Annotation of rpl/lapack/lapack/zgejsv.f, revision 1.4

1.4     ! bertrand    1: *> \brief \b ZGEJSV
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGEJSV + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgejsv.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgejsv.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgejsv.f">
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *     SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
        !            22: *                         M, N, A, LDA, SVA, U, LDU, V, LDV,
        !            23: *                         CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
        !            24: *
        !            25: *     .. Scalar Arguments ..
        !            26: *     IMPLICIT    NONE
        !            27: *     INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
        !            28: *     ..
        !            29: *     .. Array Arguments ..
        !            30: *     COMPLEX*16     A( LDA, * ),  U( LDU, * ), V( LDV, * ), CWORK( LWORK )
        !            31: *     DOUBLE PRECISION   SVA( N ), RWORK( LRWORK )
        !            32: *     INTEGER     IWORK( * )
        !            33: *     CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
        !            34: *       ..
        !            35: *
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> ZGEJSV computes the singular value decomposition (SVD) of a complex M-by-N
        !            43: *> matrix [A], where M >= N. The SVD of [A] is written as
        !            44: *>
        !            45: *>              [A] = [U] * [SIGMA] * [V]^*,
        !            46: *>
        !            47: *> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
        !            48: *> diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and
        !            49: *> [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are
        !            50: *> the singular values of [A]. The columns of [U] and [V] are the left and
        !            51: *> the right singular vectors of [A], respectively. The matrices [U] and [V]
        !            52: *> are computed and stored in the arrays U and V, respectively. The diagonal
        !            53: *> of [SIGMA] is computed and stored in the array SVA.
        !            54: *> \endverbatim
        !            55: *>
        !            56: *>  Arguments:
        !            57: *>  ==========
        !            58: *>
        !            59: *> \param[in] JOBA
        !            60: *> \verbatim
        !            61: *>          JOBA is CHARACTER*1
        !            62: *>         Specifies the level of accuracy:
        !            63: *>       = 'C': This option works well (high relative accuracy) if A = B * D,
        !            64: *>              with well-conditioned B and arbitrary diagonal matrix D.
        !            65: *>              The accuracy cannot be spoiled by COLUMN scaling. The
        !            66: *>              accuracy of the computed output depends on the condition of
        !            67: *>              B, and the procedure aims at the best theoretical accuracy.
        !            68: *>              The relative error max_{i=1:N}|d sigma_i| / sigma_i is
        !            69: *>              bounded by f(M,N)*epsilon* cond(B), independent of D.
        !            70: *>              The input matrix is preprocessed with the QRF with column
        !            71: *>              pivoting. This initial preprocessing and preconditioning by
        !            72: *>              a rank revealing QR factorization is common for all values of
        !            73: *>              JOBA. Additional actions are specified as follows:
        !            74: *>       = 'E': Computation as with 'C' with an additional estimate of the
        !            75: *>              condition number of B. It provides a realistic error bound.
        !            76: *>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
        !            77: *>              D1, D2, and well-conditioned matrix C, this option gives
        !            78: *>              higher accuracy than the 'C' option. If the structure of the
        !            79: *>              input matrix is not known, and relative accuracy is
        !            80: *>              desirable, then this option is advisable. The input matrix A
        !            81: *>              is preprocessed with QR factorization with FULL (row and
        !            82: *>              column) pivoting.
        !            83: *>       = 'G'  Computation as with 'F' with an additional estimate of the
        !            84: *>              condition number of B, where A=B*D. If A has heavily weighted
        !            85: *>              rows, then using this condition number gives too pessimistic
        !            86: *>              error bound.
        !            87: *>       = 'A': Small singular values are not well determined by the data 
        !            88: *>              and are considered as noisy; the matrix is treated as
        !            89: *>              numerically rank defficient. The error in the computed
        !            90: *>              singular values is bounded by f(m,n)*epsilon*||A||.
        !            91: *>              The computed SVD A = U * S * V^* restores A up to
        !            92: *>              f(m,n)*epsilon*||A||.
        !            93: *>              This gives the procedure the licence to discard (set to zero)
        !            94: *>              all singular values below N*epsilon*||A||.
        !            95: *>       = 'R': Similar as in 'A'. Rank revealing property of the initial
        !            96: *>              QR factorization is used do reveal (using triangular factor)
        !            97: *>              a gap sigma_{r+1} < epsilon * sigma_r in which case the
        !            98: *>              numerical RANK is declared to be r. The SVD is computed with
        !            99: *>              absolute error bounds, but more accurately than with 'A'.
        !           100: *> \endverbatim
        !           101: *>
        !           102: *> \param[in] JOBU
        !           103: *> \verbatim
        !           104: *>          JOBU is CHARACTER*1
        !           105: *>         Specifies whether to compute the columns of U:
        !           106: *>       = 'U': N columns of U are returned in the array U.
        !           107: *>       = 'F': full set of M left sing. vectors is returned in the array U.
        !           108: *>       = 'W': U may be used as workspace of length M*N. See the description
        !           109: *>              of U.
        !           110: *>       = 'N': U is not computed.
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[in] JOBV
        !           114: *> \verbatim
        !           115: *>          JOBV is CHARACTER*1
        !           116: *>         Specifies whether to compute the matrix V:
        !           117: *>       = 'V': N columns of V are returned in the array V; Jacobi rotations
        !           118: *>              are not explicitly accumulated.
        !           119: *>       = 'J': N columns of V are returned in the array V, but they are
        !           120: *>              computed as the product of Jacobi rotations, if JOBT .EQ. 'N'.
        !           121: *>       = 'W': V may be used as workspace of length N*N. See the description
        !           122: *>              of V.
        !           123: *>       = 'N': V is not computed.
        !           124: *> \endverbatim
        !           125: *>
        !           126: *> \param[in] JOBR
        !           127: *> \verbatim
        !           128: *>          JOBR is CHARACTER*1
        !           129: *>         Specifies the RANGE for the singular values. Issues the licence to
        !           130: *>         set to zero small positive singular values if they are outside
        !           131: *>         specified range. If A .NE. 0 is scaled so that the largest singular
        !           132: *>         value of c*A is around SQRT(BIG), BIG=DLAMCH('O'), then JOBR issues
        !           133: *>         the licence to kill columns of A whose norm in c*A is less than
        !           134: *>         SQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,
        !           135: *>         where SFMIN=DLAMCH('S'), EPSLN=DLAMCH('E').
        !           136: *>       = 'N': Do not kill small columns of c*A. This option assumes that
        !           137: *>              BLAS and QR factorizations and triangular solvers are
        !           138: *>              implemented to work in that range. If the condition of A
        !           139: *>              is greater than BIG, use ZGESVJ.
        !           140: *>       = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]
        !           141: *>              (roughly, as described above). This option is recommended.
        !           142: *>                                             ===========================
        !           143: *>         For computing the singular values in the FULL range [SFMIN,BIG]
        !           144: *>         use ZGESVJ.
        !           145: *> \endverbatim
        !           146: *>
        !           147: *> \param[in] JOBT
        !           148: *> \verbatim
        !           149: *>          JOBT is CHARACTER*1
        !           150: *>         If the matrix is square then the procedure may determine to use
        !           151: *>         transposed A if A^* seems to be better with respect to convergence.
        !           152: *>         If the matrix is not square, JOBT is ignored. 
        !           153: *>         The decision is based on two values of entropy over the adjoint
        !           154: *>         orbit of A^* * A. See the descriptions of WORK(6) and WORK(7).
        !           155: *>       = 'T': transpose if entropy test indicates possibly faster
        !           156: *>         convergence of Jacobi process if A^* is taken as input. If A is
        !           157: *>         replaced with A^*, then the row pivoting is included automatically.
        !           158: *>       = 'N': do not speculate.
        !           159: *>         The option 'T' can be used to compute only the singular values, or
        !           160: *>         the full SVD (U, SIGMA and V). For only one set of singular vectors
        !           161: *>         (U or V), the caller should provide both U and V, as one of the
        !           162: *>         matrices is used as workspace if the matrix A is transposed.
        !           163: *>         The implementer can easily remove this constraint and make the
        !           164: *>         code more complicated. See the descriptions of U and V.
        !           165: *>         In general, this option is considered experimental, and 'N'; should
        !           166: *>         be preferred. This is subject to changes in the future.
        !           167: *> \endverbatim
        !           168: *>
        !           169: *> \param[in] JOBP
        !           170: *> \verbatim
        !           171: *>          JOBP is CHARACTER*1
        !           172: *>         Issues the licence to introduce structured perturbations to drown
        !           173: *>         denormalized numbers. This licence should be active if the
        !           174: *>         denormals are poorly implemented, causing slow computation,
        !           175: *>         especially in cases of fast convergence (!). For details see [1,2].
        !           176: *>         For the sake of simplicity, this perturbations are included only
        !           177: *>         when the full SVD or only the singular values are requested. The
        !           178: *>         implementer/user can easily add the perturbation for the cases of
        !           179: *>         computing one set of singular vectors.
        !           180: *>       = 'P': introduce perturbation
        !           181: *>       = 'N': do not perturb
        !           182: *> \endverbatim
        !           183: *>
        !           184: *> \param[in] M
        !           185: *> \verbatim
        !           186: *>          M is INTEGER
        !           187: *>         The number of rows of the input matrix A.  M >= 0.
        !           188: *> \endverbatim
        !           189: *>
        !           190: *> \param[in] N
        !           191: *> \verbatim
        !           192: *>          N is INTEGER
        !           193: *>         The number of columns of the input matrix A. M >= N >= 0.
        !           194: *> \endverbatim
        !           195: *>
        !           196: *> \param[in,out] A
        !           197: *> \verbatim
        !           198: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !           199: *>          On entry, the M-by-N matrix A.
        !           200: *> \endverbatim
        !           201: *>
        !           202: *> \param[in] LDA
        !           203: *> \verbatim
        !           204: *>          LDA is INTEGER
        !           205: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !           206: *> \endverbatim
        !           207: *>
        !           208: *> \param[out] SVA
        !           209: *> \verbatim
        !           210: *>          SVA is DOUBLE PRECISION array, dimension (N)
        !           211: *>          On exit,
        !           212: *>          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
        !           213: *>            computation SVA contains Euclidean column norms of the
        !           214: *>            iterated matrices in the array A.
        !           215: *>          - For WORK(1) .NE. WORK(2): The singular values of A are
        !           216: *>            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
        !           217: *>            sigma_max(A) overflows or if small singular values have been
        !           218: *>            saved from underflow by scaling the input matrix A.
        !           219: *>          - If JOBR='R' then some of the singular values may be returned
        !           220: *>            as exact zeros obtained by "set to zero" because they are
        !           221: *>            below the numerical rank threshold or are denormalized numbers.
