File:  [local] / rpl / lapack / lapack / zgejsv.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:03 2020 UTC (4 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZGEJSV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGEJSV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgejsv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgejsv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgejsv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *     SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
   22: *                         M, N, A, LDA, SVA, U, LDU, V, LDV,
   23: *                         CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
   24: *
   25: *     .. Scalar Arguments ..
   26: *     IMPLICIT    NONE
   27: *     INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
   28: *     ..
   29: *     .. Array Arguments ..
   30: *     COMPLEX*16     A( LDA, * ),  U( LDU, * ), V( LDV, * ), CWORK( LWORK )
   31: *     DOUBLE PRECISION   SVA( N ), RWORK( LRWORK )
   32: *     INTEGER     IWORK( * )
   33: *     CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> ZGEJSV computes the singular value decomposition (SVD) of a complex M-by-N
   43: *> matrix [A], where M >= N. The SVD of [A] is written as
   44: *>
   45: *>              [A] = [U] * [SIGMA] * [V]^*,
   46: *>
   47: *> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
   48: *> diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and
   49: *> [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are
   50: *> the singular values of [A]. The columns of [U] and [V] are the left and
   51: *> the right singular vectors of [A], respectively. The matrices [U] and [V]
   52: *> are computed and stored in the arrays U and V, respectively. The diagonal
   53: *> of [SIGMA] is computed and stored in the array SVA.
   54: *> \endverbatim
   55: *>
   56: *>  Arguments:
   57: *>  ==========
   58: *>
   59: *> \param[in] JOBA
   60: *> \verbatim
   61: *>          JOBA is CHARACTER*1
   62: *>         Specifies the level of accuracy:
   63: *>       = 'C': This option works well (high relative accuracy) if A = B * D,
   64: *>              with well-conditioned B and arbitrary diagonal matrix D.
   65: *>              The accuracy cannot be spoiled by COLUMN scaling. The
   66: *>              accuracy of the computed output depends on the condition of
   67: *>              B, and the procedure aims at the best theoretical accuracy.
   68: *>              The relative error max_{i=1:N}|d sigma_i| / sigma_i is
   69: *>              bounded by f(M,N)*epsilon* cond(B), independent of D.
   70: *>              The input matrix is preprocessed with the QRF with column
   71: *>              pivoting. This initial preprocessing and preconditioning by
   72: *>              a rank revealing QR factorization is common for all values of
   73: *>              JOBA. Additional actions are specified as follows:
   74: *>       = 'E': Computation as with 'C' with an additional estimate of the
   75: *>              condition number of B. It provides a realistic error bound.
   76: *>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
   77: *>              D1, D2, and well-conditioned matrix C, this option gives
   78: *>              higher accuracy than the 'C' option. If the structure of the
   79: *>              input matrix is not known, and relative accuracy is
   80: *>              desirable, then this option is advisable. The input matrix A
   81: *>              is preprocessed with QR factorization with FULL (row and
   82: *>              column) pivoting.
   83: *>       = 'G': Computation as with 'F' with an additional estimate of the
   84: *>              condition number of B, where A=B*D. If A has heavily weighted
   85: *>              rows, then using this condition number gives too pessimistic
   86: *>              error bound.
   87: *>       = 'A': Small singular values are not well determined by the data 
   88: *>              and are considered as noisy; the matrix is treated as
   89: *>              numerically rank deficient. The error in the computed
   90: *>              singular values is bounded by f(m,n)*epsilon*||A||.
   91: *>              The computed SVD A = U * S * V^* restores A up to
   92: *>              f(m,n)*epsilon*||A||.
   93: *>              This gives the procedure the licence to discard (set to zero)
   94: *>              all singular values below N*epsilon*||A||.
   95: *>       = 'R': Similar as in 'A'. Rank revealing property of the initial
   96: *>              QR factorization is used do reveal (using triangular factor)
   97: *>              a gap sigma_{r+1} < epsilon * sigma_r in which case the
   98: *>              numerical RANK is declared to be r. The SVD is computed with
   99: *>              absolute error bounds, but more accurately than with 'A'.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] JOBU
  103: *> \verbatim
  104: *>          JOBU is CHARACTER*1
  105: *>         Specifies whether to compute the columns of U:
  106: *>       = 'U': N columns of U are returned in the array U.
  107: *>       = 'F': full set of M left sing. vectors is returned in the array U.
  108: *>       = 'W': U may be used as workspace of length M*N. See the description
  109: *>              of U.
  110: *>       = 'N': U is not computed.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] JOBV
  114: *> \verbatim
  115: *>          JOBV is CHARACTER*1
  116: *>         Specifies whether to compute the matrix V:
  117: *>       = 'V': N columns of V are returned in the array V; Jacobi rotations
  118: *>              are not explicitly accumulated.
  119: *>       = 'J': N columns of V are returned in the array V, but they are
  120: *>              computed as the product of Jacobi rotations, if JOBT = 'N'.
  121: *>       = 'W': V may be used as workspace of length N*N. See the description
  122: *>              of V.
  123: *>       = 'N': V is not computed.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] JOBR
  127: *> \verbatim
  128: *>          JOBR is CHARACTER*1
  129: *>         Specifies the RANGE for the singular values. Issues the licence to
  130: *>         set to zero small positive singular values if they are outside
  131: *>         specified range. If A .NE. 0 is scaled so that the largest singular
  132: *>         value of c*A is around SQRT(BIG), BIG=DLAMCH('O'), then JOBR issues
  133: *>         the licence to kill columns of A whose norm in c*A is less than
  134: *>         SQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN,
  135: *>         where SFMIN=DLAMCH('S'), EPSLN=DLAMCH('E').
  136: *>       = 'N': Do not kill small columns of c*A. This option assumes that
  137: *>              BLAS and QR factorizations and triangular solvers are
  138: *>              implemented to work in that range. If the condition of A
  139: *>              is greater than BIG, use ZGESVJ.
  140: *>       = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]
  141: *>              (roughly, as described above). This option is recommended.
  142: *>                                             ===========================
  143: *>         For computing the singular values in the FULL range [SFMIN,BIG]
  144: *>         use ZGESVJ.
  145: *> \endverbatim
  146: *>
  147: *> \param[in] JOBT
  148: *> \verbatim
  149: *>          JOBT is CHARACTER*1
  150: *>         If the matrix is square then the procedure may determine to use
  151: *>         transposed A if A^* seems to be better with respect to convergence.
  152: *>         If the matrix is not square, JOBT is ignored. 
  153: *>         The decision is based on two values of entropy over the adjoint
  154: *>         orbit of A^* * A. See the descriptions of WORK(6) and WORK(7).
  155: *>       = 'T': transpose if entropy test indicates possibly faster
  156: *>         convergence of Jacobi process if A^* is taken as input. If A is
  157: *>         replaced with A^*, then the row pivoting is included automatically.
  158: *>       = 'N': do not speculate.
  159: *>         The option 'T' can be used to compute only the singular values, or
  160: *>         the full SVD (U, SIGMA and V). For only one set of singular vectors
  161: *>         (U or V), the caller should provide both U and V, as one of the
  162: *>         matrices is used as workspace if the matrix A is transposed.
  163: *>         The implementer can easily remove this constraint and make the
  164: *>         code more complicated. See the descriptions of U and V.
  165: *>         In general, this option is considered experimental, and 'N'; should
  166: *>         be preferred. This is subject to changes in the future.
  167: *> \endverbatim
  168: *>
  169: *> \param[in] JOBP
  170: *> \verbatim
  171: *>          JOBP is CHARACTER*1
  172: *>         Issues the licence to introduce structured perturbations to drown
  173: *>         denormalized numbers. This licence should be active if the
  174: *>         denormals are poorly implemented, causing slow computation,
  175: *>         especially in cases of fast convergence (!). For details see [1,2].
  176: *>         For the sake of simplicity, this perturbations are included only
  177: *>         when the full SVD or only the singular values are requested. The
  178: *>         implementer/user can easily add the perturbation for the cases of
  179: *>         computing one set of singular vectors.
  180: *>       = 'P': introduce perturbation
  181: *>       = 'N': do not perturb
  182: *> \endverbatim
  183: *>
  184: *> \param[in] M
  185: *> \verbatim
  186: *>          M is INTEGER
  187: *>         The number of rows of the input matrix A.  M >= 0.
  188: *> \endverbatim
  189: *>
  190: *> \param[in] N
  191: *> \verbatim
  192: *>          N is INTEGER
  193: *>         The number of columns of the input matrix A. M >= N >= 0.
  194: *> \endverbatim
  195: *>
  196: *> \param[in,out] A
  197: *> \verbatim
  198: *>          A is COMPLEX*16 array, dimension (LDA,N)
  199: *>          On entry, the M-by-N matrix A.
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDA
  203: *> \verbatim
  204: *>          LDA is INTEGER
  205: *>          The leading dimension of the array A.  LDA >= max(1,M).
  206: *> \endverbatim
  207: *>
  208: *> \param[out] SVA
  209: *> \verbatim
  210: *>          SVA is DOUBLE PRECISION array, dimension (N)
  211: *>          On exit,
  212: *>          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
  213: *>            computation SVA contains Euclidean column norms of the
  214: *>            iterated matrices in the array A.
  215: *>          - For WORK(1) .NE. WORK(2): The singular values of A are
  216: *>            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
  217: *>            sigma_max(A) overflows or if small singular values have been
  218: *>            saved from underflow by scaling the input matrix A.
  219: *>          - If JOBR='R' then some of the singular values may be returned
  220: *>            as exact zeros obtained by "set to zero" because they are
  221: *>            below the numerical rank threshold or are denormalized numbers.
  222: *> \endverbatim
  223: *>
  224: *> \param[out] U
  225: *> \verbatim
  226: *>          U is COMPLEX*16 array, dimension ( LDU, N )
  227: *>          If JOBU = 'U', then U contains on exit the M-by-N matrix of
  228: *>                         the left singular vectors.
  229: *>          If JOBU = 'F', then U contains on exit the M-by-M matrix of
  230: *>                         the left singular vectors, including an ONB
  231: *>                         of the orthogonal complement of the Range(A).
  232: *>          If JOBU = 'W'  .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N),
  233: *>                         then U is used as workspace if the procedure
  234: *>                         replaces A with A^*. In that case, [V] is computed
  235: *>                         in U as left singular vectors of A^* and then
  236: *>                         copied back to the V array. This 'W' option is just
  237: *>                         a reminder to the caller that in this case U is
  238: *>                         reserved as workspace of length N*N.
  239: *>          If JOBU = 'N'  U is not referenced, unless JOBT='T'.
  240: *> \endverbatim
  241: *>
  242: *> \param[in] LDU
  243: *> \verbatim
  244: *>          LDU is INTEGER
  245: *>          The leading dimension of the array U,  LDU >= 1.
  246: *>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
  247: *> \endverbatim
  248: *>
  249: *> \param[out] V
  250: *> \verbatim
  251: *>          V is COMPLEX*16 array, dimension ( LDV, N )
  252: *>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
  253: *>                         the right singular vectors;
  254: *>          If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N),
  255: *>                         then V is used as workspace if the pprocedure
  256: *>                         replaces A with A^*. In that case, [U] is computed
  257: *>                         in V as right singular vectors of A^* and then
  258: *>                         copied back to the U array. This 'W' option is just
  259: *>                         a reminder to the caller that in this case V is
  260: *>                         reserved as workspace of length N*N.
  261: *>          If JOBV = 'N'  V is not referenced, unless JOBT='T'.
  262: *> \endverbatim
  263: *>
  264: *> \param[in] LDV
  265: *> \verbatim
  266: *>          LDV is INTEGER
  267: *>          The leading dimension of the array V,  LDV >= 1.
  268: *>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
  269: *> \endverbatim
  270: *>
  271: *> \param[out] CWORK
  272: *> \verbatim
  273: *>          CWORK is COMPLEX*16 array, dimension (MAX(2,LWORK))
  274: *>          If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
  275: *>          LRWORK=-1), then on exit CWORK(1) contains the required length of
  276: *>          CWORK for the job parameters used in the call.
  277: *> \endverbatim
  278: *>
  279: *> \param[in] LWORK
  280: *> \verbatim
  281: *>          LWORK is INTEGER
  282: *>          Length of CWORK to confirm proper allocation of workspace.
  283: *>          LWORK depends on the job:
  284: *>
  285: *>          1. If only SIGMA is needed ( JOBU = 'N', JOBV = 'N' ) and
  286: *>            1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'):
  287: *>               LWORK >= 2*N+1. This is the minimal requirement.
  288: *>               ->> For optimal performance (blocked code) the optimal value
  289: *>               is LWORK >= N + (N+1)*NB. Here NB is the optimal
  290: *>               block size for ZGEQP3 and ZGEQRF.
  291: *>               In general, optimal LWORK is computed as
  292: *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ)).
  293: *>            1.2. .. an estimate of the scaled condition number of A is
  294: *>               required (JOBA='E', or 'G'). In this case, LWORK the minimal
  295: *>               requirement is LWORK >= N*N + 2*N.
