                CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA )
 1494:             END IF
 1495: *
 1496: *            .. second preconditioning using the QR factorization
 1497: *
 1498:             CALL ZGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N, IERR )
 1499: *
 1500: *           .. and transpose upper to lower triangular
 1501:             DO 1948 p = 1, NR - 1
 1502:                CALL ZCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
 1503:                CALL ZLACGV( NR-p+1, A(p,p), 1 )
 1504:  1948       CONTINUE
 1505: *
 1506:       END IF
 1507: *
 1508: *           Row-cyclic Jacobi SVD algorithm with column pivoting
 1509: *
 1510: *           .. again some perturbation (a "background noise") is added
 1511: *           to drown denormals
 1512:             IF ( L2PERT ) THEN
 1513: *              XSC = SQRT(SMALL)
 1514:                XSC = EPSLN / DBLE(N)
 1515:                DO 1947 q = 1, NR
 1516:                   CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
 1517:                   DO 1949 p = 1, NR
 1518:                      IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
 1519:      $                       .OR. ( p .LT. q ) )
 1520: *     $                   A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
 1521:      $                   A(p,q) = CTEMP
 1522:  1949             CONTINUE
 1523:  1947          CONTINUE
 1524:             ELSE
 1525:                CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2), LDA )
 1526:             END IF
 1527: *
 1528: *           .. and one-sided Jacobi rotations are started on a lower
 1529: *           triangular matrix (plus perturbation which is ignored in
 1530: *           the part which destroys triangular form (confusing?!))
 1531: *
 1532:             CALL ZGESVJ( 'L', 'N', 'N', NR, NR, A, LDA, SVA,
 1533:      $                N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
 1534: *
 1535:             SCALEM  = RWORK(1)
 1536:             NUMRANK = NINT(RWORK(2))
 1537: *
 1538: *
 1539:       ELSE IF ( ( RSVEC .AND. ( .NOT. LSVEC ) .AND. ( .NOT. JRACC ) )
 1540:      $       .OR. 
 1541:      $   ( JRACC .AND. ( .NOT. LSVEC ) .AND. ( NR .NE. N ) ) ) THEN
 1542: *
 1543: *        -> Singular Values and Right Singular Vectors <-
 1544: *
 1545:          IF ( ALMORT ) THEN
 1546: *
 1547: *           .. in this case NR equals N
 1548:             DO 1998 p = 1, NR
 1549:                CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1550:                CALL ZLACGV( N-p+1, V(p,p), 1 )
 1551:  1998       CONTINUE
 1552:             CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
 1553: *
 1554:             CALL ZGESVJ( 'L','U','N', N, NR, V, LDV, SVA, NR, A, LDA,
 1555:      $                  CWORK, LWORK, RWORK, LRWORK, INFO )
 1556:             SCALEM  = RWORK(1)
 1557:             NUMRANK = NINT(RWORK(2))
 1558: 
 1559:          ELSE
 1560: *
 1561: *        .. two more QR factorizations ( one QRF is not enough, two require
 1562: *        accumulated product of Jacobi rotations, three are perfect )
 1563: *
 1564:             CALL ZLASET( 'L', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA )
 1565:             CALL ZGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N, IERR)
 1566:             CALL ZLACPY( 'L', NR, NR, A, LDA, V, LDV )
 1567:             CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
 1568:             CALL ZGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 1569:      $                   LWORK-2*N, IERR )
 1570:             DO 8998 p = 1, NR
 1571:                CALL ZCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
 1572:                CALL ZLACGV( NR-p+1, V(p,p), 1 )
 1573:  8998       CONTINUE
 1574:             CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV)
 1575: *
 1576:             CALL ZGESVJ( 'L', 'U','N', NR, NR, V,LDV, SVA, NR, U,
 1577:      $                  LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
 1578:             SCALEM  = RWORK(1)
 1579:             NUMRANK = NINT(RWORK(2))
 1580:             IF ( NR .LT. N ) THEN