        !           222: *> \endverbatim
        !           223: *>
        !           224: *> \param[out] U
        !           225: *> \verbatim
        !           226: *>          U is COMPLEX*16 array, dimension ( LDU, N )
        !           227: *>          If JOBU = 'U', then U contains on exit the M-by-N matrix of
        !           228: *>                         the left singular vectors.
        !           229: *>          If JOBU = 'F', then U contains on exit the M-by-M matrix of
        !           230: *>                         the left singular vectors, including an ONB
        !           231: *>                         of the orthogonal complement of the Range(A).
        !           232: *>          If JOBU = 'W'  .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),
        !           233: *>                         then U is used as workspace if the procedure
        !           234: *>                         replaces A with A^*. In that case, [V] is computed
        !           235: *>                         in U as left singular vectors of A^* and then
        !           236: *>                         copied back to the V array. This 'W' option is just
        !           237: *>                         a reminder to the caller that in this case U is
        !           238: *>                         reserved as workspace of length N*N.
        !           239: *>          If JOBU = 'N'  U is not referenced, unless JOBT='T'.
        !           240: *> \endverbatim
        !           241: *>
        !           242: *> \param[in] LDU
        !           243: *> \verbatim
        !           244: *>          LDU is INTEGER
        !           245: *>          The leading dimension of the array U,  LDU >= 1.
        !           246: *>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
        !           247: *> \endverbatim
        !           248: *>
        !           249: *> \param[out] V
        !           250: *> \verbatim
        !           251: *>          V is COMPLEX*16 array, dimension ( LDV, N )
        !           252: *>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
        !           253: *>                         the right singular vectors;
        !           254: *>          If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),
        !           255: *>                         then V is used as workspace if the pprocedure
        !           256: *>                         replaces A with A^*. In that case, [U] is computed
        !           257: *>                         in V as right singular vectors of A^* and then
        !           258: *>                         copied back to the U array. This 'W' option is just
        !           259: *>                         a reminder to the caller that in this case V is
        !           260: *>                         reserved as workspace of length N*N.
        !           261: *>          If JOBV = 'N'  V is not referenced, unless JOBT='T'.
        !           262: *> \endverbatim
        !           263: *>
        !           264: *> \param[in] LDV
        !           265: *> \verbatim
        !           266: *>          LDV is INTEGER
        !           267: *>          The leading dimension of the array V,  LDV >= 1.
        !           268: *>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
        !           269: *> \endverbatim
        !           270: *>
        !           271: *> \param[out] CWORK
        !           272: *> \verbatim
        !           273: *>          CWORK is COMPLEX*16 array, dimension (MAX(2,LWORK))
        !           274: *>          If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
        !           275: *>          LRWORK=-1), then on exit CWORK(1) contains the required length of
        !           276: *>          CWORK for the job parameters used in the call.
        !           277: *> \endverbatim
        !           278: *>
        !           279: *> \param[in] LWORK
        !           280: *> \verbatim
        !           281: *>          LWORK is INTEGER
        !           282: *>          Length of CWORK to confirm proper allocation of workspace.
        !           283: *>          LWORK depends on the job:
        !           284: *>
        !           285: *>          1. If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and
        !           286: *>            1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'):
        !           287: *>               LWORK >= 2*N+1. This is the minimal requirement.
        !           288: *>               ->> For optimal performance (blocked code) the optimal value
        !           289: *>               is LWORK >= N + (N+1)*NB. Here NB is the optimal
        !           290: *>               block size for ZGEQP3 and ZGEQRF.
        !           291: *>               In general, optimal LWORK is computed as
        !           292: *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ)).
        !           293: *>            1.2. .. an estimate of the scaled condition number of A is
        !           294: *>               required (JOBA='E', or 'G'). In this case, LWORK the minimal
        !           295: *>               requirement is LWORK >= N*N + 2*N.
        !           296: *>               ->> For optimal performance (blocked code) the optimal value
        !           297: *>               is LWORK >= max(N+(N+1)*NB, N*N+2*N)=N**2+2*N.
        !           298: *>               In general, the optimal length LWORK is computed as
        !           299: *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ),
        !           300: *>                            N*N+LWORK(ZPOCON)).
        !           301: *>          2. If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),
        !           302: *>             (JOBU.EQ.'N')
        !           303: *>            2.1   .. no scaled condition estimate requested (JOBE.EQ.'N'):    
        !           304: *>            -> the minimal requirement is LWORK >= 3*N.
        !           305: *>            -> For optimal performance, 
        !           306: *>               LWORK >= max(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
        !           307: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQ,
        !           308: *>               ZUNMLQ. In general, the optimal length LWORK is computed as
        !           309: *>               LWORK >= max(N+LWORK(ZGEQP3), N+LWORK(ZGESVJ),
        !           310: *>                       N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).
        !           311: *>            2.2 .. an estimate of the scaled condition number of A is
        !           312: *>               required (JOBA='E', or 'G').
        !           313: *>            -> the minimal requirement is LWORK >= 3*N.      
        !           314: *>            -> For optimal performance, 
        !           315: *>               LWORK >= max(N+(N+1)*NB, 2*N,2*N+N*NB)=2*N+N*NB,
        !           316: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQ,
        !           317: *>               ZUNMLQ. In general, the optimal length LWORK is computed as
        !           318: *>               LWORK >= max(N+LWORK(ZGEQP3), LWORK(ZPOCON), N+LWORK(ZGESVJ),
        !           319: *>                       N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).   
        !           320: *>          3. If SIGMA and the left singular vectors are needed
        !           321: *>            3.1  .. no scaled condition estimate requested (JOBE.EQ.'N'):
        !           322: *>            -> the minimal requirement is LWORK >= 3*N.
        !           323: *>            -> For optimal performance:
        !           324: *>               if JOBU.EQ.'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
        !           325: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
        !           326: *>               In general, the optimal length LWORK is computed as
        !           327: *>               LWORK >= max(N+LWORK(ZGEQP3), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)). 
        !           328: *>            3.2  .. an estimate of the scaled condition number of A is
        !           329: *>               required (JOBA='E', or 'G').
        !           330: *>            -> the minimal requirement is LWORK >= 3*N.
        !           331: *>            -> For optimal performance:
        !           332: *>               if JOBU.EQ.'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
        !           333: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
        !           334: *>               In general, the optimal length LWORK is computed as
        !           335: *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZPOCON),
        !           336: *>                        2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)).
        !           337: *>          4. If the full SVD is needed: (JOBU.EQ.'U' or JOBU.EQ.'F') and 
        !           338: *>            4.1. if JOBV.EQ.'V'  
        !           339: *>               the minimal requirement is LWORK >= 5*N+2*N*N. 
        !           340: *>            4.2. if JOBV.EQ.'J' the minimal requirement is 
        !           341: *>               LWORK >= 4*N+N*N.
        !           342: *>            In both cases, the allocated CWORK can accomodate blocked runs
        !           343: *>            of ZGEQP3, ZGEQRF, ZGELQF, SUNMQR, ZUNMLQ.
        !           344: *>
        !           345: *>          If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
        !           346: *>          LRWORK=-1), then on exit CWORK(1) contains the optimal and CWORK(2) contains the
        !           347: *>          minimal length of CWORK for the job parameters used in the call.
        !           348: *> \endverbatim
        !           349: *>
        !           350: *> \param[out] RWORK
        !           351: *> \verbatim
        !           352: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(7,LWORK))
        !           353: *>          On exit,
        !           354: *>          RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1)
        !           355: *>                    such that SCALE*SVA(1:N) are the computed singular values
        !           356: *>                    of A. (See the description of SVA().)
        !           357: *>          RWORK(2) = See the description of RWORK(1).
        !           358: *>          RWORK(3) = SCONDA is an estimate for the condition number of
        !           359: *>                    column equilibrated A. (If JOBA .EQ. 'E' or 'G')
        !           360: *>                    SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
        !           361: *>                    It is computed using SPOCON. It holds
        !           362: *>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
        !           363: *>                    where R is the triangular factor from the QRF of A.
        !           364: *>                    However, if R is truncated and the numerical rank is
        !           365: *>                    determined to be strictly smaller than N, SCONDA is
        !           366: *>                    returned as -1, thus indicating that the smallest
        !           367: *>                    singular values might be lost.
        !           368: *>
        !           369: *>          If full SVD is needed, the following two condition numbers are
        !           370: *>          useful for the analysis of the algorithm. They are provied for
        !           371: *>          a developer/implementer who is familiar with the details of
        !           372: *>          the method.
        !           373: *>
        !           374: *>          RWORK(4) = an estimate of the scaled condition number of the
        !           375: *>                    triangular factor in the first QR factorization.
        !           376: *>          RWORK(5) = an estimate of the scaled condition number of the
        !           377: *>                    triangular factor in the second QR factorization.
        !           378: *>          The following two parameters are computed if JOBT .EQ. 'T'.
        !           379: *>          They are provided for a developer/implementer who is familiar
        !           380: *>          with the details of the method.
        !           381: *>          RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy
        !           382: *>                    of diag(A^* * A) / Trace(A^* * A) taken as point in the
        !           383: *>                    probability simplex.
        !           384: *>          RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).)
        !           385: *>          If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
        !           386: *>          LRWORK=-1), then on exit RWORK(1) contains the required length of
        !           387: *>          RWORK for the job parameters used in the call.
        !           388: *> \endverbatim
        !           389: *>
        !           390: *> \param[in] LRWORK
        !           391: *> \verbatim
        !           392: *>          LRWORK is INTEGER
        !           393: *>          Length of RWORK to confirm proper allocation of workspace.
        !           394: *>          LRWORK depends on the job:
        !           395: *>
        !           396: *>       1. If only the singular values are requested i.e. if
        !           397: *>          LSAME(JOBU,'N') .AND. LSAME(JOBV,'N')
        !           398: *>          then:
        !           399: *>          1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
        !           400: *>               then: LRWORK = max( 7, 2 * M ).
        !           401: *>          1.2. Otherwise, LRWORK  = max( 7,  N ).
        !           402: *>       2. If singular values with the right singular vectors are requested
        !           403: *>          i.e. if
        !           404: *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND.
        !           405: *>          .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F'))
        !           406: *>          then:
        !           407: *>          2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
        !           408: *>          then LRWORK = max( 7, 2 * M ).
        !           409: *>          2.2. Otherwise, LRWORK  = max( 7,  N ).
        !           410: *>       3. If singular values with the left singular vectors are requested, i.e. if
        !           411: *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
        !           412: *>          .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
        !           413: *>          then:
        !           414: *>          3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
        !           415: *>          then LRWORK = max( 7, 2 * M ).
        !           416: *>          3.2. Otherwise, LRWORK  = max( 7,  N ).
        !           417: *>       4. If singular values with both the left and the right singular vectors
        !           418: *>          are requested, i.e. if
        !           419: *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
        !           420: *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
        !           421: *>          then:
        !           422: *>          4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
        !           423: *>          then LRWORK = max( 7, 2 * M ).