  296: *>               ->> For optimal performance (blocked code) the optimal value
  297: *>               is LWORK >= max(N+(N+1)*NB, N*N+2*N)=N**2+2*N.
  298: *>               In general, the optimal length LWORK is computed as
  299: *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ),
  300: *>                            N*N+LWORK(ZPOCON)).
  301: *>          2. If SIGMA and the right singular vectors are needed (JOBV = 'V'),
  302: *>             (JOBU = 'N')
  303: *>            2.1   .. no scaled condition estimate requested (JOBE = 'N'):    
  304: *>            -> the minimal requirement is LWORK >= 3*N.
  305: *>            -> For optimal performance, 
  306: *>               LWORK >= max(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
  307: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQ,
  308: *>               ZUNMLQ. In general, the optimal length LWORK is computed as
  309: *>               LWORK >= max(N+LWORK(ZGEQP3), N+LWORK(ZGESVJ),
  310: *>                       N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).
  311: *>            2.2 .. an estimate of the scaled condition number of A is
  312: *>               required (JOBA='E', or 'G').
  313: *>            -> the minimal requirement is LWORK >= 3*N.      
  314: *>            -> For optimal performance, 
  315: *>               LWORK >= max(N+(N+1)*NB, 2*N,2*N+N*NB)=2*N+N*NB,
  316: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQ,
  317: *>               ZUNMLQ. In general, the optimal length LWORK is computed as
  318: *>               LWORK >= max(N+LWORK(ZGEQP3), LWORK(ZPOCON), N+LWORK(ZGESVJ),
  319: *>                       N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).   
  320: *>          3. If SIGMA and the left singular vectors are needed
  321: *>            3.1  .. no scaled condition estimate requested (JOBE = 'N'):
  322: *>            -> the minimal requirement is LWORK >= 3*N.
  323: *>            -> For optimal performance:
  324: *>               if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
  325: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
  326: *>               In general, the optimal length LWORK is computed as
  327: *>               LWORK >= max(N+LWORK(ZGEQP3), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)). 
  328: *>            3.2  .. an estimate of the scaled condition number of A is
  329: *>               required (JOBA='E', or 'G').
  330: *>            -> the minimal requirement is LWORK >= 3*N.
  331: *>            -> For optimal performance:
  332: *>               if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
  333: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
  334: *>               In general, the optimal length LWORK is computed as
  335: *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZPOCON),
  336: *>                        2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)).
  337: *>          4. If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and 
  338: *>            4.1. if JOBV = 'V'  
  339: *>               the minimal requirement is LWORK >= 5*N+2*N*N. 
  340: *>            4.2. if JOBV = 'J' the minimal requirement is 
  341: *>               LWORK >= 4*N+N*N.
  342: *>            In both cases, the allocated CWORK can accommodate blocked runs
  343: *>            of ZGEQP3, ZGEQRF, ZGELQF, SUNMQR, ZUNMLQ.
  344: *>
  345: *>          If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
  346: *>          LRWORK=-1), then on exit CWORK(1) contains the optimal and CWORK(2) contains the
  347: *>          minimal length of CWORK for the job parameters used in the call.
  348: *> \endverbatim
  349: *>
  350: *> \param[out] RWORK
  351: *> \verbatim
  352: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(7,LWORK))
  353: *>          On exit,
  354: *>          RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1)
  355: *>                    such that SCALE*SVA(1:N) are the computed singular values
  356: *>                    of A. (See the description of SVA().)
  357: *>          RWORK(2) = See the description of RWORK(1).
  358: *>          RWORK(3) = SCONDA is an estimate for the condition number of
  359: *>                    column equilibrated A. (If JOBA = 'E' or 'G')
  360: *>                    SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
  361: *>                    It is computed using SPOCON. It holds
  362: *>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
  363: *>                    where R is the triangular factor from the QRF of A.
  364: *>                    However, if R is truncated and the numerical rank is
  365: *>                    determined to be strictly smaller than N, SCONDA is
  366: *>                    returned as -1, thus indicating that the smallest
  367: *>                    singular values might be lost.
  368: *>
  369: *>          If full SVD is needed, the following two condition numbers are
  370: *>          useful for the analysis of the algorithm. They are provied for
  371: *>          a developer/implementer who is familiar with the details of
  372: *>          the method.
  373: *>
  374: *>          RWORK(4) = an estimate of the scaled condition number of the
  375: *>                    triangular factor in the first QR factorization.
  376: *>          RWORK(5) = an estimate of the scaled condition number of the
  377: *>                    triangular factor in the second QR factorization.
  378: *>          The following two parameters are computed if JOBT = 'T'.
  379: *>          They are provided for a developer/implementer who is familiar
  380: *>          with the details of the method.
  381: *>          RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy
  382: *>                    of diag(A^* * A) / Trace(A^* * A) taken as point in the
  383: *>                    probability simplex.
  384: *>          RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).)
  385: *>          If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
  386: *>          LRWORK=-1), then on exit RWORK(1) contains the required length of
  387: *>          RWORK for the job parameters used in the call.
  388: *> \endverbatim
  389: *>
  390: *> \param[in] LRWORK
  391: *> \verbatim
  392: *>          LRWORK is INTEGER
  393: *>          Length of RWORK to confirm proper allocation of workspace.
  394: *>          LRWORK depends on the job:
  395: *>
  396: *>       1. If only the singular values are requested i.e. if
  397: *>          LSAME(JOBU,'N') .AND. LSAME(JOBV,'N')
  398: *>          then:
  399: *>          1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
  400: *>               then: LRWORK = max( 7, 2 * M ).
  401: *>          1.2. Otherwise, LRWORK  = max( 7,  N ).
  402: *>       2. If singular values with the right singular vectors are requested
  403: *>          i.e. if
  404: *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND.
  405: *>          .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F'))
  406: *>          then:
  407: *>          2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
  408: *>          then LRWORK = max( 7, 2 * M ).
  409: *>          2.2. Otherwise, LRWORK  = max( 7,  N ).
  410: *>       3. If singular values with the left singular vectors are requested, i.e. if
  411: *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
  412: *>          .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
  413: *>          then:
  414: *>          3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
  415: *>          then LRWORK = max( 7, 2 * M ).
  416: *>          3.2. Otherwise, LRWORK  = max( 7,  N ).
  417: *>       4. If singular values with both the left and the right singular vectors
  418: *>          are requested, i.e. if
  419: *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
  420: *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
  421: *>          then:
  422: *>          4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
  423: *>          then LRWORK = max( 7, 2 * M ).
  424: *>          4.2. Otherwise, LRWORK  = max( 7, N ).
  425: *>
  426: *>          If, on entry, LRWORK = -1 or LWORK=-1, a workspace query is assumed and 
  427: *>          the length of RWORK is returned in RWORK(1)  428: *> \endverbatim
  429: *>
  430: *> \param[out] IWORK
  431: *> \verbatim
  432: *>          IWORK is INTEGER array, of dimension at least 4, that further depends 
  433: *>          on the job:
  434: *>
  435: *>          1. If only the singular values are requested then:
  436: *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
  437: *>             then the length of IWORK is N+M; otherwise the length of IWORK is N.
  438: *>          2. If the singular values and the right singular vectors are requested then:
  439: *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
  440: *>             then the length of IWORK is N+M; otherwise the length of IWORK is N. 
  441: *>          3. If the singular values and the left singular vectors are requested then:
  442: *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
  443: *>             then the length of IWORK is N+M; otherwise the length of IWORK is N. 
  444: *>          4. If the singular values with both the left and the right singular vectors
  445: *>             are requested, then:      
  446: *>             4.1. If LSAME(JOBV,'J') the length of IWORK is determined as follows:
  447: *>                  If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
  448: *>                  then the length of IWORK is N+M; otherwise the length of IWORK is N. 
  449: *>             4.2. If LSAME(JOBV,'V') the length of IWORK is determined as follows:
  450: *>                  If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
  451: *>                  then the length of IWORK is 2*N+M; otherwise the length of IWORK is 2*N.
  452: *>        
  453: *>          On exit,
  454: *>          IWORK(1) = the numerical rank determined after the initial
  455: *>                     QR factorization with pivoting. See the descriptions
  456: *>                     of JOBA and JOBR.
  457: *>          IWORK(2) = the number of the computed nonzero singular values
  458: *>          IWORK(3) = if nonzero, a warning message:
  459: *>                     If IWORK(3) = 1 then some of the column norms of A
  460: *>                     were denormalized floats. The requested high accuracy
  461: *>                     is not warranted by the data.
  462: *>          IWORK(4) = 1 or -1. If IWORK(4) = 1, then the procedure used A^* to
  463: *>                     do the job as specified by the JOB parameters.
  464: *>          If the call to ZGEJSV is a workspace query (indicated by LWORK = -1 or
  465: *>          LRWORK = -1), then on exit IWORK(1) contains the required length of 
  466: *>          IWORK for the job parameters used in the call.
  467: *> \endverbatim
  468: *>
  469: *> \param[out] INFO
  470: *> \verbatim
  471: *>          INFO is INTEGER
  472: *>           < 0:  if INFO = -i, then the i-th argument had an illegal value.
  473: *>           = 0:  successful exit;
  474: *>           > 0:  ZGEJSV  did not converge in the maximal allowed number
  475: *>                 of sweeps. The computed values may be inaccurate.
  476: *> \endverbatim
  477: *
  478: *  Authors:
  479: *  ========
  480: *
  481: *> \author Univ. of Tennessee
  482: *> \author Univ. of California Berkeley
  483: *> \author Univ. of Colorado Denver
  484: *> \author NAG Ltd.
  485: *
  486: *> \date June 2016
  487: *
  488: *> \ingroup complex16GEsing
  489: *
  490: *> \par Further Details:
  491: *  =====================
  492: *>
  493: *> \verbatim
  494: *>
  495: *>  ZGEJSV implements a preconditioned Jacobi SVD algorithm. It uses ZGEQP3,
  496: *>  ZGEQRF, and ZGELQF as preprocessors and preconditioners. Optionally, an
  497: *>  additional row pivoting can be used as a preprocessor, which in some
  498: *>  cases results in much higher accuracy. An example is matrix A with the
  499: *>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
  500: *>  diagonal matrices and C is well-conditioned matrix. In that case, complete
  501: *>  pivoting in the first QR factorizations provides accuracy dependent on the
  502: *>  condition number of C, and independent of D1, D2. Such higher accuracy is
  503: *>  not completely understood theoretically, but it works well in practice.
  504: *>  Further, if A can be written as A = B*D, with well-conditioned B and some
  505: *>  diagonal D, then the high accuracy is guaranteed, both theoretically and
  506: *>  in software, independent of D. For more details see [1], [2].
  507: *>     The computational range for the singular values can be the full range
  508: *>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
  509: *>  & LAPACK routines called by ZGEJSV are implemented to work in that range.
  510: *>  If that is not the case, then the restriction for safe computation with
  511: *>  the singular values in the range of normalized IEEE numbers is that the
  512: *>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
  513: *>  overflow. This code (ZGEJSV) is best used in this restricted range,
  514: *>  meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
  515: *>  returned as zeros. See JOBR for details on this.
  516: *>     Further, this implementation is somewhat slower than the one described
  517: *>  in [1,2] due to replacement of some non-LAPACK components, and because
  518: *>  the choice of some tuning parameters in the iterative part (ZGESVJ) is
  519: *>  left to the implementer on a particular machine.
  520: *>     The rank revealing QR factorization (in this code: ZGEQP3) should be
  521: *>  implemented as in [3]. We have a new version of ZGEQP3 under development
  522: *>  that is more robust than the current one in LAPACK, with a cleaner cut in
  523: *>  rank deficient cases. It will be available in the SIGMA library [4].
  524: *>  If M is much larger than N, it is obvious that the initial QRF with
  525: *>  column pivoting can be preprocessed by the QRF without pivoting. That
  526: *>  well known trick is not used in ZGEJSV because in some cases heavy row
  527: *>  weighting can be treated with complete pivoting. The overhead in cases
  528: *>  M much larger than N is then only due to pivoting, but the benefits in
  529: *>  terms of accuracy have prevailed. The implementer/user can incorporate
  530: *>  this extra QRF step easily. The implementer can also improve data movement
  531: *>  (matrix transpose, matrix copy, matrix transposed copy) - this
  532: *>  implementation of ZGEJSV uses only the simplest, naive data movement.
  533: *> \endverbatim
  534: *
  535: *> \par Contributor:
  536: *  ==================
  537: *>
  538: *>  Zlatko Drmac, Department of Mathematics, Faculty of Science,
  539: *>  University of Zagreb (Zagreb, Croatia); drmac@math.hr
  540: *
  541: *> \par References:
  542: *  ================
  543: *>
  544: *> \verbatim
  545: *>
  546: *> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
  547: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
  548: *>     LAPACK Working note 169.
  549: *> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
  550: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
  551: *>     LAPACK Working note 170.