 1581:                CALL ZLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1),  LDV )
 1582:                CALL ZLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1),  LDV )
 1583:                CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),LDV )
 1584:             END IF
 1585: *
 1586:          CALL ZUNMLQ( 'L', 'C', N, N, NR, A, LDA, CWORK,
 1587:      $               V, LDV, CWORK(N+1), LWORK-N, IERR )
 1588: *
 1589:          END IF
 1590: *         .. permute the rows of V
 1591: *         DO 8991 p = 1, N
 1592: *            CALL ZCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
 1593: * 8991    CONTINUE
 1594: *         CALL ZLACPY( 'All', N, N, A, LDA, V, LDV )
 1595:          CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK )
 1596: *
 1597:           IF ( TRANSP ) THEN
 1598:             CALL ZLACPY( 'A', N, N, V, LDV, U, LDU )
 1599:           END IF
 1600: *
 1601:       ELSE IF ( JRACC .AND. (.NOT. LSVEC) .AND. ( NR.EQ. N ) ) THEN 
 1602: *          
 1603:          CALL ZLASET( 'L', N-1,N-1, CZERO, CZERO, A(2,1), LDA )
 1604: *
 1605:          CALL ZGESVJ( 'U','N','V', N, N, A, LDA, SVA, N, V, LDV,
 1606:      $               CWORK, LWORK, RWORK, LRWORK, INFO )
 1607:           SCALEM  = RWORK(1)
 1608:           NUMRANK = NINT(RWORK(2))
 1609:           CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK )
 1610: *
 1611:       ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
 1612: *
 1613: *        .. Singular Values and Left Singular Vectors                 ..
 1614: *
 1615: *        .. second preconditioning step to avoid need to accumulate
 1616: *        Jacobi rotations in the Jacobi iterations.
 1617:          DO 1965 p = 1, NR
 1618:             CALL ZCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
 1619:             CALL ZLACGV( N-p+1, U(p,p), 1 )
 1620:  1965    CONTINUE
 1621:          CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
 1622: *
 1623:          CALL ZGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1),
 1624:      $              LWORK-2*N, IERR )
 1625: *
 1626:          DO 1967 p = 1, NR - 1
 1627:             CALL ZCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
 1628:             CALL ZLACGV( N-p+1, U(p,p), 1 )
 1629:  1967    CONTINUE
 1630:          CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
 1631: *
 1632:          CALL ZGESVJ( 'L', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
 1633:      $        LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
 1634:          SCALEM  = RWORK(1)
 1635:          NUMRANK = NINT(RWORK(2))
 1636: *
 1637:          IF ( NR .LT. M ) THEN
 1638:             CALL ZLASET( 'A',  M-NR, NR,CZERO, CZERO, U(NR+1,1), LDU )
 1639:             IF ( NR .LT. N1 ) THEN
 1640:                CALL ZLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU )
 1641:                CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),LDU )
 1642:             END IF
 1643:          END IF
 1644: *
 1645:          CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 1646:      $               LDU, CWORK(N+1), LWORK-N, IERR )
 1647: *
 1648:          IF ( ROWPIV )
 1649:      $       CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
 1650: *
 1651:          DO 1974 p = 1, N1
 1652:             XSC = ONE / DZNRM2( M, U(1,p), 1 )
 1653:             CALL ZDSCAL( M, XSC, U(1,p), 1 )
 1654:  1974    CONTINUE
 1655: *
 1656:          IF ( TRANSP ) THEN
 1657:             CALL ZLACPY( 'A', N, N, U, LDU, V, LDV )
 1658:          END IF
 1659: *
 1660:       ELSE
 1661: *
 1662: *        .. Full SVD ..
 1663: *
 1664:          IF ( .NOT. JRACC ) THEN
 1665: *
 1666:          IF ( .NOT. ALMORT ) THEN
 1667: *
 1668: *           Second Preconditioning Step (QRF [with pivoting])
 1669: *           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
 1670: *           equivalent to an LQF CALL. Since in many libraries the QRF
 1671: *           seems to be better optimized than the LQF, we do explicit
 1672: *           transpose and use the QRF. This is subject to changes in an
 1673: *           optimized implementation of ZGEJSV.