        !           424: *>          4.2. Otherwise, LRWORK  = max( 7, N ).
        !           425: *>
        !           426: *>          If, on entry, LRWORK = -1 ot LWORK=-1, a workspace query is assumed and 
        !           427: *>          the length of RWORK is returned in RWORK(1). 
        !           428: *> \endverbatim
        !           429: *>
        !           430: *> \param[out] IWORK
        !           431: *> \verbatim
        !           432: *>          IWORK is INTEGER array, of dimension at least 4, that further depends 
        !           433: *>          on the job:
        !           434: *>
        !           435: *>          1. If only the singular values are requested then:
        !           436: *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
        !           437: *>             then the length of IWORK is N+M; otherwise the length of IWORK is N.
        !           438: *>          2. If the singular values and the right singular vectors are requested then:
        !           439: *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
        !           440: *>             then the length of IWORK is N+M; otherwise the length of IWORK is N. 
        !           441: *>          3. If the singular values and the left singular vectors are requested then:
        !           442: *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
        !           443: *>             then the length of IWORK is N+M; otherwise the length of IWORK is N. 
        !           444: *>          4. If the singular values with both the left and the right singular vectors
        !           445: *>             are requested, then:      
        !           446: *>             4.1. If LSAME(JOBV,'J') the length of IWORK is determined as follows:
        !           447: *>                  If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
        !           448: *>                  then the length of IWORK is N+M; otherwise the length of IWORK is N. 
        !           449: *>             4.2. If LSAME(JOBV,'V') the length of IWORK is determined as follows:
        !           450: *>                  If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
        !           451: *>                  then the length of IWORK is 2*N+M; otherwise the length of IWORK is 2*N.
        !           452: *>        
        !           453: *>          On exit,
        !           454: *>          IWORK(1) = the numerical rank determined after the initial
        !           455: *>                     QR factorization with pivoting. See the descriptions
        !           456: *>                     of JOBA and JOBR.
        !           457: *>          IWORK(2) = the number of the computed nonzero singular values
        !           458: *>          IWORK(3) = if nonzero, a warning message:
        !           459: *>                     If IWORK(3).EQ.1 then some of the column norms of A
        !           460: *>                     were denormalized floats. The requested high accuracy
        !           461: *>                     is not warranted by the data.
        !           462: *>          IWORK(4) = 1 or -1. If IWORK(4) .EQ. 1, then the procedure used A^* to
        !           463: *>                     do the job as specified by the JOB parameters.
        !           464: *>          If the call to ZGEJSV is a workspace query (indicated by LWORK .EQ. -1 or
        !           465: *>          LRWORK .EQ. -1), then on exit IWORK(1) contains the required length of 
        !           466: *>          IWORK for the job parameters used in the call.
        !           467: *> \endverbatim
        !           468: *>
        !           469: *> \param[out] INFO
        !           470: *> \verbatim
        !           471: *>          INFO is INTEGER
        !           472: *>           < 0  : if INFO = -i, then the i-th argument had an illegal value.
        !           473: *>           = 0 :  successful exit;
        !           474: *>           > 0 :  ZGEJSV  did not converge in the maximal allowed number
        !           475: *>                  of sweeps. The computed values may be inaccurate.
        !           476: *> \endverbatim
        !           477: *
        !           478: *  Authors:
        !           479: *  ========
        !           480: *
        !           481: *> \author Univ. of Tennessee
        !           482: *> \author Univ. of California Berkeley
        !           483: *> \author Univ. of Colorado Denver
        !           484: *> \author NAG Ltd.
        !           485: *
        !           486: *> \date June 2016
        !           487: *
        !           488: *> \ingroup complex16GEsing
        !           489: *
        !           490: *> \par Further Details:
        !           491: *  =====================
        !           492: *>
        !           493: *> \verbatim
        !           494: *>
        !           495: *>  ZGEJSV implements a preconditioned Jacobi SVD algorithm. It uses ZGEQP3,
        !           496: *>  ZGEQRF, and ZGELQF as preprocessors and preconditioners. Optionally, an
        !           497: *>  additional row pivoting can be used as a preprocessor, which in some
        !           498: *>  cases results in much higher accuracy. An example is matrix A with the
        !           499: *>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
        !           500: *>  diagonal matrices and C is well-conditioned matrix. In that case, complete
        !           501: *>  pivoting in the first QR factorizations provides accuracy dependent on the
        !           502: *>  condition number of C, and independent of D1, D2. Such higher accuracy is
        !           503: *>  not completely understood theoretically, but it works well in practice.
        !           504: *>  Further, if A can be written as A = B*D, with well-conditioned B and some
        !           505: *>  diagonal D, then the high accuracy is guaranteed, both theoretically and
        !           506: *>  in software, independent of D. For more details see [1], [2].
        !           507: *>     The computational range for the singular values can be the full range
        !           508: *>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
        !           509: *>  & LAPACK routines called by ZGEJSV are implemented to work in that range.
        !           510: *>  If that is not the case, then the restriction for safe computation with
        !           511: *>  the singular values in the range of normalized IEEE numbers is that the
        !           512: *>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
        !           513: *>  overflow. This code (ZGEJSV) is best used in this restricted range,
        !           514: *>  meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
        !           515: *>  returned as zeros. See JOBR for details on this.
        !           516: *>     Further, this implementation is somewhat slower than the one described
        !           517: *>  in [1,2] due to replacement of some non-LAPACK components, and because
        !           518: *>  the choice of some tuning parameters in the iterative part (ZGESVJ) is
        !           519: *>  left to the implementer on a particular machine.
        !           520: *>     The rank revealing QR factorization (in this code: ZGEQP3) should be
        !           521: *>  implemented as in [3]. We have a new version of ZGEQP3 under development
        !           522: *>  that is more robust than the current one in LAPACK, with a cleaner cut in
        !           523: *>  rank deficient cases. It will be available in the SIGMA library [4].
        !           524: *>  If M is much larger than N, it is obvious that the initial QRF with
        !           525: *>  column pivoting can be preprocessed by the QRF without pivoting. That
        !           526: *>  well known trick is not used in ZGEJSV because in some cases heavy row
        !           527: *>  weighting can be treated with complete pivoting. The overhead in cases
        !           528: *>  M much larger than N is then only due to pivoting, but the benefits in
        !           529: *>  terms of accuracy have prevailed. The implementer/user can incorporate
        !           530: *>  this extra QRF step easily. The implementer can also improve data movement
        !           531: *>  (matrix transpose, matrix copy, matrix transposed copy) - this
        !           532: *>  implementation of ZGEJSV uses only the simplest, naive data movement.
        !           533: *> \endverbatim
        !           534: *
        !           535: *> \par Contributor:
        !           536: *  ==================
        !           537: *>
        !           538: *>  Zlatko Drmac, Department of Mathematics, Faculty of Science,
        !           539: *>  University of Zagreb (Zagreb, Croatia); drmac@math.hr
        !           540: *
        !           541: *> \par References:
        !           542: *  ================
        !           543: *>
        !           544: *> \verbatim
        !           545: *>
        !           546: *> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
        !           547: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
        !           548: *>     LAPACK Working note 169.
        !           549: *> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
        !           550: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
        !           551: *>     LAPACK Working note 170.
        !           552: *> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
        !           553: *>     factorization software - a case study.
        !           554: *>     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
        !           555: *>     LAPACK Working note 176.
        !           556: *> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
        !           557: *>     QSVD, (H,K)-SVD computations.
        !           558: *>     Department of Mathematics, University of Zagreb, 2008, 2016.
        !           559: *> \endverbatim
        !           560: *
        !           561: *>  \par Bugs, examples and comments:
        !           562: *   =================================
        !           563: *>
        !           564: *>  Please report all bugs and send interesting examples and/or comments to
        !           565: *>  drmac@math.hr. Thank you.
        !           566: *>
        !           567: *  =====================================================================
        !           568:       SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
        !           569:      $                   M, N, A, LDA, SVA, U, LDU, V, LDV,
        !           570:      $                   CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
        !           571: *
        !           572: *  -- LAPACK computational routine (version 3.7.0) --
        !           573: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           574: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           575: *     December 2016
        !           576: *
        !           577: *     .. Scalar Arguments ..
        !           578:       IMPLICIT    NONE
        !           579:       INTEGER     INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N
        !           580: *     ..
        !           581: *     .. Array Arguments ..
        !           582:       COMPLEX*16       A( LDA, * ), U( LDU, * ), V( LDV, * ),
        !           583:      $                 CWORK( LWORK )
        !           584:       DOUBLE PRECISION SVA( N ), RWORK( LRWORK )
        !           585:       INTEGER          IWORK( * )
        !           586:       CHARACTER*1      JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
        !           587: *     ..
        !           588: *
        !           589: *  ===========================================================================
        !           590: *
        !           591: *     .. Local Parameters ..
        !           592:       DOUBLE PRECISION ZERO, ONE
        !           593:       PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           594:       COMPLEX*16 CZERO, CONE
        !           595:       PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ), CONE = ( 1.0D0, 0.0D0 ) )
        !           596: *     ..
        !           597: *     .. Local Scalars ..
        !           598:       COMPLEX*16       CTEMP
        !           599:       DOUBLE PRECISION AAPP,    AAQQ,   AATMAX, AATMIN, BIG,    BIG1,
        !           600:      $                 COND_OK, CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,
        !           601:      $                 MAXPRJ,  SCALEM, SCONDA, SFMIN,  SMALL,  TEMP1,
        !           602:      $                 USCAL1,  USCAL2, XSC
        !           603:       INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
        !           604:       LOGICAL ALMORT, DEFR,   ERREST, GOSCAL,  JRACC,  KILL,   LQUERY,
        !           605:      $        LSVEC,  L2ABER, L2KILL, L2PERT,  L2RANK, L2TRAN, NOSCAL,
        !           606:      $        ROWPIV, RSVEC,  TRANSP
        !           607: *
        !           608:       INTEGER OPTWRK, MINWRK, MINRWRK, MINIWRK
        !           609:       INTEGER LWCON,  LWLQF, LWQP3, LWQRF, LWUNMLQ, LWUNMQR, LWUNMQRM,
        !           610:      $        LWSVDJ, LWSVDJV, LRWQP3, LRWCON, LRWSVDJ, IWOFF
        !           611:       INTEGER LWRK_ZGELQF, LWRK_ZGEQP3,  LWRK_ZGEQP3N, LWRK_ZGEQRF,  
        !           612:      $        LWRK_ZGESVJ, LWRK_ZGESVJV, LWRK_ZGESVJU, LWRK_ZUNMLQ, 
        !           613:      $        LWRK_ZUNMQR, LWRK_ZUNMQRM    
        !           614: *     ..