  552: *> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
  553: *>     factorization software - a case study.
  554: *>     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
  555: *>     LAPACK Working note 176.
  556: *> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
  557: *>     QSVD, (H,K)-SVD computations.
  558: *>     Department of Mathematics, University of Zagreb, 2008, 2016.
  559: *> \endverbatim
  560: *
  561: *>  \par Bugs, examples and comments:
  562: *   =================================
  563: *>
  564: *>  Please report all bugs and send interesting examples and/or comments to
  565: *>  drmac@math.hr. Thank you.
  566: *>
  567: *  =====================================================================
  568:       SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
  569:      $                   M, N, A, LDA, SVA, U, LDU, V, LDV,
  570:      $                   CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
  571: *
  572: *  -- LAPACK computational routine (version 3.7.1) --
  573: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  574: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  575: *     June 2017
  576: *
  577: *     .. Scalar Arguments ..
  578:       IMPLICIT    NONE
  579:       INTEGER     INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N
  580: *     ..
  581: *     .. Array Arguments ..
  582:       COMPLEX*16       A( LDA, * ), U( LDU, * ), V( LDV, * ),
  583:      $                 CWORK( LWORK )
  584:       DOUBLE PRECISION SVA( N ), RWORK( LRWORK )
  585:       INTEGER          IWORK( * )
  586:       CHARACTER*1      JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
  587: *     ..
  588: *
  589: *  ===========================================================================
  590: *
  591: *     .. Local Parameters ..
  592:       DOUBLE PRECISION ZERO, ONE
  593:       PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  594:       COMPLEX*16 CZERO, CONE
  595:       PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ), CONE = ( 1.0D0, 0.0D0 ) )
  596: *     ..
  597: *     .. Local Scalars ..
  598:       COMPLEX*16       CTEMP
  599:       DOUBLE PRECISION AAPP,    AAQQ,   AATMAX, AATMIN, BIG,    BIG1,
  600:      $                 COND_OK, CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,
  601:      $                 MAXPRJ,  SCALEM, SCONDA, SFMIN,  SMALL,  TEMP1,
  602:      $                 USCAL1,  USCAL2, XSC
  603:       INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
  604:       LOGICAL ALMORT, DEFR,   ERREST, GOSCAL,  JRACC,  KILL,   LQUERY,
  605:      $        LSVEC,  L2ABER, L2KILL, L2PERT,  L2RANK, L2TRAN, NOSCAL,
  606:      $        ROWPIV, RSVEC,  TRANSP
  607: *
  608:       INTEGER OPTWRK, MINWRK, MINRWRK, MINIWRK
  609:       INTEGER LWCON,  LWLQF, LWQP3, LWQRF, LWUNMLQ, LWUNMQR, LWUNMQRM,
  610:      $        LWSVDJ, LWSVDJV, LRWQP3, LRWCON, LRWSVDJ, IWOFF
  611:       INTEGER LWRK_ZGELQF, LWRK_ZGEQP3,  LWRK_ZGEQP3N, LWRK_ZGEQRF,  
  612:      $        LWRK_ZGESVJ, LWRK_ZGESVJV, LWRK_ZGESVJU, LWRK_ZUNMLQ, 
  613:      $        LWRK_ZUNMQR, LWRK_ZUNMQRM    
  614: *     ..
  615: *     .. Local Arrays
  616:       COMPLEX*16         CDUMMY(1)
  617:       DOUBLE PRECISION   RDUMMY(1)
  618: *
  619: *     .. Intrinsic Functions ..
  620:       INTRINSIC ABS, DCMPLX, CONJG, DLOG, MAX, MIN, DBLE, NINT, SQRT
  621: *     ..
  622: *     .. External Functions ..
  623:       DOUBLE PRECISION      DLAMCH, DZNRM2
  624:       INTEGER   IDAMAX, IZAMAX
  625:       LOGICAL   LSAME
  626:       EXTERNAL  IDAMAX, IZAMAX, LSAME, DLAMCH, DZNRM2
  627: *     ..
  628: *     .. External Subroutines ..
  629:       EXTERNAL  DLASSQ, ZCOPY,  ZGELQF, ZGEQP3, ZGEQRF, ZLACPY, ZLAPMR,
  630:      $          ZLASCL, DLASCL, ZLASET, ZLASSQ, ZLASWP, ZUNGQR, ZUNMLQ,
  631:      $          ZUNMQR, ZPOCON, DSCAL,  ZDSCAL, ZSWAP,  ZTRSM,  ZLACGV,
  632:      $          XERBLA
  633: *
  634:       EXTERNAL  ZGESVJ
  635: *     ..
  636: *
  637: *     Test the input arguments
  638: *
  639:       LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
  640:       JRACC  = LSAME( JOBV, 'J' )
  641:       RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
  642:       ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
  643:       L2RANK = LSAME( JOBA, 'R' )
  644:       L2ABER = LSAME( JOBA, 'A' )
  645:       ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
  646:       L2TRAN = LSAME( JOBT, 'T' ) .AND. ( M .EQ. N )
  647:       L2KILL = LSAME( JOBR, 'R' )
  648:       DEFR   = LSAME( JOBR, 'N' )
  649:       L2PERT = LSAME( JOBP, 'P' )
  650: *
  651:       LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 )
  652: *
  653:       IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
  654:      $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
  655:          INFO = - 1
  656:       ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.
  657:      $   ( LSAME( JOBU, 'W' ) .AND. RSVEC .AND. L2TRAN ) ) ) THEN
  658:          INFO = - 2
  659:       ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
  660:      $   ( LSAME( JOBV, 'W' ) .AND. LSVEC .AND. L2TRAN ) ) ) THEN
  661:          INFO = - 3
  662:       ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
  663:          INFO = - 4
  664:       ELSE IF ( .NOT. ( LSAME(JOBT,'T') .OR. LSAME(JOBT,'N') ) ) THEN
  665:          INFO = - 5
  666:       ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
  667:          INFO = - 6
  668:       ELSE IF ( M .LT. 0 ) THEN
  669:          INFO = - 7
  670:       ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
  671:          INFO = - 8
  672:       ELSE IF ( LDA .LT. M ) THEN
  673:          INFO = - 10
  674:       ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
  675:          INFO = - 13
  676:       ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
  677:          INFO = - 15
  678:       ELSE
  679: *        #:)
  680:          INFO = 0
  681:       END IF
  682: *
  683:       IF ( INFO .EQ. 0 ) THEN 
  684: *         .. compute the minimal and the optimal workspace lengths 
  685: *         [[The expressions for computing the minimal and the optimal
  686: *         values of LCWORK, LRWORK are written with a lot of redundancy and
  687: *         can be simplified. However, this verbose form is useful for
  688: *         maintenance and modifications of the code.]]
  689: *
  690: *        .. minimal workspace length for ZGEQP3 of an M x N matrix,
  691: *         ZGEQRF of an N x N matrix, ZGELQF of an N x N matrix,
  692: *         ZUNMLQ for computing N x N matrix, ZUNMQR for computing N x N
  693: *         matrix, ZUNMQR for computing M x N matrix, respectively.
  694:           LWQP3 = N+1   
  695:           LWQRF = MAX( 1, N )
  696:           LWLQF = MAX( 1, N )
  697:           LWUNMLQ  = MAX( 1, N )
  698:           LWUNMQR  = MAX( 1, N )
  699:           LWUNMQRM = MAX( 1, M )
  700: *        .. minimal workspace length for ZPOCON of an N x N matrix
  701:           LWCON = 2 * N 
  702: *        .. minimal workspace length for ZGESVJ of an N x N matrix,
  703: *         without and with explicit accumulation of Jacobi rotations
  704:           LWSVDJ  = MAX( 2 * N, 1 )         
  705:           LWSVDJV = MAX( 2 * N, 1 )
  706: *         .. minimal REAL workspace length for ZGEQP3, ZPOCON, ZGESVJ
  707:           LRWQP3  = 2 * N 
  708:           LRWCON  = N 
  709:           LRWSVDJ = N 
  710:           IF ( LQUERY ) THEN 
  711:               CALL ZGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1, 
  712:      $             RDUMMY, IERR )
  713:               LWRK_ZGEQP3 = CDUMMY(1)
  714:               CALL ZGEQRF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
  715:               LWRK_ZGEQRF = CDUMMY(1)
  716:               CALL ZGELQF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
  717:               LWRK_ZGELQF = CDUMMY(1)             
  718:           END IF
  719:           MINWRK  = 2
  720:           OPTWRK  = 2
  721:           MINIWRK = N 
  722:           IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN
  723: *             .. minimal and optimal sizes of the complex workspace if
  724: *             only the singular values are requested
  725:               IF ( ERREST ) THEN 
  726:                   MINWRK = MAX( N+LWQP3, N**2+LWCON, N+LWQRF, LWSVDJ )
  727:               ELSE
  728:                   MINWRK = MAX( N+LWQP3, N+LWQRF, LWSVDJ )
  729:               END IF
  730:               IF ( LQUERY ) THEN 
  731:                   CALL ZGESVJ( 'L', 'N', 'N', N, N, A, LDA, SVA, N, V, 
  732:      $                 LDV, CDUMMY, -1, RDUMMY, -1, IERR )
  733:                   LWRK_ZGESVJ = CDUMMY(1)
  734:                   IF ( ERREST ) THEN 
  735:                       OPTWRK = MAX( N+LWRK_ZGEQP3, N**2+LWCON, 
  736:      $                              N+LWRK_ZGEQRF, LWRK_ZGESVJ )
  737:                   ELSE
  738:                       OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWRK_ZGEQRF, 
  739:      $                              LWRK_ZGESVJ )
  740:                   END IF
  741:               END IF
  742:               IF ( L2TRAN .OR. ROWPIV ) THEN 
  743:                   IF ( ERREST ) THEN 
  744:                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWCON, LRWSVDJ )
  745:                   ELSE
  746:                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
  747:                   END IF                 
  748:               ELSE
  749:                   IF ( ERREST ) THEN 
  750:                      MINRWRK = MAX( 7, LRWQP3, LRWCON, LRWSVDJ )
  751:                   ELSE
  752:                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
  753:                   END IF
  754:               END IF   
  755:               IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M 
  756:           ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
  757: *            .. minimal and optimal sizes of the complex workspace if the
  758: *            singular values and the right singular vectors are requested
  759:              IF ( ERREST ) THEN 
  760:                  MINWRK = MAX( N+LWQP3, LWCON, LWSVDJ, N+LWLQF,  
  761:      $                         2*N+LWQRF, N+LWSVDJ, N+LWUNMLQ )
  762:              ELSE
  763:                  MINWRK = MAX( N+LWQP3, LWSVDJ, N+LWLQF, 2*N+LWQRF, 
  764:      $                         N+LWSVDJ, N+LWUNMLQ )
  765:              END IF
  766:              IF ( LQUERY ) THEN
  767:                  CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
  768:      $                LDA, CDUMMY, -1, RDUMMY, -1, IERR )
  769:                  LWRK_ZGESVJ = CDUMMY(1)
  770:                  CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
  771:      $                V, LDV, CDUMMY, -1, IERR )
  772:                  LWRK_ZUNMLQ = CDUMMY(1)                
  773:                  IF ( ERREST ) THEN 
  774:                  OPTWRK = MAX( N+LWRK_ZGEQP3, LWCON, LWRK_ZGESVJ, 
  775:      $                         N+LWRK_ZGELQF, 2*N+LWRK_ZGEQRF,
  776:      $                         N+LWRK_ZGESVJ,  N+LWRK_ZUNMLQ )
  777:                  ELSE
  778:                  OPTWRK = MAX( N+LWRK_ZGEQP3, LWRK_ZGESVJ,N+LWRK_ZGELQF,
  779:      $                         2*N+LWRK_ZGEQRF, N+LWRK_ZGESVJ, 
  780:      $                         N+LWRK_ZUNMLQ )
  781:                  END IF
  782:              END IF
  783:              IF ( L2TRAN .OR. ROWPIV ) THEN 
  784:                   IF ( ERREST ) THEN 
  785:                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
  786:                   ELSE
  787:                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ ) 
  788:                   END IF                  
  789:              ELSE
  790:                   IF ( ERREST ) THEN 
  791:                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
  792:                   ELSE
  793:                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ ) 
  794:                   END IF                 
  795:              END IF
  796:              IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
  797:           ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN  
  798: *            .. minimal and optimal sizes of the complex workspace if the
  799: *            singular values and the left singular vectors are requested
  800:              IF ( ERREST ) THEN
  801:                  MINWRK = N + MAX( LWQP3,LWCON,N+LWQRF,LWSVDJ,LWUNMQRM )