 1674: *
 1675:             DO 1968 p = 1, NR
 1676:                CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1677:                CALL ZLACGV( N-p+1, V(p,p), 1 )
 1678:  1968       CONTINUE
 1679: *
 1680: *           .. the following two loops perturb small entries to avoid
 1681: *           denormals in the second QR factorization, where they are
 1682: *           as good as zeros. This is done to avoid painfully slow
 1683: *           computation with denormals. The relative size of the perturbation
 1684: *           is a parameter that can be changed by the implementer.
 1685: *           This perturbation device will be obsolete on machines with
 1686: *           properly implemented arithmetic.
 1687: *           To switch it off, set L2PERT=.FALSE. To remove it from  the
 1688: *           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
 1689: *           The following two loops should be blocked and fused with the
 1690: *           transposed copy above.
 1691: *
 1692:             IF ( L2PERT ) THEN
 1693:                XSC = SQRT(SMALL)
 1694:                DO 2969 q = 1, NR
 1695:                   CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
 1696:                   DO 2968 p = 1, N
 1697:                      IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
 1698:      $                   .OR. ( p .LT. q ) )
 1699: *     $                   V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
 1700:      $                   V(p,q) = CTEMP
 1701:                      IF ( p .LT. q ) V(p,q) = - V(p,q)
 1702:  2968             CONTINUE
 1703:  2969          CONTINUE
 1704:             ELSE
 1705:                CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
 1706:             END IF
 1707: *
 1708: *           Estimate the row scaled condition number of R1
 1709: *           (If R1 is rectangular, N > NR, then the condition number
 1710: *           of the leading NR x NR submatrix is estimated.)
 1711: *
 1712:             CALL ZLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR )
 1713:             DO 3950 p = 1, NR
 1714:                TEMP1 = DZNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1)
 1715:                CALL ZDSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1)
 1716:  3950       CONTINUE
 1717:             CALL ZPOCON('L',NR,CWORK(2*N+1),NR,ONE,TEMP1,
 1718:      $                   CWORK(2*N+NR*NR+1),RWORK,IERR)
 1719:             CONDR1 = ONE / SQRT(TEMP1)
 1720: *           .. here need a second opinion on the condition number
 1721: *           .. then assume worst case scenario
 1722: *           R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
 1723: *           more conservative    <=> CONDR1 .LT. SQRT(DBLE(N))
 1724: *
 1725:             COND_OK = SQRT(SQRT(DBLE(NR)))
 1726: *[TP]       COND_OK is a tuning parameter.
 1727: *
 1728:             IF ( CONDR1 .LT. COND_OK ) THEN
 1729: *              .. the second QRF without pivoting. Note: in an optimized
 1730: *              implementation, this QRF should be implemented as the QRF
 1731: *              of a lower triangular matrix.
 1732: *              R1^* = Q2 * R2
 1733:                CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 1734:      $              LWORK-2*N, IERR )
 1735: *
 1736:                IF ( L2PERT ) THEN
 1737:                   XSC = SQRT(SMALL)/EPSLN
 1738:                   DO 3959 p = 2, NR
 1739:                      DO 3958 q = 1, p - 1
 1740:                         CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
 1741:      $                              ZERO)
 1742:                         IF ( ABS(V(q,p)) .LE. TEMP1 )
 1743: *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
 1744:      $                     V(q,p) = CTEMP
 1745:  3958                CONTINUE
 1746:  3959             CONTINUE
 1747:                END IF
 1748: *
 1749:                IF ( NR .NE. N )
 1750:      $         CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
 1751: *              .. save ...
 1752: *
 1753: *           .. this transposed copy should be better than naive
 1754:                DO 1969 p = 1, NR - 1
 1755:                   CALL ZCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
 1756:                   CALL ZLACGV(NR-p+1, V(p,p), 1 )
 1757:  1969          CONTINUE
 1758:                V(NR,NR)=CONJG(V(NR,NR))
 1759: *
 1760:                CONDR2 = CONDR1
 1761: *
 1762:             ELSE
 1763: *
 1764: *              .. ill-conditioned case: second QRF with pivoting
 1765: *              Note that windowed pivoting would be equally good
 1766: *              numerically, and more run-time efficient. So, in
 1767: *              an optimal implementation, the next call to ZGEQP3
 1768: *              should be replaced with eg. CALL ZGEQPX (ACM TOMS #782)
 1769: *              with properly (carefully) chosen parameters.