        !           615: *     .. Local Arrays
        !           616:       COMPLEX*16         CDUMMY(1)
        !           617:       DOUBLE PRECISION   RDUMMY(1)
        !           618: *
        !           619: *     .. Intrinsic Functions ..
        !           620:       INTRINSIC ABS, DCMPLX, CONJG, DLOG, MAX, MIN, DBLE, NINT, SQRT
        !           621: *     ..
        !           622: *     .. External Functions ..
        !           623:       DOUBLE PRECISION      DLAMCH, DZNRM2
        !           624:       INTEGER   IDAMAX, IZAMAX
        !           625:       LOGICAL   LSAME
        !           626:       EXTERNAL  IDAMAX, IZAMAX, LSAME, DLAMCH, DZNRM2
        !           627: *     ..
        !           628: *     .. External Subroutines ..
        !           629:       EXTERNAL  DLASSQ, ZCOPY,  ZGELQF, ZGEQP3, ZGEQRF, ZLACPY, ZLAPMR,
        !           630:      $          ZLASCL, DLASCL, ZLASET, ZLASSQ, ZLASWP, ZUNGQR, ZUNMLQ,
        !           631:      $          ZUNMQR, ZPOCON, DSCAL,  ZDSCAL, ZSWAP,  ZTRSM,  ZLACGV,
        !           632:      $          XERBLA
        !           633: *
        !           634:       EXTERNAL  ZGESVJ
        !           635: *     ..
        !           636: *
        !           637: *     Test the input arguments
        !           638: *
        !           639:       LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
        !           640:       JRACC  = LSAME( JOBV, 'J' )
        !           641:       RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
        !           642:       ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
        !           643:       L2RANK = LSAME( JOBA, 'R' )
        !           644:       L2ABER = LSAME( JOBA, 'A' )
        !           645:       ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
        !           646:       L2TRAN = LSAME( JOBT, 'T' ) .AND. ( M .EQ. N )
        !           647:       L2KILL = LSAME( JOBR, 'R' )
        !           648:       DEFR   = LSAME( JOBR, 'N' )
        !           649:       L2PERT = LSAME( JOBP, 'P' )
        !           650: *
        !           651:       LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 )
        !           652: *
        !           653:       IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
        !           654:      $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
        !           655:          INFO = - 1
        !           656:       ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.
        !           657:      $   ( LSAME( JOBU, 'W' ) .AND. RSVEC .AND. L2TRAN ) ) ) THEN
        !           658:          INFO = - 2
        !           659:       ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
        !           660:      $   ( LSAME( JOBV, 'W' ) .AND. LSVEC .AND. L2TRAN ) ) ) THEN
        !           661:          INFO = - 3
        !           662:       ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
        !           663:          INFO = - 4
        !           664:       ELSE IF ( .NOT. ( LSAME(JOBT,'T') .OR. LSAME(JOBT,'N') ) ) THEN
        !           665:          INFO = - 5
        !           666:       ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
        !           667:          INFO = - 6
        !           668:       ELSE IF ( M .LT. 0 ) THEN
        !           669:          INFO = - 7
        !           670:       ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
        !           671:          INFO = - 8
        !           672:       ELSE IF ( LDA .LT. M ) THEN
        !           673:          INFO = - 10
        !           674:       ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
        !           675:          INFO = - 13
        !           676:       ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
        !           677:          INFO = - 15
        !           678:       ELSE
        !           679: *        #:)
        !           680:          INFO = 0
        !           681:       END IF
        !           682: *
        !           683:       IF ( INFO .EQ. 0 ) THEN 
        !           684: *         .. compute the minimal and the optimal workspace lengths 
        !           685: *         [[The expressions for computing the minimal and the optimal
        !           686: *         values of LCWORK, LRWORK are written with a lot of redundancy and
        !           687: *         can be simplified. However, this verbose form is useful for
        !           688: *         maintenance and modifications of the code.]]
        !           689: *
        !           690: *        .. minimal workspace length for ZGEQP3 of an M x N matrix,
        !           691: *         ZGEQRF of an N x N matrix, ZGELQF of an N x N matrix,
        !           692: *         ZUNMLQ for computing N x N matrix, ZUNMQR for computing N x N
        !           693: *         matrix, ZUNMQR for computing M x N matrix, respectively.
        !           694:           LWQP3 = N+1   
        !           695:           LWQRF = MAX( 1, N )
        !           696:           LWLQF = MAX( 1, N )
        !           697:           LWUNMLQ  = MAX( 1, N )
        !           698:           LWUNMQR  = MAX( 1, N )
        !           699:           LWUNMQRM = MAX( 1, M )
        !           700: *        .. minimal workspace length for ZPOCON of an N x N matrix
        !           701:           LWCON = 2 * N 
        !           702: *        .. minimal workspace length for ZGESVJ of an N x N matrix,
        !           703: *         without and with explicit accumulation of Jacobi rotations
        !           704:           LWSVDJ  = MAX( 2 * N, 1 )         
        !           705:           LWSVDJV = MAX( 2 * N, 1 )
        !           706: *         .. minimal REAL workspace length for ZGEQP3, ZPOCON, ZGESVJ
        !           707:           LRWQP3  = N 
        !           708:           LRWCON  = N 
        !           709:           LRWSVDJ = N 
        !           710:           IF ( LQUERY ) THEN 
        !           711:               CALL ZGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1, 
        !           712:      $             RDUMMY, IERR )
        !           713:               LWRK_ZGEQP3 = CDUMMY(1)
        !           714:               CALL ZGEQRF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
        !           715:               LWRK_ZGEQRF = CDUMMY(1)
        !           716:               CALL ZGELQF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
        !           717:               LWRK_ZGELQF = CDUMMY(1)             
        !           718:           END IF
        !           719:           MINWRK  = 2
        !           720:           OPTWRK  = 2
        !           721:           MINIWRK = N 
        !           722:           IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN
        !           723: *             .. minimal and optimal sizes of the complex workspace if
        !           724: *             only the singular values are requested
        !           725:               IF ( ERREST ) THEN 
        !           726:                   MINWRK = MAX( N+LWQP3, N**2+LWCON, N+LWQRF, LWSVDJ )
        !           727:               ELSE
        !           728:                   MINWRK = MAX( N+LWQP3, N+LWQRF, LWSVDJ )
        !           729:               END IF
        !           730:               IF ( LQUERY ) THEN 
        !           731:                   CALL ZGESVJ( 'L', 'N', 'N', N, N, A, LDA, SVA, N, V, 
        !           732:      $                 LDV, CDUMMY, -1, RDUMMY, -1, IERR )
        !           733:                   LWRK_ZGESVJ = CDUMMY(1)
        !           734:                   IF ( ERREST ) THEN 
        !           735:                       OPTWRK = MAX( N+LWRK_ZGEQP3, N**2+LWCON, 
        !           736:      $                              N+LWRK_ZGEQRF, LWRK_ZGESVJ )
        !           737:                   ELSE
        !           738:                       OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWRK_ZGEQRF, 
        !           739:      $                              LWRK_ZGESVJ )
        !           740:                   END IF
        !           741:               END IF
        !           742:               IF ( L2TRAN .OR. ROWPIV ) THEN 
        !           743:                   IF ( ERREST ) THEN 
        !           744:                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWCON, LRWSVDJ )
        !           745:                   ELSE
        !           746:                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
        !           747:                   END IF                 
        !           748:               ELSE
        !           749:                   IF ( ERREST ) THEN 
        !           750:                      MINRWRK = MAX( 7, LRWQP3, LRWCON, LRWSVDJ )
        !           751:                   ELSE
        !           752:                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
        !           753:                   END IF
        !           754:               END IF   
        !           755:               IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M 
        !           756:           ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
        !           757: *            .. minimal and optimal sizes of the complex workspace if the
        !           758: *            singular values and the right singular vectors are requested
        !           759:              IF ( ERREST ) THEN 
        !           760:                  MINWRK = MAX( N+LWQP3, LWCON, LWSVDJ, N+LWLQF,  
        !           761:      $                         2*N+LWQRF, N+LWSVDJ, N+LWUNMLQ )
        !           762:              ELSE
        !           763:                  MINWRK = MAX( N+LWQP3, LWSVDJ, N+LWLQF, 2*N+LWQRF, 
        !           764:      $                         N+LWSVDJ, N+LWUNMLQ )
        !           765:              END IF
        !           766:              IF ( LQUERY ) THEN
        !           767:                  CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
        !           768:      $                LDA, CDUMMY, -1, RDUMMY, -1, IERR )
        !           769:                  LWRK_ZGESVJ = CDUMMY(1)
        !           770:                  CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
        !           771:      $                V, LDV, CDUMMY, -1, IERR )
        !           772:                  LWRK_ZUNMLQ = CDUMMY(1)                
        !           773:                  IF ( ERREST ) THEN 
        !           774:                  OPTWRK = MAX( N+LWRK_ZGEQP3, LWCON, LWRK_ZGESVJ, 
        !           775:      $                         N+LWRK_ZGELQF, 2*N+LWRK_ZGEQRF,
        !           776:      $                         N+LWRK_ZGESVJ,  N+LWRK_ZUNMLQ )
        !           777:                  ELSE
        !           778:                  OPTWRK = MAX( N+LWRK_ZGEQP3, LWRK_ZGESVJ,N+LWRK_ZGELQF,
        !           779:      $                         2*N+LWRK_ZGEQRF, N+LWRK_ZGESVJ, 
        !           780:      $                         N+LWRK_ZUNMLQ )
        !           781:                  END IF
        !           782:              END IF
        !           783:              IF ( L2TRAN .OR. ROWPIV ) THEN 
        !           784:                   IF ( ERREST ) THEN 
        !           785:                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
        !           786:                   ELSE
        !           787:                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ ) 
        !           788:                   END IF                  
        !           789:              ELSE
        !           790:                   IF ( ERREST ) THEN 
        !           791:                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
        !           792:                   ELSE
        !           793:                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ ) 
        !           794:                   END IF                 
        !           795:              END IF
        !           796:              IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
        !           797:           ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN  
        !           798: *            .. minimal and optimal sizes of the complex workspace if the
        !           799: *            singular values and the left singular vectors are requested
        !           800:              IF ( ERREST ) THEN
        !           801:                  MINWRK = N + MAX( LWQP3,LWCON,N+LWQRF,LWSVDJ,LWUNMQRM )
        !           802:              ELSE
        !           803:                  MINWRK = N + MAX( LWQP3, N+LWQRF, LWSVDJ, LWUNMQRM )
        !           804:              END IF
        !           805:              IF ( LQUERY ) THEN
        !           806:                  CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
        !           807:      $                LDA, CDUMMY, -1, RDUMMY, -1, IERR )
        !           808:                  LWRK_ZGESVJ = CDUMMY(1)
        !           809:                  CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
        !           810:      $               LDU, CDUMMY, -1, IERR )
        !           811:                  LWRK_ZUNMQRM = CDUMMY(1)
        !           812:                  IF ( ERREST ) THEN
        !           813:                  OPTWRK = N + MAX( LWRK_ZGEQP3, LWCON, N+LWRK_ZGEQRF,