  802:              ELSE
  803:                  MINWRK = N + MAX( LWQP3, N+LWQRF, LWSVDJ, LWUNMQRM )
  804:              END IF
  805:              IF ( LQUERY ) THEN
  806:                  CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
  807:      $                LDA, CDUMMY, -1, RDUMMY, -1, IERR )
  808:                  LWRK_ZGESVJ = CDUMMY(1)
  809:                  CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
  810:      $               LDU, CDUMMY, -1, IERR )
  811:                  LWRK_ZUNMQRM = CDUMMY(1)
  812:                  IF ( ERREST ) THEN
  813:                  OPTWRK = N + MAX( LWRK_ZGEQP3, LWCON, N+LWRK_ZGEQRF,
  814:      $                             LWRK_ZGESVJ, LWRK_ZUNMQRM )
  815:                  ELSE
  816:                  OPTWRK = N + MAX( LWRK_ZGEQP3, N+LWRK_ZGEQRF,
  817:      $                             LWRK_ZGESVJ, LWRK_ZUNMQRM )
  818:                  END IF
  819:              END IF
  820:              IF ( L2TRAN .OR. ROWPIV ) THEN 
  821:                  IF ( ERREST ) THEN 
  822:                     MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
  823:                  ELSE
  824:                     MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
  825:                  END IF                 
  826:              ELSE
  827:                  IF ( ERREST ) THEN 
  828:                     MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
  829:                  ELSE
  830:                     MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
  831:                  END IF                
  832:              END IF 
  833:              IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
  834:           ELSE
  835: *            .. minimal and optimal sizes of the complex workspace if the
  836: *            full SVD is requested
  837:              IF ( .NOT. JRACC ) THEN                
  838:                  IF ( ERREST ) THEN 
  839:                     MINWRK = MAX( N+LWQP3, N+LWCON,  2*N+N**2+LWCON, 
  840:      $                         2*N+LWQRF,         2*N+LWQP3, 
  841:      $                         2*N+N**2+N+LWLQF,  2*N+N**2+N+N**2+LWCON,
  842:      $                         2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV, 
  843:      $                         2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ, 
  844:      $                         N+N**2+LWSVDJ,   N+LWUNMQRM )
  845:                  ELSE
  846:                     MINWRK = MAX( N+LWQP3,        2*N+N**2+LWCON, 
  847:      $                         2*N+LWQRF,         2*N+LWQP3, 
  848:      $                         2*N+N**2+N+LWLQF,  2*N+N**2+N+N**2+LWCON,
  849:      $                         2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
  850:      $                         2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
  851:      $                         N+N**2+LWSVDJ,      N+LWUNMQRM ) 
  852:                  END IF 
  853:                  MINIWRK = MINIWRK + N 
  854:                  IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
  855:              ELSE
  856:                  IF ( ERREST ) THEN 
  857:                     MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+LWQRF, 
  858:      $                         2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, 
  859:      $                         N+LWUNMQRM )
  860:                  ELSE
  861:                     MINWRK = MAX( N+LWQP3, 2*N+LWQRF, 
  862:      $                         2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, 
  863:      $                         N+LWUNMQRM ) 
  864:                  END IF   
  865:                  IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
  866:              END IF
  867:              IF ( LQUERY ) THEN
  868:                  CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
  869:      $                LDU, CDUMMY, -1, IERR )
  870:                  LWRK_ZUNMQRM = CDUMMY(1)
  871:                  CALL ZUNMQR( 'L', 'N', N, N, N, A, LDA, CDUMMY, U,
  872:      $                LDU, CDUMMY, -1, IERR )
  873:                  LWRK_ZUNMQR = CDUMMY(1)
  874:                  IF ( .NOT. JRACC ) THEN
  875:                      CALL ZGEQP3( N,N, A, LDA, IWORK, CDUMMY,CDUMMY, -1,
  876:      $                    RDUMMY, IERR )
  877:                      LWRK_ZGEQP3N = CDUMMY(1)
  878:                      CALL ZGESVJ( 'L', 'U', 'N', N, N, U, LDU, SVA,
  879:      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
  880:                      LWRK_ZGESVJ = CDUMMY(1)
  881:                      CALL ZGESVJ( 'U', 'U', 'N', N, N, U, LDU, SVA,
  882:      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
  883:                      LWRK_ZGESVJU = CDUMMY(1)
  884:                      CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
  885:      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
  886:                      LWRK_ZGESVJV = CDUMMY(1)
  887:                      CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
  888:      $                    V, LDV, CDUMMY, -1, IERR )
  889:                      LWRK_ZUNMLQ = CDUMMY(1)
  890:                      IF ( ERREST ) THEN 
  891:                        OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON, 
  892:      $                          2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF, 
  893:      $                          2*N+LWRK_ZGEQP3N, 
  894:      $                          2*N+N**2+N+LWRK_ZGELQF,  
  895:      $                          2*N+N**2+N+N**2+LWCON,
  896:      $                          2*N+N**2+N+LWRK_ZGESVJ, 
  897:      $                          2*N+N**2+N+LWRK_ZGESVJV,               
  898:      $                          2*N+N**2+N+LWRK_ZUNMQR,
  899:      $                          2*N+N**2+N+LWRK_ZUNMLQ, 
  900:      $                          N+N**2+LWRK_ZGESVJU,                  
  901:      $                          N+LWRK_ZUNMQRM )
  902:                      ELSE
  903:                        OPTWRK = MAX( N+LWRK_ZGEQP3,  
  904:      $                          2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF, 
  905:      $                          2*N+LWRK_ZGEQP3N, 
  906:      $                          2*N+N**2+N+LWRK_ZGELQF,  
  907:      $                          2*N+N**2+N+N**2+LWCON,
  908:      $                          2*N+N**2+N+LWRK_ZGESVJ,               
  909:      $                          2*N+N**2+N+LWRK_ZGESVJV, 
  910:      $                          2*N+N**2+N+LWRK_ZUNMQR,
  911:      $                          2*N+N**2+N+LWRK_ZUNMLQ, 
  912:      $                          N+N**2+LWRK_ZGESVJU,
  913:      $                          N+LWRK_ZUNMQRM )
  914:                      END IF                    
  915:                  ELSE
  916:                      CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
  917:      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
  918:                      LWRK_ZGESVJV = CDUMMY(1)
  919:                      CALL ZUNMQR( 'L', 'N', N, N, N, CDUMMY, N, CDUMMY,
  920:      $                    V, LDV, CDUMMY, -1, IERR )
  921:                      LWRK_ZUNMQR = CDUMMY(1)
  922:                      CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
  923:      $                    LDU, CDUMMY, -1, IERR )
  924:                      LWRK_ZUNMQRM = CDUMMY(1)   
  925:                      IF ( ERREST ) THEN 
  926:                         OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON,   
  927:      $                           2*N+LWRK_ZGEQRF, 2*N+N**2,  
  928:      $                           2*N+N**2+LWRK_ZGESVJV,  
  929:      $                           2*N+N**2+N+LWRK_ZUNMQR,N+LWRK_ZUNMQRM )
  930:                      ELSE
  931:                         OPTWRK = MAX( N+LWRK_ZGEQP3, 2*N+LWRK_ZGEQRF,  
  932:      $                           2*N+N**2, 2*N+N**2+LWRK_ZGESVJV, 
  933:      $                           2*N+N**2+N+LWRK_ZUNMQR, 
  934:      $                           N+LWRK_ZUNMQRM )   
  935:                      END IF                  
  936:                  END IF               
  937:              END IF 
  938:              IF ( L2TRAN .OR. ROWPIV ) THEN 
  939:                  MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
  940:              ELSE
  941:                  MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
  942:              END IF 
  943:           END IF
  944:           MINWRK = MAX( 2, MINWRK )
  945:           OPTWRK = MAX( MINWRK, OPTWRK )
  946:           IF ( LWORK  .LT. MINWRK  .AND. (.NOT.LQUERY) ) INFO = - 17
  947:           IF ( LRWORK .LT. MINRWRK .AND. (.NOT.LQUERY) ) INFO = - 19   
  948:       END IF
  949: *      
  950:       IF ( INFO .NE. 0 ) THEN
  951: *       #:(
  952:          CALL XERBLA( 'ZGEJSV', - INFO )
  953:          RETURN
  954:       ELSE IF ( LQUERY ) THEN
  955:           CWORK(1) = OPTWRK
  956:           CWORK(2) = MINWRK
  957:           RWORK(1) = MINRWRK
  958:           IWORK(1) = MAX( 4, MINIWRK )
  959:           RETURN   
  960:       END IF
  961: *
  962: *     Quick return for void matrix (Y3K safe)
  963: * #:)
  964:       IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
  965:          IWORK(1:4) = 0
  966:          RWORK(1:7) = 0
  967:          RETURN
  968:       ENDIF
  969: *
  970: *     Determine whether the matrix U should be M x N or M x M
  971: *
  972:       IF ( LSVEC ) THEN
  973:          N1 = N
  974:          IF ( LSAME( JOBU, 'F' ) ) N1 = M
  975:       END IF
  976: *
  977: *     Set numerical parameters
  978: *
  979: *!    NOTE: Make sure DLAMCH() does not fail on the target architecture.
  980: *
  981:       EPSLN = DLAMCH('Epsilon')
  982:       SFMIN = DLAMCH('SafeMinimum')
  983:       SMALL = SFMIN / EPSLN
  984:       BIG   = DLAMCH('O')
  985: *     BIG   = ONE / SFMIN
  986: *
  987: *     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
  988: *
  989: *(!)  If necessary, scale SVA() to protect the largest norm from
  990: *     overflow. It is possible that this scaling pushes the smallest
  991: *     column norm left from the underflow threshold (extreme case).
  992: *
  993:       SCALEM  = ONE / SQRT(DBLE(M)*DBLE(N))
  994:       NOSCAL  = .TRUE.
  995:       GOSCAL  = .TRUE.
  996:       DO 1874 p = 1, N
  997:          AAPP = ZERO
  998:          AAQQ = ONE
  999:          CALL ZLASSQ( M, A(1,p), 1, AAPP, AAQQ )
 1000:          IF ( AAPP .GT. BIG ) THEN
 1001:             INFO = - 9
 1002:             CALL XERBLA( 'ZGEJSV', -INFO )
 1003:             RETURN
 1004:          END IF
 1005:          AAQQ = SQRT(AAQQ)
 1006:          IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
 1007:             SVA(p)  = AAPP * AAQQ
 1008:          ELSE
 1009:             NOSCAL  = .FALSE.
 1010:             SVA(p)  = AAPP * ( AAQQ * SCALEM )
 1011:             IF ( GOSCAL ) THEN
 1012:                GOSCAL = .FALSE.
 1013:                CALL DSCAL( p-1, SCALEM, SVA, 1 )
 1014:             END IF
 1015:          END IF
 1016:  1874 CONTINUE
 1017: *
 1018:       IF ( NOSCAL ) SCALEM = ONE
 1019: *
 1020:       AAPP = ZERO
 1021:       AAQQ = BIG
 1022:       DO 4781 p = 1, N
 1023:          AAPP = MAX( AAPP, SVA(p) )
 1024:          IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
 1025:  4781 CONTINUE
 1026: *
 1027: *     Quick return for zero M x N matrix
 1028: * #:)
 1029:       IF ( AAPP .EQ. ZERO ) THEN
 1030:          IF ( LSVEC ) CALL ZLASET( 'G', M, N1, CZERO, CONE, U, LDU )
 1031:          IF ( RSVEC ) CALL ZLASET( 'G', N, N,  CZERO, CONE, V, LDV )
 1032:          RWORK(1) = ONE
 1033:          RWORK(2) = ONE
 1034:          IF ( ERREST ) RWORK(3) = ONE
 1035:          IF ( LSVEC .AND. RSVEC ) THEN
 1036:             RWORK(4) = ONE
 1037:             RWORK(5) = ONE
 1038:          END IF
 1039:          IF ( L2TRAN ) THEN
 1040:             RWORK(6) = ZERO
 1041:             RWORK(7) = ZERO
 1042:          END IF
 1043:          IWORK(1) = 0
 1044:          IWORK(2) = 0
 1045:          IWORK(3) = 0
 1046:          IWORK(4) = -1
 1047:          RETURN
 1048:       END IF
 1049: *
 1050: *     Issue warning if denormalized column norms detected. Override the
 1051: *     high relative accuracy request. Issue licence to kill nonzero columns
 1052: *     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
 1053: * #:(
 1054:       WARNING = 0
 1055:       IF ( AAQQ .LE. SFMIN ) THEN
 1056:          L2RANK = .TRUE.
 1057:          L2KILL = .TRUE.