 1770: *
 1771: *              R1^* * P2 = Q2 * R2
 1772:                DO 3003 p = 1, NR
 1773:                   IWORK(N+p) = 0
 1774:  3003          CONTINUE
 1775:                CALL ZGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1),
 1776:      $                  CWORK(2*N+1), LWORK-2*N, RWORK, IERR )
 1777: **               CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 1778: **     $              LWORK-2*N, IERR )
 1779:                IF ( L2PERT ) THEN
 1780:                   XSC = SQRT(SMALL)
 1781:                   DO 3969 p = 2, NR
 1782:                      DO 3968 q = 1, p - 1
 1783:                         CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
 1784:      $                                ZERO)
 1785:                         IF ( ABS(V(q,p)) .LE. TEMP1 )
 1786: *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
 1787:      $                     V(q,p) = CTEMP
 1788:  3968                CONTINUE
 1789:  3969             CONTINUE
 1790:                END IF
 1791: *
 1792:                CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
 1793: *
 1794:                IF ( L2PERT ) THEN
 1795:                   XSC = SQRT(SMALL)
 1796:                   DO 8970 p = 2, NR
 1797:                      DO 8971 q = 1, p - 1
 1798:                         CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
 1799:      $                               ZERO)
 1800: *                        V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) )
 1801:                         V(p,q) = - CTEMP
 1802:  8971                CONTINUE
 1803:  8970             CONTINUE
 1804:                ELSE
 1805:                   CALL ZLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV )
 1806:                END IF
 1807: *              Now, compute R2 = L3 * Q3, the LQ factorization.
 1808:                CALL ZGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1),
 1809:      $               CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
 1810: *              .. and estimate the condition number
 1811:                CALL ZLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR )
 1812:                DO 4950 p = 1, NR
 1813:                   TEMP1 = DZNRM2( p, CWORK(2*N+N*NR+NR+p), NR )
 1814:                   CALL ZDSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p), NR )
 1815:  4950          CONTINUE
 1816:                CALL ZPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
 1817:      $              CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR )
 1818:                CONDR2 = ONE / SQRT(TEMP1)
 1819: *
 1820: *
 1821:                IF ( CONDR2 .GE. COND_OK ) THEN
 1822: *                 .. save the Householder vectors used for Q3
 1823: *                 (this overwrites the copy of R2, as it will not be
 1824: *                 needed in this branch, but it does not overwritte the
 1825: *                 Huseholder vectors of Q2.).
 1826:                   CALL ZLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N )
 1827: *                 .. and the rest of the information on Q3 is in
 1828: *                 WORK(2*N+N*NR+1:2*N+N*NR+N)
 1829:                END IF
 1830: *
 1831:             END IF
 1832: *
 1833:             IF ( L2PERT ) THEN
 1834:                XSC = SQRT(SMALL)
 1835:                DO 4968 q = 2, NR
 1836:                   CTEMP = XSC * V(q,q)
 1837:                   DO 4969 p = 1, q - 1
 1838: *                     V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) )
 1839:                      V(p,q) = - CTEMP
 1840:  4969             CONTINUE
 1841:  4968          CONTINUE
 1842:             ELSE
 1843:                CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
 1844:             END IF
 1845: *
 1846: *        Second preconditioning finished; continue with Jacobi SVD
 1847: *        The input matrix is lower trinagular.
 1848: *
 1849: *        Recover the right singular vectors as solution of a well
 1850: *        conditioned triangular matrix equation.