        !           814:      $                             LWRK_ZGESVJ, LWRK_ZUNMQRM )
        !           815:                  ELSE
        !           816:                  OPTWRK = N + MAX( LWRK_ZGEQP3, N+LWRK_ZGEQRF,
        !           817:      $                             LWRK_ZGESVJ, LWRK_ZUNMQRM )
        !           818:                  END IF
        !           819:              END IF
        !           820:              IF ( L2TRAN .OR. ROWPIV ) THEN 
        !           821:                  IF ( ERREST ) THEN 
        !           822:                     MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
        !           823:                  ELSE
        !           824:                     MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
        !           825:                  END IF                 
        !           826:              ELSE
        !           827:                  IF ( ERREST ) THEN 
        !           828:                     MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
        !           829:                  ELSE
        !           830:                     MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
        !           831:                  END IF                
        !           832:              END IF 
        !           833:              IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
        !           834:           ELSE
        !           835: *            .. minimal and optimal sizes of the complex workspace if the
        !           836: *            full SVD is requested
        !           837:              IF ( .NOT. JRACC ) THEN                
        !           838:                  IF ( ERREST ) THEN 
        !           839:                     MINWRK = MAX( N+LWQP3, N+LWCON,  2*N+N**2+LWCON, 
        !           840:      $                         2*N+LWQRF,         2*N+LWQP3, 
        !           841:      $                         2*N+N**2+N+LWLQF,  2*N+N**2+N+N**2+LWCON,
        !           842:      $                         2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV, 
        !           843:      $                         2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ, 
        !           844:      $                         N+N**2+LWSVDJ,   N+LWUNMQRM )
        !           845:                  ELSE
        !           846:                     MINWRK = MAX( N+LWQP3,        2*N+N**2+LWCON, 
        !           847:      $                         2*N+LWQRF,         2*N+LWQP3, 
        !           848:      $                         2*N+N**2+N+LWLQF,  2*N+N**2+N+N**2+LWCON,
        !           849:      $                         2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
        !           850:      $                         2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
        !           851:      $                         N+N**2+LWSVDJ,      N+LWUNMQRM ) 
        !           852:                  END IF 
        !           853:                  MINIWRK = MINIWRK + N 
        !           854:                  IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
        !           855:              ELSE
        !           856:                  IF ( ERREST ) THEN 
        !           857:                     MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+LWQRF, 
        !           858:      $                         2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, 
        !           859:      $                         N+LWUNMQRM )
        !           860:                  ELSE
        !           861:                     MINWRK = MAX( N+LWQP3, 2*N+LWQRF, 
        !           862:      $                         2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, 
        !           863:      $                         N+LWUNMQRM ) 
        !           864:                  END IF   
        !           865:                  IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
        !           866:              END IF
        !           867:              IF ( LQUERY ) THEN
        !           868:                  CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
        !           869:      $                LDU, CDUMMY, -1, IERR )
        !           870:                  LWRK_ZUNMQRM = CDUMMY(1)
        !           871:                  CALL ZUNMQR( 'L', 'N', N, N, N, A, LDA, CDUMMY, U,
        !           872:      $                LDU, CDUMMY, -1, IERR )
        !           873:                  LWRK_ZUNMQR = CDUMMY(1)
        !           874:                  IF ( .NOT. JRACC ) THEN
        !           875:                      CALL ZGEQP3( N,N, A, LDA, IWORK, CDUMMY,CDUMMY, -1,
        !           876:      $                    RDUMMY, IERR )
        !           877:                      LWRK_ZGEQP3N = CDUMMY(1)
        !           878:                      CALL ZGESVJ( 'L', 'U', 'N', N, N, U, LDU, SVA,
        !           879:      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
        !           880:                      LWRK_ZGESVJ = CDUMMY(1)
        !           881:                      CALL ZGESVJ( 'U', 'U', 'N', N, N, U, LDU, SVA,
        !           882:      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
        !           883:                      LWRK_ZGESVJU = CDUMMY(1)
        !           884:                      CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
        !           885:      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
        !           886:                      LWRK_ZGESVJV = CDUMMY(1)
        !           887:                      CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
        !           888:      $                    V, LDV, CDUMMY, -1, IERR )
        !           889:                      LWRK_ZUNMLQ = CDUMMY(1)
        !           890:                      IF ( ERREST ) THEN 
        !           891:                        OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON, 
        !           892:      $                          2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF, 
        !           893:      $                          2*N+LWRK_ZGEQP3N, 
        !           894:      $                          2*N+N**2+N+LWRK_ZGELQF,  
        !           895:      $                          2*N+N**2+N+N**2+LWCON,
        !           896:      $                          2*N+N**2+N+LWRK_ZGESVJ, 
        !           897:      $                          2*N+N**2+N+LWRK_ZGESVJV,               
        !           898:      $                          2*N+N**2+N+LWRK_ZUNMQR,
        !           899:      $                          2*N+N**2+N+LWRK_ZUNMLQ, 
        !           900:      $                          N+N**2+LWRK_ZGESVJU,                  
        !           901:      $                          N+LWRK_ZUNMQRM )
        !           902:                      ELSE
        !           903:                        OPTWRK = MAX( N+LWRK_ZGEQP3,  
        !           904:      $                          2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF, 
        !           905:      $                          2*N+LWRK_ZGEQP3N, 
        !           906:      $                          2*N+N**2+N+LWRK_ZGELQF,  
        !           907:      $                          2*N+N**2+N+N**2+LWCON,
        !           908:      $                          2*N+N**2+N+LWRK_ZGESVJ,               
        !           909:      $                          2*N+N**2+N+LWRK_ZGESVJV, 
        !           910:      $                          2*N+N**2+N+LWRK_ZUNMQR,
        !           911:      $                          2*N+N**2+N+LWRK_ZUNMLQ, 
        !           912:      $                          N+N**2+LWRK_ZGESVJU,
        !           913:      $                          N+LWRK_ZUNMQRM )
        !           914:                      END IF                    
        !           915:                  ELSE
        !           916:                      CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
        !           917:      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
        !           918:                      LWRK_ZGESVJV = CDUMMY(1)
        !           919:                      CALL ZUNMQR( 'L', 'N', N, N, N, CDUMMY, N, CDUMMY,
        !           920:      $                    V, LDV, CDUMMY, -1, IERR )
        !           921:                      LWRK_ZUNMQR = CDUMMY(1)
        !           922:                      CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
        !           923:      $                    LDU, CDUMMY, -1, IERR )
        !           924:                      LWRK_ZUNMQRM = CDUMMY(1)   
        !           925:                      IF ( ERREST ) THEN 
        !           926:                         OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON,   
        !           927:      $                           2*N+LWRK_ZGEQRF, 2*N+N**2,  
        !           928:      $                           2*N+N**2+LWRK_ZGESVJV,  
        !           929:      $                           2*N+N**2+N+LWRK_ZUNMQR,N+LWRK_ZUNMQRM )
        !           930:                      ELSE
        !           931:                         OPTWRK = MAX( N+LWRK_ZGEQP3, 2*N+LWRK_ZGEQRF,  
        !           932:      $                           2*N+N**2, 2*N+N**2+LWRK_ZGESVJV, 
        !           933:      $                           2*N+N**2+N+LWRK_ZUNMQR, 
        !           934:      $                           N+LWRK_ZUNMQRM )   
        !           935:                      END IF                  
        !           936:                  END IF               
        !           937:              END IF 
        !           938:              IF ( L2TRAN .OR. ROWPIV ) THEN 
        !           939:                  MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
        !           940:              ELSE
        !           941:                  MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
        !           942:              END IF 
        !           943:           END IF
        !           944:           MINWRK = MAX( 2, MINWRK )
        !           945:           OPTWRK = MAX( 2, OPTWRK )
        !           946:           IF ( LWORK  .LT. MINWRK  .AND. (.NOT.LQUERY) ) INFO = - 17
        !           947:           IF ( LRWORK .LT. MINRWRK .AND. (.NOT.LQUERY) ) INFO = - 19   
        !           948:       END IF
        !           949: *      
        !           950:       IF ( INFO .NE. 0 ) THEN
        !           951: *       #:(
        !           952:          CALL XERBLA( 'ZGEJSV', - INFO )
        !           953:          RETURN
        !           954:       ELSE IF ( LQUERY ) THEN
        !           955:           CWORK(1) = OPTWRK
        !           956:           CWORK(2) = MINWRK
        !           957:           RWORK(1) = MINRWRK
        !           958:           IWORK(1) = MAX( 4, MINIWRK )
        !           959:           RETURN   
        !           960:       END IF
        !           961: *
        !           962: *     Quick return for void matrix (Y3K safe)
        !           963: * #:)
        !           964:       IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
        !           965:          IWORK(1:4) = 0
        !           966:          RWORK(1:7) = 0
        !           967:          RETURN
        !           968:       ENDIF
        !           969: *
        !           970: *     Determine whether the matrix U should be M x N or M x M
        !           971: *
        !           972:       IF ( LSVEC ) THEN
        !           973:          N1 = N
        !           974:          IF ( LSAME( JOBU, 'F' ) ) N1 = M
        !           975:       END IF
        !           976: *
        !           977: *     Set numerical parameters
        !           978: *
        !           979: *!    NOTE: Make sure DLAMCH() does not fail on the target architecture.
        !           980: *
        !           981:       EPSLN = DLAMCH('Epsilon')
        !           982:       SFMIN = DLAMCH('SafeMinimum')
        !           983:       SMALL = SFMIN / EPSLN
        !           984:       BIG   = DLAMCH('O')
        !           985: *     BIG   = ONE / SFMIN
        !           986: *
        !           987: *     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
        !           988: *
        !           989: *(!)  If necessary, scale SVA() to protect the largest norm from
        !           990: *     overflow. It is possible that this scaling pushes the smallest
        !           991: *     column norm left from the underflow threshold (extreme case).
        !           992: *
        !           993:       SCALEM  = ONE / SQRT(DBLE(M)*DBLE(N))
        !           994:       NOSCAL  = .TRUE.
        !           995:       GOSCAL  = .TRUE.
        !           996:       DO 1874 p = 1, N
        !           997:          AAPP = ZERO
        !           998:          AAQQ = ONE
        !           999:          CALL ZLASSQ( M, A(1,p), 1, AAPP, AAQQ )
        !          1000:          IF ( AAPP .GT. BIG ) THEN
        !          1001:             INFO = - 9
        !          1002:             CALL XERBLA( 'ZGEJSV', -INFO )
        !          1003:             RETURN
        !          1004:          END IF
        !          1005:          AAQQ = SQRT(AAQQ)
        !          1006:          IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
        !          1007:             SVA(p)  = AAPP * AAQQ
        !          1008:          ELSE
        !          1009:             NOSCAL  = .FALSE.