 1058:          WARNING = 1
 1059:       END IF
 1060: *
 1061: *     Quick return for one-column matrix
 1062: * #:)
 1063:       IF ( N .EQ. 1 ) THEN
 1064: *
 1065:          IF ( LSVEC ) THEN
 1066:             CALL ZLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
 1067:             CALL ZLACPY( 'A', M, 1, A, LDA, U, LDU )
 1068: *           computing all M left singular vectors of the M x 1 matrix
 1069:             IF ( N1 .NE. N  ) THEN
 1070:               CALL ZGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,IERR )
 1071:               CALL ZUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,IERR )
 1072:               CALL ZCOPY( M, A(1,1), 1, U(1,1), 1 )
 1073:             END IF
 1074:          END IF
 1075:          IF ( RSVEC ) THEN
 1076:              V(1,1) = CONE
 1077:          END IF
 1078:          IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
 1079:             SVA(1)  = SVA(1) / SCALEM
 1080:             SCALEM  = ONE
 1081:          END IF
 1082:          RWORK(1) = ONE / SCALEM
 1083:          RWORK(2) = ONE
 1084:          IF ( SVA(1) .NE. ZERO ) THEN
 1085:             IWORK(1) = 1
 1086:             IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
 1087:                IWORK(2) = 1
 1088:             ELSE
 1089:                IWORK(2) = 0
 1090:             END IF
 1091:          ELSE
 1092:             IWORK(1) = 0
 1093:             IWORK(2) = 0
 1094:          END IF
 1095:          IWORK(3) = 0
 1096:          IWORK(4) = -1
 1097:          IF ( ERREST ) RWORK(3) = ONE
 1098:          IF ( LSVEC .AND. RSVEC ) THEN
 1099:             RWORK(4) = ONE
 1100:             RWORK(5) = ONE
 1101:          END IF
 1102:          IF ( L2TRAN ) THEN
 1103:             RWORK(6) = ZERO
 1104:             RWORK(7) = ZERO
 1105:          END IF
 1106:          RETURN
 1107: *
 1108:       END IF
 1109: *
 1110:       TRANSP = .FALSE.
 1111: *
 1112:       AATMAX = -ONE
 1113:       AATMIN =  BIG
 1114:       IF ( ROWPIV .OR. L2TRAN ) THEN
 1115: *
 1116: *     Compute the row norms, needed to determine row pivoting sequence
 1117: *     (in the case of heavily row weighted A, row pivoting is strongly
 1118: *     advised) and to collect information needed to compare the
 1119: *     structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.).
 1120: *
 1121:          IF ( L2TRAN ) THEN
 1122:             DO 1950 p = 1, M
 1123:                XSC   = ZERO
 1124:                TEMP1 = ONE
 1125:                CALL ZLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
 1126: *              ZLASSQ gets both the ell_2 and the ell_infinity norm
 1127: *              in one pass through the vector
 1128:                RWORK(M+p)  = XSC * SCALEM
 1129:                RWORK(p)    = XSC * (SCALEM*SQRT(TEMP1))
 1130:                AATMAX = MAX( AATMAX, RWORK(p) )
 1131:                IF (RWORK(p) .NE. ZERO) 
 1132:      $            AATMIN = MIN(AATMIN,RWORK(p))
 1133:  1950       CONTINUE
 1134:          ELSE
 1135:             DO 1904 p = 1, M
 1136:                RWORK(M+p) = SCALEM*ABS( A(p,IZAMAX(N,A(p,1),LDA)) )
 1137:                AATMAX = MAX( AATMAX, RWORK(M+p) )
 1138:                AATMIN = MIN( AATMIN, RWORK(M+p) )
 1139:  1904       CONTINUE
 1140:          END IF
 1141: *
 1142:       END IF
 1143: *
 1144: *     For square matrix A try to determine whether A^*  would be better
 1145: *     input for the preconditioned Jacobi SVD, with faster convergence.
 1146: *     The decision is based on an O(N) function of the vector of column
 1147: *     and row norms of A, based on the Shannon entropy. This should give
 1148: *     the right choice in most cases when the difference actually matters.
 1149: *     It may fail and pick the slower converging side.
 1150: *
 1151:       ENTRA  = ZERO
 1152:       ENTRAT = ZERO
 1153:       IF ( L2TRAN ) THEN
 1154: *
 1155:          XSC   = ZERO
 1156:          TEMP1 = ONE
 1157:          CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
 1158:          TEMP1 = ONE / TEMP1
 1159: *
 1160:          ENTRA = ZERO
 1161:          DO 1113 p = 1, N
 1162:             BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
 1163:             IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
 1164:  1113    CONTINUE
 1165:          ENTRA = - ENTRA / DLOG(DBLE(N))
 1166: *
 1167: *        Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex.
 1168: *        It is derived from the diagonal of  A^* * A.  Do the same with the
 1169: *        diagonal of A * A^*, compute the entropy of the corresponding
 1170: *        probability distribution. Note that A * A^* and A^* * A have the
 1171: *        same trace.
 1172: *
 1173:          ENTRAT = ZERO
 1174:          DO 1114 p = 1, M
 1175:             BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1
 1176:             IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
 1177:  1114    CONTINUE
 1178:          ENTRAT = - ENTRAT / DLOG(DBLE(M))
 1179: *
 1180: *        Analyze the entropies and decide A or A^*. Smaller entropy
 1181: *        usually means better input for the algorithm.
 1182: *
 1183:          TRANSP = ( ENTRAT .LT. ENTRA )
 1184:  1185: *        If A^* is better than A, take the adjoint of A. This is allowed
 1186: *        only for square matrices, M=N.
 1187:          IF ( TRANSP ) THEN
 1188: *           In an optimal implementation, this trivial transpose
 1189: *           should be replaced with faster transpose.
 1190:             DO 1115 p = 1, N - 1
 1191:                A(p,p) = CONJG(A(p,p))
 1192:                DO 1116 q = p + 1, N
 1193:                    CTEMP = CONJG(A(q,p))
 1194:                   A(q,p) = CONJG(A(p,q))
 1195:                   A(p,q) = CTEMP
 1196:  1116          CONTINUE
 1197:  1115       CONTINUE
 1198:             A(N,N) = CONJG(A(N,N))
 1199:             DO 1117 p = 1, N
 1200:                RWORK(M+p) = SVA(p)
 1201:                SVA(p)     = RWORK(p)
 1202: *              previously computed row 2-norms are now column 2-norms
 1203: *              of the transposed matrix
 1204:  1117       CONTINUE
 1205:             TEMP1  = AAPP
 1206:             AAPP   = AATMAX
 1207:             AATMAX = TEMP1
 1208:             TEMP1  = AAQQ
 1209:             AAQQ   = AATMIN
 1210:             AATMIN = TEMP1
 1211:             KILL   = LSVEC
 1212:             LSVEC  = RSVEC
 1213:             RSVEC  = KILL
 1214:             IF ( LSVEC ) N1 = N
 1215: *
 1216:             ROWPIV = .TRUE.
 1217:          END IF
 1218: *
 1219:       END IF
 1220: *     END IF L2TRAN
 1221: *
 1222: *     Scale the matrix so that its maximal singular value remains less
 1223: *     than SQRT(BIG) -- the matrix is scaled so that its maximal column
 1224: *     has Euclidean norm equal to SQRT(BIG/N). The only reason to keep
 1225: *     SQRT(BIG) instead of BIG is the fact that ZGEJSV uses LAPACK and
 1226: *     BLAS routines that, in some implementations, are not capable of
 1227: *     working in the full interval [SFMIN,BIG] and that they may provoke
 1228: *     overflows in the intermediate results. If the singular values spread
 1229: *     from SFMIN to BIG, then ZGESVJ will compute them. So, in that case,
 1230: *     one should use ZGESVJ instead of ZGEJSV.
 1231: *     >> change in the April 2016 update: allow bigger range, i.e. the
 1232: *     largest column is allowed up to BIG/N and ZGESVJ will do the rest.
 1233:       BIG1   = SQRT( BIG )
 1234:       TEMP1  = SQRT( BIG / DBLE(N) ) 
 1235: *      TEMP1  = BIG/DBLE(N)
 1236: *
 1237:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
 1238:       IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
 1239:           AAQQ = ( AAQQ / AAPP ) * TEMP1
 1240:       ELSE
 1241:           AAQQ = ( AAQQ * TEMP1 ) / AAPP
 1242:       END IF
 1243:       TEMP1 = TEMP1 * SCALEM
 1244:       CALL ZLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
 1245: *
 1246: *     To undo scaling at the end of this procedure, multiply the
 1247: *     computed singular values with USCAL2 / USCAL1.
 1248: *
 1249:       USCAL1 = TEMP1
 1250:       USCAL2 = AAPP
 1251: *
 1252:       IF ( L2KILL ) THEN
 1253: *        L2KILL enforces computation of nonzero singular values in
 1254: *        the restricted range of condition number of the initial A,
 1255: *        sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).
 1256:          XSC = SQRT( SFMIN )
 1257:       ELSE
 1258:          XSC = SMALL
 1259: *
 1260: *        Now, if the condition number of A is too big,
 1261: *        sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,
 1262: *        as a precaution measure, the full SVD is computed using ZGESVJ
 1263: *        with accumulated Jacobi rotations. This provides numerically
 1264: *        more robust computation, at the cost of slightly increased run
 1265: *        time. Depending on the concrete implementation of BLAS and LAPACK
 1266: *        (i.e. how they behave in presence of extreme ill-conditioning) the
 1267: *        implementor may decide to remove this switch.
 1268:          IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
 1269:             JRACC = .TRUE.
 1270:          END IF
 1271: *
 1272:       END IF
 1273:       IF ( AAQQ .LT. XSC ) THEN
 1274:          DO 700 p = 1, N
 1275:             IF ( SVA(p) .LT. XSC ) THEN
 1276:                CALL ZLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA )
 1277:                SVA(p) = ZERO
 1278:             END IF
 1279:  700     CONTINUE
 1280:       END IF
 1281: *
 1282: *     Preconditioning using QR factorization with pivoting
 1283: *
 1284:       IF ( ROWPIV ) THEN
 1285: *        Optional row permutation (Bjoerck row pivoting):
 1286: *        A result by Cox and Higham shows that the Bjoerck's
 1287: *        row pivoting combined with standard column pivoting
 1288: *        has similar effect as Powell-Reid complete pivoting.
 1289: *        The ell-infinity norms of A are made nonincreasing.
 1290:          IF ( ( LSVEC .AND. RSVEC ) .AND. .NOT.( JRACC ) ) THEN 
 1291:               IWOFF = 2*N
 1292:          ELSE
 1293:               IWOFF = N
 1294:          END IF
 1295:          DO 1952 p = 1, M - 1
 1296:             q = IDAMAX( M-p+1, RWORK(M+p), 1 ) + p - 1
 1297:             IWORK(IWOFF+p) = q
 1298:             IF ( p .NE. q ) THEN
 1299:                TEMP1      = RWORK(M+p)
 1300:                RWORK(M+p) = RWORK(M+q)
 1301:                RWORK(M+q) = TEMP1
 1302:             END IF
 1303:  1952    CONTINUE
 1304:          CALL ZLASWP( N, A, LDA, 1, M-1, IWORK(IWOFF+1), 1 )
 1305:       END IF
 1306: *
 1307: *     End of the preparation phase (scaling, optional sorting and
 1308: *     transposing, optional flushing of small columns).
 1309: *
 1310: *     Preconditioning
 1311: *
 1312: *     If the full SVD is needed, the right singular vectors are computed
 1313: *     from a matrix equation, and for that we need theoretical analysis
 1314: *     of the Businger-Golub pivoting. So we use ZGEQP3 as the first RR QRF.
 1315: *     In all other cases the first RR QRF can be chosen by other criteria
 1316: *     (eg speed by replacing global with restricted window pivoting, such
 1317: *     as in xGEQPX from TOMS # 782). Good results will be obtained using
 1318: *     xGEQPX with properly (!) chosen numerical parameters.
 1319: *     Any improvement of ZGEQP3 improves overal performance of ZGEJSV.
 1320: *
 1321: *     A * P1 = Q1 * [ R1^* 0]^*:
 1322:       DO 1963 p = 1, N
 1323: *        .. all columns are free columns
 1324:          IWORK(p) = 0
 1325:  1963 CONTINUE
 1326:       CALL ZGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N,
 1327:      $             RWORK, IERR )
 1328: *
 1329: *     The upper triangular matrix R1 from the first QRF is inspected for
 1330: *     rank deficiency and possibilities for deflation, or possible
 1331: *     ill-conditioning. Depending on the user specified flag L2RANK,
 1332: *     the procedure explores possibilities to reduce the numerical
 1333: *     rank by inspecting the computed upper triangular factor. If
 1334: *     L2RANK or L2ABER are up, then ZGEJSV will compute the SVD of
 1335: *     A + dA, where ||dA|| <= f(M,N)*EPSLN.
 1336: *
 1337:       NR = 1
 1338:       IF ( L2ABER ) THEN
 1339: *        Standard absolute error bound suffices. All sigma_i with
 1340: *        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
 1341: *        aggressive enforcement of lower numerical rank by introducing a
 1342: *        backward error of the order of N*EPSLN*||A||.
 1343:          TEMP1 = SQRT(DBLE(N))*EPSLN
 1344:          DO 3001 p = 2, N
 1345:             IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN
 1346:                NR = NR + 1
 1347:             ELSE
 1348:                GO TO 3002
 1349:             END IF
 1350:  3001    CONTINUE
 1351:  3002    CONTINUE
 1352:       ELSE IF ( L2RANK ) THEN
 1353: *        .. similarly as above, only slightly more gentle (less aggressive).