 1851: *
 1852:             IF ( CONDR1 .LT. COND_OK ) THEN
 1853: *
 1854:                CALL ZGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU,
 1855:      $              CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK,
 1856:      $              LRWORK, INFO )
 1857:                SCALEM  = RWORK(1)
 1858:                NUMRANK = NINT(RWORK(2))
 1859:                DO 3970 p = 1, NR
 1860:                   CALL ZCOPY(  NR, V(1,p), 1, U(1,p), 1 )
 1861:                   CALL ZDSCAL( NR, SVA(p),    V(1,p), 1 )
 1862:  3970          CONTINUE
 1863: 
 1864: *        .. pick the right matrix equation and solve it
 1865: *
 1866:                IF ( NR .EQ. N ) THEN
 1867: * :))             .. best case, R1 is inverted. The solution of this matrix
 1868: *                 equation is Q2*V2 = the product of the Jacobi rotations
 1869: *                 used in ZGESVJ, premultiplied with the orthogonal matrix
 1870: *                 from the second QR factorization.
 1871:                   CALL ZTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,LDV)
 1872:                ELSE
 1873: *                 .. R1 is well conditioned, but non-square. Adjoint of R2
 1874: *                 is inverted to get the product of the Jacobi rotations
 1875: *                 used in ZGESVJ. The Q-factor from the second QR
 1876: *                 factorization is then built in explicitly.
 1877:                   CALL ZTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1),
 1878:      $                 N,V,LDV)
 1879:                   IF ( NR .LT. N ) THEN
 1880:                   CALL ZLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
 1881:                   CALL ZLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
 1882:                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
 1883:                   END IF
 1884:                   CALL ZUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
 1885:      $                V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
 1886:                END IF
 1887: *
 1888:             ELSE IF ( CONDR2 .LT. COND_OK ) THEN
 1889: *
 1890: *              The matrix R2 is inverted. The solution of the matrix equation
 1891: *              is Q3^* * V3 = the product of the Jacobi rotations (appplied to
 1892: *              the lower triangular L3 from the LQ factorization of
 1893: *              R2=L3*Q3), pre-multiplied with the transposed Q3.
 1894:                CALL ZGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
 1895:      $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
 1896:      $              RWORK, LRWORK, INFO )
 1897:                SCALEM  = RWORK(1)
 1898:                NUMRANK = NINT(RWORK(2))
 1899:                DO 3870 p = 1, NR
 1900:                   CALL ZCOPY( NR, V(1,p), 1, U(1,p), 1 )
 1901:                   CALL ZDSCAL( NR, SVA(p),    U(1,p), 1 )
 1902:  3870          CONTINUE
 1903:                CALL ZTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N,
 1904:      $                    U,LDU)
 1905: *              .. apply the permutation from the second QR factorization
 1906:                DO 873 q = 1, NR
 1907:                   DO 872 p = 1, NR
 1908:                      CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 1909:  872              CONTINUE
 1910:                   DO 874 p = 1, NR
 1911:                      U(p,q) = CWORK(2*N+N*NR+NR+p)
 1912:  874              CONTINUE
 1913:  873           CONTINUE
 1914:                IF ( NR .LT. N ) THEN
 1915:                   CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
 1916:                   CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
 1917:                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
 1918:                END IF
 1919:                CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
 1920:      $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1921:             ELSE
 1922: *              Last line of defense.
 1923: * #:(          This is a rather pathological case: no scaled condition
 1924: *              improvement after two pivoted QR factorizations. Other
 1925: *              possibility is that the rank revealing QR factorization
 1926: *              or the condition estimator has failed, or the COND_OK
 1927: *              is set very close to ONE (which is unnecessary). Normally,
 1928: *              this branch should never be executed, but in rare cases of
 1929: *              failure of the RRQR or condition estimator, the last line of
 1930: *              defense ensures that ZGEJSV completes the task.
 1931: *              Compute the full SVD of L3 using ZGESVJ with explicit
 1932: *              accumulation of Jacobi rotations.
 1933:                CALL ZGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
 1934:      $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
 1935:      $                         RWORK, LRWORK, INFO )
 1936:                SCALEM  = RWORK(1)
 1937:                NUMRANK = NINT(RWORK(2))
 1938:                IF ( NR .LT. N ) THEN
 1939:                   CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
 1940:                   CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
 1941:                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
 1942:                END IF
 1943:                CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
 1944:      $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1945: *
 1946:                CALL ZUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N,
 1947:      $              CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1),
 1948:      $              LWORK-2*N-N*NR-NR, IERR )
 1949:                DO 773 q = 1, NR
 1950:                   DO 772 p = 1, NR
 1951:                      CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 1952:  772              CONTINUE
 1953:                   DO 774 p = 1, NR
 1954:                      U(p,q) = CWORK(2*N+N*NR+NR+p)
 1955:  774              CONTINUE
 1956:  773           CONTINUE
 1957: *
 1958:             END IF
 1959: *
 1960: *           Permute the rows of V using the (column) permutation from the
 1961: *           first QRF. Also, scale the columns to make them unit in
 1962: *           Euclidean norm. This applies to all cases.