        !          1010:             SVA(p)  = AAPP * ( AAQQ * SCALEM )
        !          1011:             IF ( GOSCAL ) THEN
        !          1012:                GOSCAL = .FALSE.
        !          1013:                CALL DSCAL( p-1, SCALEM, SVA, 1 )
        !          1014:             END IF
        !          1015:          END IF
        !          1016:  1874 CONTINUE
        !          1017: *
        !          1018:       IF ( NOSCAL ) SCALEM = ONE
        !          1019: *
        !          1020:       AAPP = ZERO
        !          1021:       AAQQ = BIG
        !          1022:       DO 4781 p = 1, N
        !          1023:          AAPP = MAX( AAPP, SVA(p) )
        !          1024:          IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
        !          1025:  4781 CONTINUE
        !          1026: *
        !          1027: *     Quick return for zero M x N matrix
        !          1028: * #:)
        !          1029:       IF ( AAPP .EQ. ZERO ) THEN
        !          1030:          IF ( LSVEC ) CALL ZLASET( 'G', M, N1, CZERO, CONE, U, LDU )
        !          1031:          IF ( RSVEC ) CALL ZLASET( 'G', N, N,  CZERO, CONE, V, LDV )
        !          1032:          RWORK(1) = ONE
        !          1033:          RWORK(2) = ONE
        !          1034:          IF ( ERREST ) RWORK(3) = ONE
        !          1035:          IF ( LSVEC .AND. RSVEC ) THEN
        !          1036:             RWORK(4) = ONE
        !          1037:             RWORK(5) = ONE
        !          1038:          END IF
        !          1039:          IF ( L2TRAN ) THEN
        !          1040:             RWORK(6) = ZERO
        !          1041:             RWORK(7) = ZERO
        !          1042:          END IF
        !          1043:          IWORK(1) = 0
        !          1044:          IWORK(2) = 0
        !          1045:          IWORK(3) = 0
        !          1046:          IWORK(4) = -1
        !          1047:          RETURN
        !          1048:       END IF
        !          1049: *
        !          1050: *     Issue warning if denormalized column norms detected. Override the
        !          1051: *     high relative accuracy request. Issue licence to kill nonzero columns
        !          1052: *     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
        !          1053: * #:(
        !          1054:       WARNING = 0
        !          1055:       IF ( AAQQ .LE. SFMIN ) THEN
        !          1056:          L2RANK = .TRUE.
        !          1057:          L2KILL = .TRUE.
        !          1058:          WARNING = 1
        !          1059:       END IF
        !          1060: *
        !          1061: *     Quick return for one-column matrix
        !          1062: * #:)
        !          1063:       IF ( N .EQ. 1 ) THEN
        !          1064: *
        !          1065:          IF ( LSVEC ) THEN
        !          1066:             CALL ZLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
        !          1067:             CALL ZLACPY( 'A', M, 1, A, LDA, U, LDU )
        !          1068: *           computing all M left singular vectors of the M x 1 matrix
        !          1069:             IF ( N1 .NE. N  ) THEN
        !          1070:               CALL ZGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,IERR )
        !          1071:               CALL ZUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,IERR )
        !          1072:               CALL ZCOPY( M, A(1,1), 1, U(1,1), 1 )
        !          1073:             END IF
        !          1074:          END IF
        !          1075:          IF ( RSVEC ) THEN
        !          1076:              V(1,1) = CONE
        !          1077:          END IF
        !          1078:          IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
        !          1079:             SVA(1)  = SVA(1) / SCALEM
        !          1080:             SCALEM  = ONE
        !          1081:          END IF
        !          1082:          RWORK(1) = ONE / SCALEM
        !          1083:          RWORK(2) = ONE
        !          1084:          IF ( SVA(1) .NE. ZERO ) THEN
        !          1085:             IWORK(1) = 1
        !          1086:             IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
        !          1087:                IWORK(2) = 1
        !          1088:             ELSE
        !          1089:                IWORK(2) = 0
        !          1090:             END IF
        !          1091:          ELSE
        !          1092:             IWORK(1) = 0
        !          1093:             IWORK(2) = 0
        !          1094:          END IF
        !          1095:          IWORK(3) = 0
        !          1096:          IWORK(4) = -1
        !          1097:          IF ( ERREST ) RWORK(3) = ONE
        !          1098:          IF ( LSVEC .AND. RSVEC ) THEN
        !          1099:             RWORK(4) = ONE
        !          1100:             RWORK(5) = ONE
        !          1101:          END IF
        !          1102:          IF ( L2TRAN ) THEN
        !          1103:             RWORK(6) = ZERO
        !          1104:             RWORK(7) = ZERO
        !          1105:          END IF
        !          1106:          RETURN
        !          1107: *
        !          1108:       END IF
        !          1109: *
        !          1110:       TRANSP = .FALSE.
        !          1111: *
        !          1112:       AATMAX = -ONE
        !          1113:       AATMIN =  BIG
        !          1114:       IF ( ROWPIV .OR. L2TRAN ) THEN
        !          1115: *
        !          1116: *     Compute the row norms, needed to determine row pivoting sequence
        !          1117: *     (in the case of heavily row weighted A, row pivoting is strongly
        !          1118: *     advised) and to collect information needed to compare the
        !          1119: *     structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.).
        !          1120: *
        !          1121:          IF ( L2TRAN ) THEN
        !          1122:             DO 1950 p = 1, M
        !          1123:                XSC   = ZERO
        !          1124:                TEMP1 = ONE
        !          1125:                CALL ZLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
        !          1126: *              ZLASSQ gets both the ell_2 and the ell_infinity norm
        !          1127: *              in one pass through the vector
        !          1128:                RWORK(M+p)  = XSC * SCALEM
        !          1129:                RWORK(p)    = XSC * (SCALEM*SQRT(TEMP1))
        !          1130:                AATMAX = MAX( AATMAX, RWORK(p) )
        !          1131:                IF (RWORK(p) .NE. ZERO) 
        !          1132:      $            AATMIN = MIN(AATMIN,RWORK(p))
        !          1133:  1950       CONTINUE
        !          1134:          ELSE
        !          1135:             DO 1904 p = 1, M
        !          1136:                RWORK(M+p) = SCALEM*ABS( A(p,IZAMAX(N,A(p,1),LDA)) )
        !          1137:                AATMAX = MAX( AATMAX, RWORK(M+p) )
        !          1138:                AATMIN = MIN( AATMIN, RWORK(M+p) )
        !          1139:  1904       CONTINUE
        !          1140:          END IF
        !          1141: *
        !          1142:       END IF
        !          1143: *
        !          1144: *     For square matrix A try to determine whether A^*  would be better
        !          1145: *     input for the preconditioned Jacobi SVD, with faster convergence.
        !          1146: *     The decision is based on an O(N) function of the vector of column
        !          1147: *     and row norms of A, based on the Shannon entropy. This should give
        !          1148: *     the right choice in most cases when the difference actually matters.
        !          1149: *     It may fail and pick the slower converging side.
        !          1150: *
        !          1151:       ENTRA  = ZERO
        !          1152:       ENTRAT = ZERO
        !          1153:       IF ( L2TRAN ) THEN
        !          1154: *
        !          1155:          XSC   = ZERO
        !          1156:          TEMP1 = ONE
        !          1157:          CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
        !          1158:          TEMP1 = ONE / TEMP1
        !          1159: *
        !          1160:          ENTRA = ZERO
        !          1161:          DO 1113 p = 1, N
        !          1162:             BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
        !          1163:             IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
        !          1164:  1113    CONTINUE
        !          1165:          ENTRA = - ENTRA / DLOG(DBLE(N))
        !          1166: *
        !          1167: *        Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex.
        !          1168: *        It is derived from the diagonal of  A^* * A.  Do the same with the
        !          1169: *        diagonal of A * A^*, compute the entropy of the corresponding
        !          1170: *        probability distribution. Note that A * A^* and A^* * A have the
        !          1171: *        same trace.
        !          1172: *
        !          1173:          ENTRAT = ZERO
        !          1174:          DO 1114 p = 1, M
        !          1175:             BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1
        !          1176:             IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
        !          1177:  1114    CONTINUE
        !          1178:          ENTRAT = - ENTRAT / DLOG(DBLE(M))
        !          1179: *
        !          1180: *        Analyze the entropies and decide A or A^*. Smaller entropy
        !          1181: *        usually means better input for the algorithm.
        !          1182: *
        !          1183:          TRANSP = ( ENTRAT .LT. ENTRA )
        !          1184: * 
        !          1185: *        If A^* is better than A, take the adjoint of A. This is allowed
        !          1186: *        only for square matrices, M=N.
        !          1187:          IF ( TRANSP ) THEN
        !          1188: *           In an optimal implementation, this trivial transpose
        !          1189: *           should be replaced with faster transpose.
        !          1190:             DO 1115 p = 1, N - 1
        !          1191:                A(p,p) = CONJG(A(p,p))
        !          1192:                DO 1116 q = p + 1, N
        !          1193:                    CTEMP = CONJG(A(q,p))
        !          1194:                   A(q,p) = CONJG(A(p,q))
        !          1195:                   A(p,q) = CTEMP
        !          1196:  1116          CONTINUE
        !          1197:  1115       CONTINUE
        !          1198:             A(N,N) = CONJG(A(N,N))
        !          1199:             DO 1117 p = 1, N
        !          1200:                RWORK(M+p) = SVA(p)
        !          1201:                SVA(p)     = RWORK(p)
        !          1202: *              previously computed row 2-norms are now column 2-norms
        !          1203: *              of the transposed matrix
        !          1204:  1117       CONTINUE
        !          1205:             TEMP1  = AAPP
        !          1206:             AAPP   = AATMAX
        !          1207:             AATMAX = TEMP1
        !          1208:             TEMP1  = AAQQ
        !          1209:             AAQQ   = AATMIN
        !          1210:             AATMIN = TEMP1
        !          1211:             KILL   = LSVEC
        !          1212:             LSVEC  = RSVEC
        !          1213:             RSVEC  = KILL
        !          1214:             IF ( LSVEC ) N1 = N
        !          1215: *
        !          1216:             ROWPIV = .TRUE.