 1354: *        Sudden drop on the diagonal of R1 is used as the criterion for
 1355: *        close-to-rank-deficient.
 1356:          TEMP1 = SQRT(SFMIN)
 1357:          DO 3401 p = 2, N
 1358:             IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
 1359:      $           ( ABS(A(p,p)) .LT. SMALL ) .OR.
 1360:      $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
 1361:             NR = NR + 1
 1362:  3401    CONTINUE
 1363:  3402    CONTINUE
 1364: *
 1365:       ELSE
 1366: *        The goal is high relative accuracy. However, if the matrix
 1367: *        has high scaled condition number the relative accuracy is in
 1368: *        general not feasible. Later on, a condition number estimator
 1369: *        will be deployed to estimate the scaled condition number.
 1370: *        Here we just remove the underflowed part of the triangular
 1371: *        factor. This prevents the situation in which the code is
 1372: *        working hard to get the accuracy not warranted by the data.
 1373:          TEMP1  = SQRT(SFMIN)
 1374:          DO 3301 p = 2, N
 1375:             IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.
 1376:      $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
 1377:             NR = NR + 1
 1378:  3301    CONTINUE
 1379:  3302    CONTINUE
 1380: *
 1381:       END IF
 1382: *
 1383:       ALMORT = .FALSE.
 1384:       IF ( NR .EQ. N ) THEN
 1385:          MAXPRJ = ONE
 1386:          DO 3051 p = 2, N
 1387:             TEMP1  = ABS(A(p,p)) / SVA(IWORK(p))
 1388:             MAXPRJ = MIN( MAXPRJ, TEMP1 )
 1389:  3051    CONTINUE
 1390:          IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
 1391:       END IF
 1392: *
 1393: *
 1394:       SCONDA = - ONE
 1395:       CONDR1 = - ONE
 1396:       CONDR2 = - ONE
 1397: *
 1398:       IF ( ERREST ) THEN
 1399:          IF ( N .EQ. NR ) THEN
 1400:             IF ( RSVEC ) THEN
 1401: *              .. V is available as workspace
 1402:                CALL ZLACPY( 'U', N, N, A, LDA, V, LDV )
 1403:                DO 3053 p = 1, N
 1404:                   TEMP1 = SVA(IWORK(p))
 1405:                   CALL ZDSCAL( p, ONE/TEMP1, V(1,p), 1 )
 1406:  3053          CONTINUE
 1407:                IF ( LSVEC )THEN
 1408:                    CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
 1409:      $                  CWORK(N+1), RWORK, IERR )
 1410:                ELSE
 1411:                    CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
 1412:      $                  CWORK, RWORK, IERR )
 1413:                END IF               
 1414: *          
 1415:             ELSE IF ( LSVEC ) THEN
 1416: *              .. U is available as workspace
 1417:                CALL ZLACPY( 'U', N, N, A, LDA, U, LDU )
 1418:                DO 3054 p = 1, N
 1419:                   TEMP1 = SVA(IWORK(p))
 1420:                   CALL ZDSCAL( p, ONE/TEMP1, U(1,p), 1 )
 1421:  3054          CONTINUE
 1422:                CALL ZPOCON( 'U', N, U, LDU, ONE, TEMP1,
 1423:      $              CWORK(N+1), RWORK, IERR )
 1424:             ELSE
 1425:                CALL ZLACPY( 'U', N, N, A, LDA, CWORK, N )
 1426: *[]            CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
 1427: *              Change: here index shifted by N to the left, CWORK(1:N) 
 1428: *              not needed for SIGMA only computation
 1429:                DO 3052 p = 1, N
 1430:                   TEMP1 = SVA(IWORK(p))
 1431: *[]               CALL ZDSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 )
 1432:                   CALL ZDSCAL( p, ONE/TEMP1, CWORK((p-1)*N+1), 1 )
 1433:  3052          CONTINUE
 1434: *           .. the columns of R are scaled to have unit Euclidean lengths.
 1435: *[]               CALL ZPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1,
 1436: *[]     $              CWORK(N+N*N+1), RWORK, IERR )
 1437:                CALL ZPOCON( 'U', N, CWORK, N, ONE, TEMP1,
 1438:      $              CWORK(N*N+1), RWORK, IERR )               
 1439: *              
 1440:             END IF
 1441:             IF ( TEMP1 .NE. ZERO ) THEN 
 1442:                SCONDA = ONE / SQRT(TEMP1)
 1443:             ELSE
 1444:                SCONDA = - ONE
 1445:             END IF
 1446: *           SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
 1447: *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
 1448:          ELSE
 1449:             SCONDA = - ONE
 1450:          END IF
 1451:       END IF
 1452: *
 1453:       L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) )
 1454: *     If there is no violent scaling, artificial perturbation is not needed.
 1455: *
 1456: *     Phase 3:
 1457: *
 1458:       IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
 1459: *
 1460: *         Singular Values only
 1461: *
 1462: *         .. transpose A(1:NR,1:N)
 1463:          DO 1946 p = 1, MIN( N-1, NR )
 1464:             CALL ZCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
 1465:             CALL ZLACGV( N-p+1, A(p,p), 1 )
 1466:  1946    CONTINUE
 1467:          IF ( NR .EQ. N ) A(N,N) = CONJG(A(N,N))
 1468: *
 1469: *        The following two DO-loops introduce small relative perturbation
 1470: *        into the strict upper triangle of the lower triangular matrix.
 1471: *        Small entries below the main diagonal are also changed.
 1472: *        This modification is useful if the computing environment does not
 1473: *        provide/allow FLUSH TO ZERO underflow, for it prevents many
 1474: *        annoying denormalized numbers in case of strongly scaled matrices.
 1475: *        The perturbation is structured so that it does not introduce any
 1476: *        new perturbation of the singular values, and it does not destroy
 1477: *        the job done by the preconditioner.
 1478: *        The licence for this perturbation is in the variable L2PERT, which
 1479: *        should be .FALSE. if FLUSH TO ZERO underflow is active.
 1480: *
 1481:          IF ( .NOT. ALMORT ) THEN
 1482: *
 1483:             IF ( L2PERT ) THEN
 1484: *              XSC = SQRT(SMALL)
 1485:                XSC = EPSLN / DBLE(N)
 1486:                DO 4947 q = 1, NR
 1487:                   CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
 1488:                   DO 4949 p = 1, N
 1489:                      IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
 1490:      $                    .OR. ( p .LT. q ) )
 1491: *     $                     A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
 1492:      $                     A(p,q) = CTEMP
 1493:  4949             CONTINUE
 1494:  4947          CONTINUE
 1495:             ELSE
 1496:                CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA )
 1497:             END IF
 1498: *
 1499: *            .. second preconditioning using the QR factorization
 1500: *
 1501:             CALL ZGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N, IERR )
 1502: *
 1503: *           .. and transpose upper to lower triangular
 1504:             DO 1948 p = 1, NR - 1
 1505:                CALL ZCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
 1506:                CALL ZLACGV( NR-p+1, A(p,p), 1 )
 1507:  1948       CONTINUE
 1508: *
 1509:       END IF
 1510: *
 1511: *           Row-cyclic Jacobi SVD algorithm with column pivoting
 1512: *
 1513: *           .. again some perturbation (a "background noise") is added
 1514: *           to drown denormals
 1515:             IF ( L2PERT ) THEN
 1516: *              XSC = SQRT(SMALL)
 1517:                XSC = EPSLN / DBLE(N)
 1518:                DO 1947 q = 1, NR
 1519:                   CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
 1520:                   DO 1949 p = 1, NR
 1521:                      IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
 1522:      $                       .OR. ( p .LT. q ) )
 1523: *     $                   A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
 1524:      $                   A(p,q) = CTEMP
 1525:  1949             CONTINUE
 1526:  1947          CONTINUE
 1527:             ELSE
 1528:                CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2), LDA )
 1529:             END IF
 1530: *
 1531: *           .. and one-sided Jacobi rotations are started on a lower
 1532: *           triangular matrix (plus perturbation which is ignored in
 1533: *           the part which destroys triangular form (confusing?!))
 1534: *
 1535:             CALL ZGESVJ( 'L', 'N', 'N', NR, NR, A, LDA, SVA,
 1536:      $                N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
 1537: *
 1538:             SCALEM  = RWORK(1)
 1539:             NUMRANK = NINT(RWORK(2))
 1540: *
 1541: *
 1542:       ELSE IF ( ( RSVEC .AND. ( .NOT. LSVEC ) .AND. ( .NOT. JRACC ) )
 1543:      $       .OR. 
 1544:      $   ( JRACC .AND. ( .NOT. LSVEC ) .AND. ( NR .NE. N ) ) ) THEN
 1545: *
 1546: *        -> Singular Values and Right Singular Vectors <-
 1547: *
 1548:          IF ( ALMORT ) THEN
 1549: *
 1550: *           .. in this case NR equals N
 1551:             DO 1998 p = 1, NR
 1552:                CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1553:                CALL ZLACGV( N-p+1, V(p,p), 1 )
 1554:  1998       CONTINUE
 1555:             CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
 1556: *
 1557:             CALL ZGESVJ( 'L','U','N', N, NR, V, LDV, SVA, NR, A, LDA,
 1558:      $                  CWORK, LWORK, RWORK, LRWORK, INFO )
 1559:             SCALEM  = RWORK(1)
 1560:             NUMRANK = NINT(RWORK(2))
 1561: 
 1562:          ELSE
 1563: *
 1564: *        .. two more QR factorizations ( one QRF is not enough, two require
 1565: *        accumulated product of Jacobi rotations, three are perfect )
 1566: *
 1567:             CALL ZLASET( 'L', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA )
 1568:             CALL ZGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N, IERR)
 1569:             CALL ZLACPY( 'L', NR, NR, A, LDA, V, LDV )
 1570:             CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
 1571:             CALL ZGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 1572:      $                   LWORK-2*N, IERR )
 1573:             DO 8998 p = 1, NR
 1574:                CALL ZCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
 1575:                CALL ZLACGV( NR-p+1, V(p,p), 1 )
 1576:  8998       CONTINUE
 1577:             CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV)
 1578: *
 1579:             CALL ZGESVJ( 'L', 'U','N', NR, NR, V,LDV, SVA, NR, U,
 1580:      $                  LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
 1581:             SCALEM  = RWORK(1)
 1582:             NUMRANK = NINT(RWORK(2))
 1583:             IF ( NR .LT. N ) THEN
 1584:                CALL ZLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1),  LDV )
 1585:                CALL ZLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1),  LDV )
 1586:                CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),LDV )
 1587:             END IF
 1588: *
 1589:          CALL ZUNMLQ( 'L', 'C', N, N, NR, A, LDA, CWORK,
 1590:      $               V, LDV, CWORK(N+1), LWORK-N, IERR )
 1591: *
 1592:          END IF
 1593: *         .. permute the rows of V
 1594: *         DO 8991 p = 1, N
 1595: *            CALL ZCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
 1596: * 8991    CONTINUE
 1597: *         CALL ZLACPY( 'All', N, N, A, LDA, V, LDV )
 1598:          CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK )
 1599: *
 1600:           IF ( TRANSP ) THEN
 1601:             CALL ZLACPY( 'A', N, N, V, LDV, U, LDU )
 1602:           END IF
 1603: *
 1604:       ELSE IF ( JRACC .AND. (.NOT. LSVEC) .AND. ( NR.EQ. N ) ) THEN 
 1605: *          
 1606:          CALL ZLASET( 'L', N-1,N-1, CZERO, CZERO, A(2,1), LDA )
 1607: *
 1608:          CALL ZGESVJ( 'U','N','V', N, N, A, LDA, SVA, N, V, LDV,
 1609:      $               CWORK, LWORK, RWORK, LRWORK, INFO )
 1610:           SCALEM  = RWORK(1)
 1611:           NUMRANK = NINT(RWORK(2))
 1612:           CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK )
 1613: *
 1614:       ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
 1615: *
 1616: *        .. Singular Values and Left Singular Vectors                 ..
 1617: *
 1618: *        .. second preconditioning step to avoid need to accumulate
 1619: *        Jacobi rotations in the Jacobi iterations.