 1963: *
 1964:             TEMP1 = SQRT(DBLE(N)) * EPSLN
 1965:             DO 1972 q = 1, N
 1966:                DO 972 p = 1, N
 1967:                   CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 1968:   972          CONTINUE
 1969:                DO 973 p = 1, N
 1970:                   V(p,q) = CWORK(2*N+N*NR+NR+p)
 1971:   973          CONTINUE
 1972:                XSC = ONE / DZNRM2( N, V(1,q), 1 )
 1973:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1974:      $           CALL ZDSCAL( N, XSC, V(1,q), 1 )
 1975:  1972       CONTINUE
 1976: *           At this moment, V contains the right singular vectors of A.
 1977: *           Next, assemble the left singular vector matrix U (M x N).
 1978:             IF ( NR .LT. M ) THEN
 1979:                CALL ZLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)
 1980:                IF ( NR .LT. N1 ) THEN
 1981:                   CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
 1982:                   CALL ZLASET('A',M-NR,N1-NR,CZERO,CONE,
 1983:      $                        U(NR+1,NR+1),LDU)
 1984:                END IF
 1985:             END IF
 1986: *
 1987: *           The Q matrix from the first QRF is built into the left singular
 1988: *           matrix U. This applies to all cases.
 1989: *
 1990:             CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 1991:      $           LDU, CWORK(N+1), LWORK-N, IERR )
 1992: 
 1993: *           The columns of U are normalized. The cost is O(M*N) flops.
 1994:             TEMP1 = SQRT(DBLE(M)) * EPSLN
 1995:             DO 1973 p = 1, NR
 1996:                XSC = ONE / DZNRM2( M, U(1,p), 1 )
 1997:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1998:      $          CALL ZDSCAL( M, XSC, U(1,p), 1 )
 1999:  1973       CONTINUE
 2000: *
 2001: *           If the initial QRF is computed with row pivoting, the left
 2002: *           singular vectors must be adjusted.
 2003: *
 2004:             IF ( ROWPIV )
 2005:      $          CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
 2006: *
 2007:          ELSE
 2008: *
 2009: *        .. the initial matrix A has almost orthogonal columns and
 2010: *        the second QRF is not needed
 2011: *
 2012:             CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
 2013:             IF ( L2PERT ) THEN
 2014:                XSC = SQRT(SMALL)
 2015:                DO 5970 p = 2, N
 2016:                   CTEMP = XSC * CWORK( N + (p-1)*N + p )
 2017:                   DO 5971 q = 1, p - 1
 2018: *                     CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) /
 2019: *     $                                        ABS(CWORK(N+(p-1)*N+q)) )
 2020:                      CWORK(N+(q-1)*N+p)=-CTEMP
 2021:  5971             CONTINUE
 2022:  5970          CONTINUE
 2023:             ELSE
 2024:                CALL ZLASET( 'L',N-1,N-1,CZERO,CZERO,CWORK(N+2),N )
 2025:             END IF
 2026: *
 2027:             CALL ZGESVJ( 'U', 'U', 'N', N, N, CWORK(N+1), N, SVA,
 2028:      $           N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK,
 2029:      $       INFO )
 2030: *
 2031:             SCALEM  = RWORK(1)
 2032:             NUMRANK = NINT(RWORK(2))
 2033:             DO 6970 p = 1, N
 2034:                CALL ZCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 )
 2035:                CALL ZDSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 )
 2036:  6970       CONTINUE
 2037: *
 2038:             CALL ZTRSM( 'L', 'U', 'N', 'N', N, N,
 2039:      $           CONE, A, LDA, CWORK(N+1), N )
 2040:             DO 6972 p = 1, N
 2041:                CALL ZCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV )
 2042:  6972       CONTINUE
 2043:             TEMP1 = SQRT(DBLE(N))*EPSLN
 2044:             DO 6971 p = 1, N
 2045:                XSC = ONE / DZNRM2( N, V(1,p), 1 )
 2046:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 2047:      $            CALL ZDSCAL( N, XSC, V(1,p), 1 )
 2048:  6971       CONTINUE
 2049: *
 2050: *           Assemble the left singular vector matrix U (M x N).