        !          1217:          END IF
        !          1218: *
        !          1219:       END IF
        !          1220: *     END IF L2TRAN
        !          1221: *
        !          1222: *     Scale the matrix so that its maximal singular value remains less
        !          1223: *     than SQRT(BIG) -- the matrix is scaled so that its maximal column
        !          1224: *     has Euclidean norm equal to SQRT(BIG/N). The only reason to keep
        !          1225: *     SQRT(BIG) instead of BIG is the fact that ZGEJSV uses LAPACK and
        !          1226: *     BLAS routines that, in some implementations, are not capable of
        !          1227: *     working in the full interval [SFMIN,BIG] and that they may provoke
        !          1228: *     overflows in the intermediate results. If the singular values spread
        !          1229: *     from SFMIN to BIG, then ZGESVJ will compute them. So, in that case,
        !          1230: *     one should use ZGESVJ instead of ZGEJSV.
        !          1231: *     >> change in the April 2016 update: allow bigger range, i.e. the
        !          1232: *     largest column is allowed up to BIG/N and ZGESVJ will do the rest.
        !          1233:       BIG1   = SQRT( BIG )
        !          1234:       TEMP1  = SQRT( BIG / DBLE(N) ) 
        !          1235: *      TEMP1  = BIG/DBLE(N)
        !          1236: *
        !          1237:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
        !          1238:       IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
        !          1239:           AAQQ = ( AAQQ / AAPP ) * TEMP1
        !          1240:       ELSE
        !          1241:           AAQQ = ( AAQQ * TEMP1 ) / AAPP
        !          1242:       END IF
        !          1243:       TEMP1 = TEMP1 * SCALEM
        !          1244:       CALL ZLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
        !          1245: *
        !          1246: *     To undo scaling at the end of this procedure, multiply the
        !          1247: *     computed singular values with USCAL2 / USCAL1.
        !          1248: *
        !          1249:       USCAL1 = TEMP1
        !          1250:       USCAL2 = AAPP
        !          1251: *
        !          1252:       IF ( L2KILL ) THEN
        !          1253: *        L2KILL enforces computation of nonzero singular values in
        !          1254: *        the restricted range of condition number of the initial A,
        !          1255: *        sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).
        !          1256:          XSC = SQRT( SFMIN )
        !          1257:       ELSE
        !          1258:          XSC = SMALL
        !          1259: *
        !          1260: *        Now, if the condition number of A is too big,
        !          1261: *        sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,
        !          1262: *        as a precaution measure, the full SVD is computed using ZGESVJ
        !          1263: *        with accumulated Jacobi rotations. This provides numerically
        !          1264: *        more robust computation, at the cost of slightly increased run
        !          1265: *        time. Depending on the concrete implementation of BLAS and LAPACK
        !          1266: *        (i.e. how they behave in presence of extreme ill-conditioning) the
        !          1267: *        implementor may decide to remove this switch.
        !          1268:          IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
        !          1269:             JRACC = .TRUE.
        !          1270:          END IF
        !          1271: *
        !          1272:       END IF
        !          1273:       IF ( AAQQ .LT. XSC ) THEN
        !          1274:          DO 700 p = 1, N
        !          1275:             IF ( SVA(p) .LT. XSC ) THEN
        !          1276:                CALL ZLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA )
        !          1277:                SVA(p) = ZERO
        !          1278:             END IF
        !          1279:  700     CONTINUE
        !          1280:       END IF
        !          1281: *
        !          1282: *     Preconditioning using QR factorization with pivoting
        !          1283: *
        !          1284:       IF ( ROWPIV ) THEN
        !          1285: *        Optional row permutation (Bjoerck row pivoting):
        !          1286: *        A result by Cox and Higham shows that the Bjoerck's
        !          1287: *        row pivoting combined with standard column pivoting
        !          1288: *        has similar effect as Powell-Reid complete pivoting.
        !          1289: *        The ell-infinity norms of A are made nonincreasing.
        !          1290:          IF ( ( LSVEC .AND. RSVEC ) .AND. .NOT.( JRACC ) ) THEN 
        !          1291:               IWOFF = 2*N
        !          1292:          ELSE
        !          1293:               IWOFF = N
        !          1294:          END IF
        !          1295:          DO 1952 p = 1, M - 1
        !          1296:             q = IDAMAX( M-p+1, RWORK(M+p), 1 ) + p - 1
        !          1297:             IWORK(IWOFF+p) = q
        !          1298:             IF ( p .NE. q ) THEN
        !          1299:                TEMP1      = RWORK(M+p)
        !          1300:                RWORK(M+p) = RWORK(M+q)
        !          1301:                RWORK(M+q) = TEMP1
        !          1302:             END IF
        !          1303:  1952    CONTINUE
        !          1304:          CALL ZLASWP( N, A, LDA, 1, M-1, IWORK(IWOFF+1), 1 )
        !          1305:       END IF
        !          1306: *
        !          1307: *     End of the preparation phase (scaling, optional sorting and
        !          1308: *     transposing, optional flushing of small columns).
        !          1309: *
        !          1310: *     Preconditioning
        !          1311: *
        !          1312: *     If the full SVD is needed, the right singular vectors are computed
        !          1313: *     from a matrix equation, and for that we need theoretical analysis
        !          1314: *     of the Businger-Golub pivoting. So we use ZGEQP3 as the first RR QRF.
        !          1315: *     In all other cases the first RR QRF can be chosen by other criteria
        !          1316: *     (eg speed by replacing global with restricted window pivoting, such
        !          1317: *     as in xGEQPX from TOMS # 782). Good results will be obtained using
        !          1318: *     xGEQPX with properly (!) chosen numerical parameters.
        !          1319: *     Any improvement of ZGEQP3 improves overal performance of ZGEJSV.
        !          1320: *
        !          1321: *     A * P1 = Q1 * [ R1^* 0]^*:
        !          1322:       DO 1963 p = 1, N
        !          1323: *        .. all columns are free columns
        !          1324:          IWORK(p) = 0
        !          1325:  1963 CONTINUE
        !          1326:       CALL ZGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N,
        !          1327:      $             RWORK, IERR )
        !          1328: *
        !          1329: *     The upper triangular matrix R1 from the first QRF is inspected for
        !          1330: *     rank deficiency and possibilities for deflation, or possible
        !          1331: *     ill-conditioning. Depending on the user specified flag L2RANK,
        !          1332: *     the procedure explores possibilities to reduce the numerical
        !          1333: *     rank by inspecting the computed upper triangular factor. If
        !          1334: *     L2RANK or L2ABER are up, then ZGEJSV will compute the SVD of
        !          1335: *     A + dA, where ||dA|| <= f(M,N)*EPSLN.
        !          1336: *
        !          1337:       NR = 1
        !          1338:       IF ( L2ABER ) THEN
        !          1339: *        Standard absolute error bound suffices. All sigma_i with
        !          1340: *        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
        !          1341: *        agressive enforcement of lower numerical rank by introducing a
        !          1342: *        backward error of the order of N*EPSLN*||A||.
        !          1343:          TEMP1 = SQRT(DBLE(N))*EPSLN
        !          1344:          DO 3001 p = 2, N
        !          1345:             IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN
        !          1346:                NR = NR + 1
        !          1347:             ELSE
        !          1348:                GO TO 3002
        !          1349:             END IF
        !          1350:  3001    CONTINUE
        !          1351:  3002    CONTINUE
        !          1352:       ELSE IF ( L2RANK ) THEN
        !          1353: *        .. similarly as above, only slightly more gentle (less agressive).
        !          1354: *        Sudden drop on the diagonal of R1 is used as the criterion for
        !          1355: *        close-to-rank-deficient.
        !          1356:          TEMP1 = SQRT(SFMIN)
        !          1357:          DO 3401 p = 2, N
        !          1358:             IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
        !          1359:      $           ( ABS(A(p,p)) .LT. SMALL ) .OR.
        !          1360:      $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
        !          1361:             NR = NR + 1
        !          1362:  3401    CONTINUE
        !          1363:  3402    CONTINUE
        !          1364: *
        !          1365:       ELSE
        !          1366: *        The goal is high relative accuracy. However, if the matrix
        !          1367: *        has high scaled condition number the relative accuracy is in
        !          1368: *        general not feasible. Later on, a condition number estimator
        !          1369: *        will be deployed to estimate the scaled condition number.
        !          1370: *        Here we just remove the underflowed part of the triangular
        !          1371: *        factor. This prevents the situation in which the code is
        !          1372: *        working hard to get the accuracy not warranted by the data.
        !          1373:          TEMP1  = SQRT(SFMIN)
        !          1374:          DO 3301 p = 2, N
        !          1375:             IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.
        !          1376:      $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
        !          1377:             NR = NR + 1
        !          1378:  3301    CONTINUE
        !          1379:  3302    CONTINUE
        !          1380: *
        !          1381:       END IF
        !          1382: *
        !          1383:       ALMORT = .FALSE.
        !          1384:       IF ( NR .EQ. N ) THEN
        !          1385:          MAXPRJ = ONE
        !          1386:          DO 3051 p = 2, N
        !          1387:             TEMP1  = ABS(A(p,p)) / SVA(IWORK(p))
        !          1388:             MAXPRJ = MIN( MAXPRJ, TEMP1 )
        !          1389:  3051    CONTINUE
        !          1390:          IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
        !          1391:       END IF
        !          1392: *
        !          1393: *
        !          1394:       SCONDA = - ONE
        !          1395:       CONDR1 = - ONE
        !          1396:       CONDR2 = - ONE
        !          1397: *
        !          1398:       IF ( ERREST ) THEN
        !          1399:          IF ( N .EQ. NR ) THEN
        !          1400:             IF ( RSVEC ) THEN
        !          1401: *              .. V is available as workspace
        !          1402:                CALL ZLACPY( 'U', N, N, A, LDA, V, LDV )
        !          1403:                DO 3053 p = 1, N
        !          1404:                   TEMP1 = SVA(IWORK(p))
        !          1405:                   CALL ZDSCAL( p, ONE/TEMP1, V(1,p), 1 )
        !          1406:  3053          CONTINUE
        !          1407:                IF ( LSVEC )THEN
        !          1408:                    CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
        !          1409:      $                  CWORK(N+1), RWORK, IERR )
        !          1410:                ELSE
        !          1411:                    CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
        !          1412:      $                  CWORK, RWORK, IERR )
        !          1413:                END IF               
        !          1414: *          
        !          1415:             ELSE IF ( LSVEC ) THEN
        !          1416: *              .. U is available as workspace
        !          1417:                CALL ZLACPY( 'U', N, N, A, LDA, U, LDU )
        !          1418:                DO 3054 p = 1, N
        !          1419:                   TEMP1 = SVA(IWORK(p))
        !          1420:                   CALL ZDSCAL( p, ONE/TEMP1, U(1,p), 1 )
        !          1421:  3054          CONTINUE
        !          1422:                CALL ZPOCON( 'U', N, U, LDU, ONE, TEMP1,
        !          1423:      $              CWORK(N+1), RWORK, IERR )
        !          1424:             ELSE
        !          1425:                CALL ZLACPY( 'U', N, N, A, LDA, CWORK, N )
        !          1426: *[]            CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
        !          1427: *              Change: here index shifted by N to the left, CWORK(1:N) 
        !          1428: *              not needed for SIGMA only computation
        !          1429:                DO 3052 p = 1, N
        !          1430:                   TEMP1 = SVA(IWORK(p))
        !          1431: *[]               CALL ZDSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 )
        !          1432:                   CALL ZDSCAL( p, ONE/TEMP1, CWORK((p-1)*N+1), 1 )
        !          1433:  3052          CONTINUE
        !          1434: *           .. the columns of R are scaled to have unit Euclidean lengths.