 1620:          DO 1965 p = 1, NR
 1621:             CALL ZCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
 1622:             CALL ZLACGV( N-p+1, U(p,p), 1 )
 1623:  1965    CONTINUE
 1624:          CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
 1625: *
 1626:          CALL ZGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1),
 1627:      $              LWORK-2*N, IERR )
 1628: *
 1629:          DO 1967 p = 1, NR - 1
 1630:             CALL ZCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
 1631:             CALL ZLACGV( N-p+1, U(p,p), 1 )
 1632:  1967    CONTINUE
 1633:          CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
 1634: *
 1635:          CALL ZGESVJ( 'L', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
 1636:      $        LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
 1637:          SCALEM  = RWORK(1)
 1638:          NUMRANK = NINT(RWORK(2))
 1639: *
 1640:          IF ( NR .LT. M ) THEN
 1641:             CALL ZLASET( 'A',  M-NR, NR,CZERO, CZERO, U(NR+1,1), LDU )
 1642:             IF ( NR .LT. N1 ) THEN
 1643:                CALL ZLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU )
 1644:                CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),LDU )
 1645:             END IF
 1646:          END IF
 1647: *
 1648:          CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 1649:      $               LDU, CWORK(N+1), LWORK-N, IERR )
 1650: *
 1651:          IF ( ROWPIV )
 1652:      $       CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
 1653: *
 1654:          DO 1974 p = 1, N1
 1655:             XSC = ONE / DZNRM2( M, U(1,p), 1 )
 1656:             CALL ZDSCAL( M, XSC, U(1,p), 1 )
 1657:  1974    CONTINUE
 1658: *
 1659:          IF ( TRANSP ) THEN
 1660:             CALL ZLACPY( 'A', N, N, U, LDU, V, LDV )
 1661:          END IF
 1662: *
 1663:       ELSE
 1664: *
 1665: *        .. Full SVD ..
 1666: *
 1667:          IF ( .NOT. JRACC ) THEN
 1668: *
 1669:          IF ( .NOT. ALMORT ) THEN
 1670: *
 1671: *           Second Preconditioning Step (QRF [with pivoting])
 1672: *           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
 1673: *           equivalent to an LQF CALL. Since in many libraries the QRF
 1674: *           seems to be better optimized than the LQF, we do explicit
 1675: *           transpose and use the QRF. This is subject to changes in an
 1676: *           optimized implementation of ZGEJSV.
 1677: *
 1678:             DO 1968 p = 1, NR
 1679:                CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1680:                CALL ZLACGV( N-p+1, V(p,p), 1 )
 1681:  1968       CONTINUE
 1682: *
 1683: *           .. the following two loops perturb small entries to avoid
 1684: *           denormals in the second QR factorization, where they are
 1685: *           as good as zeros. This is done to avoid painfully slow
 1686: *           computation with denormals. The relative size of the perturbation
 1687: *           is a parameter that can be changed by the implementer.
 1688: *           This perturbation device will be obsolete on machines with
 1689: *           properly implemented arithmetic.
 1690: *           To switch it off, set L2PERT=.FALSE. To remove it from  the
 1691: *           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
 1692: *           The following two loops should be blocked and fused with the
 1693: *           transposed copy above.
 1694: *
 1695:             IF ( L2PERT ) THEN
 1696:                XSC = SQRT(SMALL)
 1697:                DO 2969 q = 1, NR
 1698:                   CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
 1699:                   DO 2968 p = 1, N
 1700:                      IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
 1701:      $                   .OR. ( p .LT. q ) )
 1702: *     $                   V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
 1703:      $                   V(p,q) = CTEMP
 1704:                      IF ( p .LT. q ) V(p,q) = - V(p,q)
 1705:  2968             CONTINUE
 1706:  2969          CONTINUE
 1707:             ELSE
 1708:                CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
 1709:             END IF
 1710: *
 1711: *           Estimate the row scaled condition number of R1
 1712: *           (If R1 is rectangular, N > NR, then the condition number
 1713: *           of the leading NR x NR submatrix is estimated.)
 1714: *
 1715:             CALL ZLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR )
 1716:             DO 3950 p = 1, NR
 1717:                TEMP1 = DZNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1)
 1718:                CALL ZDSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1)
 1719:  3950       CONTINUE
 1720:             CALL ZPOCON('L',NR,CWORK(2*N+1),NR,ONE,TEMP1,
 1721:      $                   CWORK(2*N+NR*NR+1),RWORK,IERR)
 1722:             CONDR1 = ONE / SQRT(TEMP1)
 1723: *           .. here need a second opinion on the condition number
 1724: *           .. then assume worst case scenario
 1725: *           R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
 1726: *           more conservative    <=> CONDR1 .LT. SQRT(DBLE(N))
 1727: *
 1728:             COND_OK = SQRT(SQRT(DBLE(NR)))
 1729: *[TP]       COND_OK is a tuning parameter.
 1730: *
 1731:             IF ( CONDR1 .LT. COND_OK ) THEN
 1732: *              .. the second QRF without pivoting. Note: in an optimized
 1733: *              implementation, this QRF should be implemented as the QRF
 1734: *              of a lower triangular matrix.
 1735: *              R1^* = Q2 * R2
 1736:                CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 1737:      $              LWORK-2*N, IERR )
 1738: *
 1739:                IF ( L2PERT ) THEN
 1740:                   XSC = SQRT(SMALL)/EPSLN
 1741:                   DO 3959 p = 2, NR
 1742:                      DO 3958 q = 1, p - 1
 1743:                         CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
 1744:      $                              ZERO)
 1745:                         IF ( ABS(V(q,p)) .LE. TEMP1 )
 1746: *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
 1747:      $                     V(q,p) = CTEMP
 1748:  3958                CONTINUE
 1749:  3959             CONTINUE
 1750:                END IF
 1751: *
 1752:                IF ( NR .NE. N )
 1753:      $         CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
 1754: *              .. save ...
 1755: *
 1756: *           .. this transposed copy should be better than naive
 1757:                DO 1969 p = 1, NR - 1
 1758:                   CALL ZCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
 1759:                   CALL ZLACGV(NR-p+1, V(p,p), 1 )
 1760:  1969          CONTINUE
 1761:                V(NR,NR)=CONJG(V(NR,NR))
 1762: *
 1763:                CONDR2 = CONDR1
 1764: *
 1765:             ELSE
 1766: *
 1767: *              .. ill-conditioned case: second QRF with pivoting
 1768: *              Note that windowed pivoting would be equally good
 1769: *              numerically, and more run-time efficient. So, in
 1770: *              an optimal implementation, the next call to ZGEQP3
 1771: *              should be replaced with eg. CALL ZGEQPX (ACM TOMS #782)
 1772: *              with properly (carefully) chosen parameters.
 1773: *
 1774: *              R1^* * P2 = Q2 * R2
 1775:                DO 3003 p = 1, NR
 1776:                   IWORK(N+p) = 0
 1777:  3003          CONTINUE
 1778:                CALL ZGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1),
 1779:      $                  CWORK(2*N+1), LWORK-2*N, RWORK, IERR )
 1780: **               CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 1781: **     $              LWORK-2*N, IERR )
 1782:                IF ( L2PERT ) THEN
 1783:                   XSC = SQRT(SMALL)
 1784:                   DO 3969 p = 2, NR
 1785:                      DO 3968 q = 1, p - 1
 1786:                         CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
 1787:      $                                ZERO)
 1788:                         IF ( ABS(V(q,p)) .LE. TEMP1 )
 1789: *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
 1790:      $                     V(q,p) = CTEMP
 1791:  3968                CONTINUE
 1792:  3969             CONTINUE
 1793:                END IF
 1794: *
 1795:                CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
 1796: *
 1797:                IF ( L2PERT ) THEN
 1798:                   XSC = SQRT(SMALL)
 1799:                   DO 8970 p = 2, NR
 1800:                      DO 8971 q = 1, p - 1
 1801:                         CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
 1802:      $                               ZERO)
 1803: *                        V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) )
 1804:                         V(p,q) = - CTEMP
 1805:  8971                CONTINUE
 1806:  8970             CONTINUE
 1807:                ELSE
 1808:                   CALL ZLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV )
 1809:                END IF
 1810: *              Now, compute R2 = L3 * Q3, the LQ factorization.
 1811:                CALL ZGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1),
 1812:      $               CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
 1813: *              .. and estimate the condition number
 1814:                CALL ZLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR )
 1815:                DO 4950 p = 1, NR
 1816:                   TEMP1 = DZNRM2( p, CWORK(2*N+N*NR+NR+p), NR )
 1817:                   CALL ZDSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p), NR )
 1818:  4950          CONTINUE
 1819:                CALL ZPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
 1820:      $              CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR )
 1821:                CONDR2 = ONE / SQRT(TEMP1)
 1822: *
 1823: *
 1824:                IF ( CONDR2 .GE. COND_OK ) THEN
 1825: *                 .. save the Householder vectors used for Q3
 1826: *                 (this overwrites the copy of R2, as it will not be
 1827: *                 needed in this branch, but it does not overwritte the
 1828: *                 Huseholder vectors of Q2.).
 1829:                   CALL ZLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N )
 1830: *                 .. and the rest of the information on Q3 is in
 1831: *                 WORK(2*N+N*NR+1:2*N+N*NR+N)
 1832:                END IF
 1833: *
 1834:             END IF
 1835: *
 1836:             IF ( L2PERT ) THEN
 1837:                XSC = SQRT(SMALL)
 1838:                DO 4968 q = 2, NR
 1839:                   CTEMP = XSC * V(q,q)
 1840:                   DO 4969 p = 1, q - 1
 1841: *                     V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) )
 1842:                      V(p,q) = - CTEMP
 1843:  4969             CONTINUE
 1844:  4968          CONTINUE
 1845:             ELSE
 1846:                CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
 1847:             END IF
 1848: *
 1849: *        Second preconditioning finished; continue with Jacobi SVD
 1850: *        The input matrix is lower trinagular.
 1851: *
 1852: *        Recover the right singular vectors as solution of a well
 1853: *        conditioned triangular matrix equation.
 1854: *
 1855:             IF ( CONDR1 .LT. COND_OK ) THEN
 1856: *
 1857:                CALL ZGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU,
 1858:      $              CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK,
 1859:      $              LRWORK, INFO )
 1860:                SCALEM  = RWORK(1)
 1861:                NUMRANK = NINT(RWORK(2))
 1862:                DO 3970 p = 1, NR
 1863:                   CALL ZCOPY(  NR, V(1,p), 1, U(1,p), 1 )
 1864:                   CALL ZDSCAL( NR, SVA(p),    V(1,p), 1 )
 1865:  3970          CONTINUE
 1866: 
 1867: *        .. pick the right matrix equation and solve it
 1868: *
 1869:                IF ( NR .EQ. N ) THEN
 1870: * :))             .. best case, R1 is inverted. The solution of this matrix
 1871: *                 equation is Q2*V2 = the product of the Jacobi rotations
 1872: *                 used in ZGESVJ, premultiplied with the orthogonal matrix
 1873: *                 from the second QR factorization.
 1874:                   CALL ZTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,LDV)
 1875:                ELSE
 1876: *                 .. R1 is well conditioned, but non-square. Adjoint of R2
 1877: *                 is inverted to get the product of the Jacobi rotations
 1878: *                 used in ZGESVJ. The Q-factor from the second QR
 1879: *                 factorization is then built in explicitly.
 1880:                   CALL ZTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1),
 1881:      $                 N,V,LDV)
 1882:                   IF ( NR .LT. N ) THEN
 1883:                   CALL ZLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
 1884:                   CALL ZLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
 1885:                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
 1886:                   END IF
 1887:                   CALL ZUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
 1888:      $                V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
 1889:                END IF
 1890: *
 1891:             ELSE IF ( CONDR2 .LT. COND_OK ) THEN
 1892: *
 1893: *              The matrix R2 is inverted. The solution of the matrix equation
 1894: *              is Q3^* * V3 = the product of the Jacobi rotations (appplied to
 1895: *              the lower triangular L3 from the LQ factorization of
 1896: *              R2=L3*Q3), pre-multiplied with the transposed Q3.
 1897:                CALL ZGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
 1898:      $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
 1899:      $              RWORK, LRWORK, INFO )
 1900:                SCALEM  = RWORK(1)
 1901:                NUMRANK = NINT(RWORK(2))
 1902:                DO 3870 p = 1, NR
 1903:                   CALL ZCOPY( NR, V(1,p), 1, U(1,p), 1 )
 1904:                   CALL ZDSCAL( NR, SVA(p),    U(1,p), 1 )
 1905:  3870          CONTINUE
 1906:                CALL ZTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N,
 1907:      $                    U,LDU)
 1908: *              .. apply the permutation from the second QR factorization
 1909:                DO 873 q = 1, NR
 1910:                   DO 872 p = 1, NR
 1911:                      CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 1912:  872              CONTINUE
 1913:                   DO 874 p = 1, NR
 1914:                      U(p,q) = CWORK(2*N+N*NR+NR+p)
 1915:  874              CONTINUE
 1916:  873           CONTINUE
 1917:                IF ( NR .LT. N ) THEN
 1918:                   CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
 1919:                   CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
 1920:                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
 1921:                END IF
 1922:                CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
 1923:      $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1924:             ELSE
 1925: *              Last line of defense.
 1926: * #:(          This is a rather pathological case: no scaled condition
 1927: *              improvement after two pivoted QR factorizations. Other
 1928: *              possibility is that the rank revealing QR factorization
 1929: *              or the condition estimator has failed, or the COND_OK
 1930: *              is set very close to ONE (which is unnecessary). Normally,
 1931: *              this branch should never be executed, but in rare cases of
 1932: *              failure of the RRQR or condition estimator, the last line of
 1933: *              defense ensures that ZGEJSV completes the task.