 2051: *
 2052:             IF ( N .LT. M ) THEN
 2053:                CALL ZLASET( 'A',  M-N, N, CZERO, CZERO, U(N+1,1), LDU )
 2054:                IF ( N .LT. N1 ) THEN
 2055:                   CALL ZLASET('A',N,  N1-N, CZERO, CZERO,  U(1,N+1),LDU)
 2056:                   CALL ZLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),LDU)
 2057:                END IF
 2058:             END IF
 2059:             CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 2060:      $           LDU, CWORK(N+1), LWORK-N, IERR )
 2061:             TEMP1 = SQRT(DBLE(M))*EPSLN
 2062:             DO 6973 p = 1, N1
 2063:                XSC = ONE / DZNRM2( M, U(1,p), 1 )
 2064:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 2065:      $            CALL ZDSCAL( M, XSC, U(1,p), 1 )
 2066:  6973       CONTINUE
 2067: *
 2068:             IF ( ROWPIV )
 2069:      $         CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
 2070: *
 2071:          END IF
 2072: *
 2073: *        end of the  >> almost orthogonal case <<  in the full SVD
 2074: *
 2075:          ELSE
 2076: *
 2077: *        This branch deploys a preconditioned Jacobi SVD with explicitly
 2078: *        accumulated rotations. It is included as optional, mainly for
 2079: *        experimental purposes. It does perform well, and can also be used.
 2080: *        In this implementation, this branch will be automatically activated
 2081: *        if the  condition number sigma_max(A) / sigma_min(A) is predicted
 2082: *        to be greater than the overflow threshold. This is because the
 2083: *        a posteriori computation of the singular vectors assumes robust
 2084: *        implementation of BLAS and some LAPACK procedures, capable of working
 2085: *        in presence of extreme values, e.g. when the singular values spread from
 2086: *        the underflow to the overflow threshold. 
 2087: *
 2088:          DO 7968 p = 1, NR
 2089:             CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 2090:             CALL ZLACGV( N-p+1, V(p,p), 1 )
 2091:  7968    CONTINUE
 2092: *
 2093:          IF ( L2PERT ) THEN
 2094:             XSC = SQRT(SMALL/EPSLN)
 2095:             DO 5969 q = 1, NR
 2096:                CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
 2097:                DO 5968 p = 1, N
 2098:                   IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
 2099:      $                .OR. ( p .LT. q ) )
 2100: *     $                V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
 2101:      $                V(p,q) = CTEMP
 2102:                   IF ( p .LT. q ) V(p,q) = - V(p,q)
 2103:  5968          CONTINUE
 2104:  5969       CONTINUE
 2105:          ELSE
 2106:             CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
 2107:          END IF
 2108: 
 2109:          CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 2110:      $        LWORK-2*N, IERR )
 2111:          CALL ZLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N )
 2112: *
 2113:          DO 7969 p = 1, NR
 2114:             CALL ZCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
 2115:             CALL ZLACGV( NR-p+1, U(p,p), 1 )
 2116:  7969    CONTINUE
 2117: 
 2118:          IF ( L2PERT ) THEN
 2119:             XSC = SQRT(SMALL/EPSLN)
 2120:             DO 9970 q = 2, NR
 2121:                DO 9971 p = 1, q - 1
 2122:                   CTEMP = DCMPLX(XSC * MIN(ABS(U(p,p)),ABS(U(q,q))),
 2123:      $                            ZERO)
 2124: *                  U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) )
 2125:                   U(p,q) = - CTEMP
 2126:  9971          CONTINUE
 2127:  9970       CONTINUE
 2128:          ELSE
 2129:             CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
 2130:          END IF
 2131: 
 2132:          CALL ZGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,
 2133:      $        N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR,
 2134:      $         RWORK, LRWORK, INFO )
 2135:          SCALEM  = RWORK(1)
 2136:          NUMRANK = NINT(RWORK(2))
 2137: 
 2138:          IF ( NR .LT. N ) THEN
 2139:             CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
 2140:             CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
 2141:             CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV )
 2142:          END IF
 2143: 
 2144:          CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
 2145:      $        V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 2146: *
 2147: *           Permute the rows of V using the (column) permutation from the
 2148: *           first QRF. Also, scale the columns to make them unit in
 2149: *           Euclidean norm. This applies to all cases.