 1934: *              Compute the full SVD of L3 using ZGESVJ with explicit
 1935: *              accumulation of Jacobi rotations.
 1936:                CALL ZGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
 1937:      $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
 1938:      $                         RWORK, LRWORK, INFO )
 1939:                SCALEM  = RWORK(1)
 1940:                NUMRANK = NINT(RWORK(2))
 1941:                IF ( NR .LT. N ) THEN
 1942:                   CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
 1943:                   CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
 1944:                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
 1945:                END IF
 1946:                CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
 1947:      $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1948: *
 1949:                CALL ZUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N,
 1950:      $              CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1),
 1951:      $              LWORK-2*N-N*NR-NR, IERR )
 1952:                DO 773 q = 1, NR
 1953:                   DO 772 p = 1, NR
 1954:                      CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 1955:  772              CONTINUE
 1956:                   DO 774 p = 1, NR
 1957:                      U(p,q) = CWORK(2*N+N*NR+NR+p)
 1958:  774              CONTINUE
 1959:  773           CONTINUE
 1960: *
 1961:             END IF
 1962: *
 1963: *           Permute the rows of V using the (column) permutation from the
 1964: *           first QRF. Also, scale the columns to make them unit in
 1965: *           Euclidean norm. This applies to all cases.
 1966: *
 1967:             TEMP1 = SQRT(DBLE(N)) * EPSLN
 1968:             DO 1972 q = 1, N
 1969:                DO 972 p = 1, N
 1970:                   CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 1971:   972          CONTINUE
 1972:                DO 973 p = 1, N
 1973:                   V(p,q) = CWORK(2*N+N*NR+NR+p)
 1974:   973          CONTINUE
 1975:                XSC = ONE / DZNRM2( N, V(1,q), 1 )
 1976:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1977:      $           CALL ZDSCAL( N, XSC, V(1,q), 1 )
 1978:  1972       CONTINUE
 1979: *           At this moment, V contains the right singular vectors of A.
 1980: *           Next, assemble the left singular vector matrix U (M x N).
 1981:             IF ( NR .LT. M ) THEN
 1982:                CALL ZLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)
 1983:                IF ( NR .LT. N1 ) THEN
 1984:                   CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
 1985:                   CALL ZLASET('A',M-NR,N1-NR,CZERO,CONE,
 1986:      $                        U(NR+1,NR+1),LDU)
 1987:                END IF
 1988:             END IF
 1989: *
 1990: *           The Q matrix from the first QRF is built into the left singular
 1991: *           matrix U. This applies to all cases.
 1992: *
 1993:             CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 1994:      $           LDU, CWORK(N+1), LWORK-N, IERR )
 1995: 
 1996: *           The columns of U are normalized. The cost is O(M*N) flops.
 1997:             TEMP1 = SQRT(DBLE(M)) * EPSLN
 1998:             DO 1973 p = 1, NR
 1999:                XSC = ONE / DZNRM2( M, U(1,p), 1 )
 2000:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 2001:      $          CALL ZDSCAL( M, XSC, U(1,p), 1 )
 2002:  1973       CONTINUE
 2003: *
 2004: *           If the initial QRF is computed with row pivoting, the left
 2005: *           singular vectors must be adjusted.
 2006: *
 2007:             IF ( ROWPIV )
 2008:      $          CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
 2009: *
 2010:          ELSE
 2011: *
 2012: *        .. the initial matrix A has almost orthogonal columns and
 2013: *        the second QRF is not needed
 2014: *
 2015:             CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
 2016:             IF ( L2PERT ) THEN
 2017:                XSC = SQRT(SMALL)
 2018:                DO 5970 p = 2, N
 2019:                   CTEMP = XSC * CWORK( N + (p-1)*N + p )
 2020:                   DO 5971 q = 1, p - 1
 2021: *                     CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) /
 2022: *     $                                        ABS(CWORK(N+(p-1)*N+q)) )
 2023:                      CWORK(N+(q-1)*N+p)=-CTEMP
 2024:  5971             CONTINUE
 2025:  5970          CONTINUE
 2026:             ELSE
 2027:                CALL ZLASET( 'L',N-1,N-1,CZERO,CZERO,CWORK(N+2),N )
 2028:             END IF
 2029: *
 2030:             CALL ZGESVJ( 'U', 'U', 'N', N, N, CWORK(N+1), N, SVA,
 2031:      $           N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK,
 2032:      $       INFO )
 2033: *
 2034:             SCALEM  = RWORK(1)
 2035:             NUMRANK = NINT(RWORK(2))
 2036:             DO 6970 p = 1, N
 2037:                CALL ZCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 )
 2038:                CALL ZDSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 )
 2039:  6970       CONTINUE
 2040: *
 2041:             CALL ZTRSM( 'L', 'U', 'N', 'N', N, N,
 2042:      $           CONE, A, LDA, CWORK(N+1), N )
 2043:             DO 6972 p = 1, N
 2044:                CALL ZCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV )
 2045:  6972       CONTINUE
 2046:             TEMP1 = SQRT(DBLE(N))*EPSLN
 2047:             DO 6971 p = 1, N
 2048:                XSC = ONE / DZNRM2( N, V(1,p), 1 )
 2049:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 2050:      $            CALL ZDSCAL( N, XSC, V(1,p), 1 )
 2051:  6971       CONTINUE
 2052: *
 2053: *           Assemble the left singular vector matrix U (M x N).
 2054: *
 2055:             IF ( N .LT. M ) THEN
 2056:                CALL ZLASET( 'A',  M-N, N, CZERO, CZERO, U(N+1,1), LDU )
 2057:                IF ( N .LT. N1 ) THEN
 2058:                   CALL ZLASET('A',N,  N1-N, CZERO, CZERO,  U(1,N+1),LDU)
 2059:                   CALL ZLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),LDU)
 2060:                END IF
 2061:             END IF
 2062:             CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 2063:      $           LDU, CWORK(N+1), LWORK-N, IERR )
 2064:             TEMP1 = SQRT(DBLE(M))*EPSLN
 2065:             DO 6973 p = 1, N1
 2066:                XSC = ONE / DZNRM2( M, U(1,p), 1 )
 2067:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 2068:      $            CALL ZDSCAL( M, XSC, U(1,p), 1 )
 2069:  6973       CONTINUE
 2070: *
 2071:             IF ( ROWPIV )
 2072:      $         CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
 2073: *
 2074:          END IF
 2075: *
 2076: *        end of the  >> almost orthogonal case <<  in the full SVD
 2077: *
 2078:          ELSE
 2079: *
 2080: *        This branch deploys a preconditioned Jacobi SVD with explicitly
 2081: *        accumulated rotations. It is included as optional, mainly for
 2082: *        experimental purposes. It does perform well, and can also be used.
 2083: *        In this implementation, this branch will be automatically activated
 2084: *        if the  condition number sigma_max(A) / sigma_min(A) is predicted
 2085: *        to be greater than the overflow threshold. This is because the
 2086: *        a posteriori computation of the singular vectors assumes robust
 2087: *        implementation of BLAS and some LAPACK procedures, capable of working
 2088: *        in presence of extreme values, e.g. when the singular values spread from
 2089: *        the underflow to the overflow threshold. 
 2090: *
 2091:          DO 7968 p = 1, NR
 2092:             CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 2093:             CALL ZLACGV( N-p+1, V(p,p), 1 )
 2094:  7968    CONTINUE
 2095: *
 2096:          IF ( L2PERT ) THEN
 2097:             XSC = SQRT(SMALL/EPSLN)
 2098:             DO 5969 q = 1, NR
 2099:                CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
 2100:                DO 5968 p = 1, N
 2101:                   IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
 2102:      $                .OR. ( p .LT. q ) )
 2103: *     $                V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
 2104:      $                V(p,q) = CTEMP
 2105:                   IF ( p .LT. q ) V(p,q) = - V(p,q)
 2106:  5968          CONTINUE
 2107:  5969       CONTINUE
 2108:          ELSE
 2109:             CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
 2110:          END IF
 2111: 
 2112:          CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 2113:      $        LWORK-2*N, IERR )
 2114:          CALL ZLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N )
 2115: *
 2116:          DO 7969 p = 1, NR
 2117:             CALL ZCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
 2118:             CALL ZLACGV( NR-p+1, U(p,p), 1 )
 2119:  7969    CONTINUE
 2120: 
 2121:          IF ( L2PERT ) THEN
 2122:             XSC = SQRT(SMALL/EPSLN)
 2123:             DO 9970 q = 2, NR
 2124:                DO 9971 p = 1, q - 1
 2125:                   CTEMP = DCMPLX(XSC * MIN(ABS(U(p,p)),ABS(U(q,q))),
 2126:      $                            ZERO)
 2127: *                  U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) )
 2128:                   U(p,q) = - CTEMP
 2129:  9971          CONTINUE
 2130:  9970       CONTINUE
 2131:          ELSE
 2132:             CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
 2133:          END IF
 2134: 
 2135:          CALL ZGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,
 2136:      $        N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR,
 2137:      $         RWORK, LRWORK, INFO )
 2138:          SCALEM  = RWORK(1)
 2139:          NUMRANK = NINT(RWORK(2))
 2140: 
 2141:          IF ( NR .LT. N ) THEN
 2142:             CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
 2143:             CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
 2144:             CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV )
 2145:          END IF
 2146: 
 2147:          CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
 2148:      $        V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 2149: *
 2150: *           Permute the rows of V using the (column) permutation from the
 2151: *           first QRF. Also, scale the columns to make them unit in
 2152: *           Euclidean norm. This applies to all cases.
 2153: *
 2154:             TEMP1 = SQRT(DBLE(N)) * EPSLN
 2155:             DO 7972 q = 1, N
 2156:                DO 8972 p = 1, N
 2157:                   CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 2158:  8972          CONTINUE
 2159:                DO 8973 p = 1, N
 2160:                   V(p,q) = CWORK(2*N+N*NR+NR+p)
 2161:  8973          CONTINUE
 2162:                XSC = ONE / DZNRM2( N, V(1,q), 1 )
 2163:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 2164:      $           CALL ZDSCAL( N, XSC, V(1,q), 1 )
 2165:  7972       CONTINUE
 2166: *
 2167: *           At this moment, V contains the right singular vectors of A.
 2168: *           Next, assemble the left singular vector matrix U (M x N).
 2169: *
 2170:          IF ( NR .LT. M ) THEN
 2171:             CALL ZLASET( 'A',  M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU )
 2172:             IF ( NR .LT. N1 ) THEN
 2173:                CALL ZLASET('A',NR,  N1-NR, CZERO, CZERO,  U(1,NR+1),LDU)
 2174:                CALL ZLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),LDU)
 2175:             END IF
 2176:          END IF
 2177: *
 2178:          CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 2179:      $        LDU, CWORK(N+1), LWORK-N, IERR )
 2180: *
 2181:             IF ( ROWPIV )
 2182:      $         CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
 2183: *
 2184: *
 2185:          END IF
 2186:          IF ( TRANSP ) THEN
 2187: *           .. swap U and V because the procedure worked on A^*
 2188:             DO 6974 p = 1, N
 2189:                CALL ZSWAP( N, U(1,p), 1, V(1,p), 1 )
 2190:  6974       CONTINUE
 2191:          END IF
 2192: *
 2193:       END IF
 2194: *     end of the full SVD
 2195: *
 2196: *     Undo scaling, if necessary (and possible)
 2197: *
 2198:       IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
 2199:          CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
 2200:          USCAL1 = ONE
 2201:          USCAL2 = ONE
 2202:       END IF
 2203: *
 2204:       IF ( NR .LT. N ) THEN
 2205:          DO 3004 p = NR+1, N
 2206:             SVA(p) = ZERO
 2207:  3004    CONTINUE
 2208:       END IF
 2209: *
 2210:       RWORK(1) = USCAL2 * SCALEM
 2211:       RWORK(2) = USCAL1
 2212:       IF ( ERREST ) RWORK(3) = SCONDA
 2213:       IF ( LSVEC .AND. RSVEC ) THEN
 2214:          RWORK(4) = CONDR1
 2215:          RWORK(5) = CONDR2
 2216:       END IF
 2217:       IF ( L2TRAN ) THEN
 2218:          RWORK(6) = ENTRA
 2219:          RWORK(7) = ENTRAT
 2220:       END IF
 2221: *
 2222:       IWORK(1) = NR
 2223:       IWORK(2) = NUMRANK
 2224:       IWORK(3) = WARNING
 2225:       IF ( TRANSP ) THEN
 2226:           IWORK(4) =  1 
 2227:       ELSE
 2228:           IWORK(4) = -1
 2229:       END IF 
 2230:       
 2231: *
 2232:       RETURN
 2233: *     ..
 2234: *     .. END OF ZGEJSV
 2235: *     ..
 2236:       END
 2237: *

CVSweb interface <joel.bertrand@systella.fr>