 2150: *
 2151:             TEMP1 = SQRT(DBLE(N)) * EPSLN
 2152:             DO 7972 q = 1, N
 2153:                DO 8972 p = 1, N
 2154:                   CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 2155:  8972          CONTINUE
 2156:                DO 8973 p = 1, N
 2157:                   V(p,q) = CWORK(2*N+N*NR+NR+p)
 2158:  8973          CONTINUE
 2159:                XSC = ONE / DZNRM2( N, V(1,q), 1 )
 2160:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 2161:      $           CALL ZDSCAL( N, XSC, V(1,q), 1 )
 2162:  7972       CONTINUE
 2163: *
 2164: *           At this moment, V contains the right singular vectors of A.
 2165: *           Next, assemble the left singular vector matrix U (M x N).
 2166: *
 2167:          IF ( NR .LT. M ) THEN
 2168:             CALL ZLASET( 'A',  M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU )
 2169:             IF ( NR .LT. N1 ) THEN
 2170:                CALL ZLASET('A',NR,  N1-NR, CZERO, CZERO,  U(1,NR+1),LDU)
 2171:                CALL ZLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),LDU)
 2172:             END IF
 2173:          END IF
 2174: *
 2175:          CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 2176:      $        LDU, CWORK(N+1), LWORK-N, IERR )
 2177: *
 2178:             IF ( ROWPIV )
 2179:      $         CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
 2180: *
 2181: *
 2182:          END IF
 2183:          IF ( TRANSP ) THEN
 2184: *           .. swap U and V because the procedure worked on A^*
 2185:             DO 6974 p = 1, N
 2186:                CALL ZSWAP( N, U(1,p), 1, V(1,p), 1 )
 2187:  6974       CONTINUE
 2188:          END IF
 2189: *
 2190:       END IF
 2191: *     end of the full SVD
 2192: *
 2193: *     Undo scaling, if necessary (and possible)
 2194: *
 2195:       IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
 2196:          CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
 2197:          USCAL1 = ONE
 2198:          USCAL2 = ONE
 2199:       END IF
 2200: *
 2201:       IF ( NR .LT. N ) THEN
 2202:          DO 3004 p = NR+1, N
 2203:             SVA(p) = ZERO
 2204:  3004    CONTINUE
 2205:       END IF
 2206: *
 2207:       RWORK(1) = USCAL2 * SCALEM
 2208:       RWORK(2) = USCAL1
 2209:       IF ( ERREST ) RWORK(3) = SCONDA
 2210:       IF ( LSVEC .AND. RSVEC ) THEN
 2211:          RWORK(4) = CONDR1
 2212:          RWORK(5) = CONDR2
 2213:       END IF
 2214:       IF ( L2TRAN ) THEN
 2215:          RWORK(6) = ENTRA
 2216:          RWORK(7) = ENTRAT
 2217:       END IF
 2218: *
 2219:       IWORK(1) = NR
 2220:       IWORK(2) = NUMRANK
 2221:       IWORK(3) = WARNING
 2222:       IF ( TRANSP ) THEN
 2223:           IWORK(4) =  1 
 2224:       ELSE
 2225:           IWORK(4) = -1
 2226:       END IF 
 2227:       
 2228: *
 2229:       RETURN
 2230: *     ..
 2231: *     .. END OF ZGEJSV
 2232: *     ..
 2233:       END
 2234: *

CVSweb interface <joel.bertrand@systella.fr>