        !          1435: *[]               CALL ZPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1,
        !          1436: *[]     $              CWORK(N+N*N+1), RWORK, IERR )
        !          1437:                CALL ZPOCON( 'U', N, CWORK, N, ONE, TEMP1,
        !          1438:      $              CWORK(N*N+1), RWORK, IERR )               
        !          1439: *              
        !          1440:             END IF
        !          1441:             IF ( TEMP1 .NE. ZERO ) THEN 
        !          1442:                SCONDA = ONE / SQRT(TEMP1)
        !          1443:             ELSE
        !          1444:                SCONDA = - ONE
        !          1445:             END IF
        !          1446: *           SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
        !          1447: *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
        !          1448:          ELSE
        !          1449:             SCONDA = - ONE
        !          1450:          END IF
        !          1451:       END IF
        !          1452: *
        !          1453:       L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) )
        !          1454: *     If there is no violent scaling, artificial perturbation is not needed.
        !          1455: *
        !          1456: *     Phase 3:
        !          1457: *
        !          1458:       IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
        !          1459: *
        !          1460: *         Singular Values only
        !          1461: *
        !          1462: *         .. transpose A(1:NR,1:N)
        !          1463:          DO 1946 p = 1, MIN( N-1, NR )
        !          1464:             CALL ZCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
        !          1465:             CALL ZLACGV( N-p+1, A(p,p), 1 )
        !          1466:  1946    CONTINUE
        !          1467:          IF ( NR .EQ. N ) A(N,N) = CONJG(A(N,N))
        !          1468: *
        !          1469: *        The following two DO-loops introduce small relative perturbation
        !          1470: *        into the strict upper triangle of the lower triangular matrix.
        !          1471: *        Small entries below the main diagonal are also changed.
        !          1472: *        This modification is useful if the computing environment does not
        !          1473: *        provide/allow FLUSH TO ZERO underflow, for it prevents many
        !          1474: *        annoying denormalized numbers in case of strongly scaled matrices.
        !          1475: *        The perturbation is structured so that it does not introduce any
        !          1476: *        new perturbation of the singular values, and it does not destroy
        !          1477: *        the job done by the preconditioner.
        !          1478: *        The licence for this perturbation is in the variable L2PERT, which
        !          1479: *        should be .FALSE. if FLUSH TO ZERO underflow is active.
        !          1480: *
        !          1481:          IF ( .NOT. ALMORT ) THEN
        !          1482: *
        !          1483:             IF ( L2PERT ) THEN
        !          1484: *              XSC = SQRT(SMALL)
        !          1485:                XSC = EPSLN / DBLE(N)
        !          1486:                DO 4947 q = 1, NR
        !          1487:                   CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
        !          1488:                   DO 4949 p = 1, N
        !          1489:                      IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
        !          1490:      $                    .OR. ( p .LT. q ) )
        !          1491: *     $                     A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
        !          1492:      $                     A(p,q) = CTEMP
        !          1493:  4949             CONTINUE
        !          1494:  4947          CONTINUE
        !          1495:             ELSE
        !          1496:                CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA )
        !          1497:             END IF
        !          1498: *
        !          1499: *            .. second preconditioning using the QR factorization
        !          1500: *
        !          1501:             CALL ZGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N, IERR )
        !          1502: *
        !          1503: *           .. and transpose upper to lower triangular
        !          1504:             DO 1948 p = 1, NR - 1
        !          1505:                CALL ZCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
        !          1506:                CALL ZLACGV( NR-p+1, A(p,p), 1 )
        !          1507:  1948       CONTINUE
        !          1508: *
        !          1509:       END IF
        !          1510: *
        !          1511: *           Row-cyclic Jacobi SVD algorithm with column pivoting
        !          1512: *
        !          1513: *           .. again some perturbation (a "background noise") is added
        !          1514: *           to drown denormals
        !          1515:             IF ( L2PERT ) THEN
        !          1516: *              XSC = SQRT(SMALL)
        !          1517:                XSC = EPSLN / DBLE(N)
        !          1518:                DO 1947 q = 1, NR
        !          1519:                   CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
        !          1520:                   DO 1949 p = 1, NR
        !          1521:                      IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
        !          1522:      $                       .OR. ( p .LT. q ) )
        !          1523: *     $                   A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
        !          1524:      $                   A(p,q) = CTEMP
        !          1525:  1949             CONTINUE
        !          1526:  1947          CONTINUE
        !          1527:             ELSE
        !          1528:                CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2), LDA )
        !          1529:             END IF
        !          1530: *
        !          1531: *           .. and one-sided Jacobi rotations are started on a lower
        !          1532: *           triangular matrix (plus perturbation which is ignored in
        !          1533: *           the part which destroys triangular form (confusing?!))
        !          1534: *
        !          1535:             CALL ZGESVJ( 'L', 'N', 'N', NR, NR, A, LDA, SVA,
        !          1536:      $                N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
        !          1537: *
        !          1538:             SCALEM  = RWORK(1)
        !          1539:             NUMRANK = NINT(RWORK(2))
        !          1540: *
        !          1541: *
        !          1542:       ELSE IF ( ( RSVEC .AND. ( .NOT. LSVEC ) .AND. ( .NOT. JRACC ) )
        !          1543:      $       .OR. 
        !          1544:      $   ( JRACC .AND. ( .NOT. LSVEC ) .AND. ( NR .NE. N ) ) ) THEN
        !          1545: *
        !          1546: *        -> Singular Values and Right Singular Vectors <-
        !          1547: *
        !          1548:          IF ( ALMORT ) THEN
        !          1549: *
        !          1550: *           .. in this case NR equals N
        !          1551:             DO 1998 p = 1, NR
        !          1552:                CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
        !          1553:                CALL ZLACGV( N-p+1, V(p,p), 1 )
        !          1554:  1998       CONTINUE
        !          1555:             CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
        !          1556: *
        !          1557:             CALL ZGESVJ( 'L','U','N', N, NR, V, LDV, SVA, NR, A, LDA,
        !          1558:      $                  CWORK, LWORK, RWORK, LRWORK, INFO )
        !          1559:             SCALEM  = RWORK(1)
        !          1560:             NUMRANK = NINT(RWORK(2))
        !          1561: 
        !          1562:          ELSE
        !          1563: *
        !          1564: *        .. two more QR factorizations ( one QRF is not enough, two require
        !          1565: *        accumulated product of Jacobi rotations, three are perfect )
        !          1566: *
        !          1567:             CALL ZLASET( 'L', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA )
        !          1568:             CALL ZGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N, IERR)
        !          1569:             CALL ZLACPY( 'L', NR, NR, A, LDA, V, LDV )
        !          1570:             CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
        !          1571:             CALL ZGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
        !          1572:      $                   LWORK-2*N, IERR )
        !          1573:             DO 8998 p = 1, NR
        !          1574:                CALL ZCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
        !          1575:                CALL ZLACGV( NR-p+1, V(p,p), 1 )
        !          1576:  8998       CONTINUE
        !          1577:             CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV)
        !          1578: *
        !          1579:             CALL ZGESVJ( 'L', 'U','N', NR, NR, V,LDV, SVA, NR, U,
        !          1580:      $                  LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
        !          1581:             SCALEM  = RWORK(1)
        !          1582:             NUMRANK = NINT(RWORK(2))
        !          1583:             IF ( NR .LT. N ) THEN
        !          1584:                CALL ZLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1),  LDV )
        !          1585:                CALL ZLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1),  LDV )
        !          1586:                CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),LDV )
        !          1587:             END IF
        !          1588: *
        !          1589:          CALL ZUNMLQ( 'L', 'C', N, N, NR, A, LDA, CWORK,
        !          1590:      $               V, LDV, CWORK(N+1), LWORK-N, IERR )
        !          1591: *
        !          1592:          END IF
        !          1593: *         .. permute the rows of V
        !          1594: *         DO 8991 p = 1, N
        !          1595: *            CALL ZCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
        !          1596: * 8991    CONTINUE
        !          1597: *         CALL ZLACPY( 'All', N, N, A, LDA, V, LDV )
        !          1598:          CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK )
        !          1599: *
        !          1600:           IF ( TRANSP ) THEN
        !          1601:             CALL ZLACPY( 'A', N, N, V, LDV, U, LDU )
        !          1602:           END IF
        !          1603: *
        !          1604:       ELSE IF ( JRACC .AND. (.NOT. LSVEC) .AND. ( NR.EQ. N ) ) THEN 
        !          1605: *          
        !          1606:          CALL ZLASET( 'L', N-1,N-1, CZERO, CZERO, A(2,1), LDA )
        !          1607: *
        !          1608:          CALL ZGESVJ( 'U','N','V', N, N, A, LDA, SVA, N, V, LDV,
        !          1609:      $               CWORK, LWORK, RWORK, LRWORK, INFO )
        !          1610:           SCALEM  = RWORK(1)
        !          1611:           NUMRANK = NINT(RWORK(2))
        !          1612:           CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK )
        !          1613: *
        !          1614:       ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
        !          1615: *
        !          1616: *        .. Singular Values and Left Singular Vectors                 ..
        !          1617: *
        !          1618: *        .. second preconditioning step to avoid need to accumulate
        !          1619: *        Jacobi rotations in the Jacobi iterations.
        !          1620:          DO 1965 p = 1, NR
        !          1621:             CALL ZCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
        !          1622:             CALL ZLACGV( N-p+1, U(p,p), 1 )
        !          1623:  1965    CONTINUE
        !          1624:          CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
        !          1625: *
        !          1626:          CALL ZGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1),
        !          1627:      $              LWORK-2*N, IERR )
        !          1628: *
        !          1629:          DO 1967 p = 1, NR - 1
        !          1630:             CALL ZCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
        !          1631:             CALL ZLACGV( N-p+1, U(p,p), 1 )
        !          1632:  1967    CONTINUE
        !          1633:          CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
        !          1634: *
        !          1635:          CALL ZGESVJ( 'L', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
        !          1636:      $        LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
        !          1637:          SCALEM  = RWORK(1)
        !          1638:          NUMRANK = NINT(RWORK(2))
        !          1639: *
        !          1640:          IF ( NR .LT. M ) THEN
        !          1641:             CALL ZLASET( 'A',  M-NR, NR,CZERO, CZERO, U(NR+1,1), LDU )
        !          1642:             IF ( NR .LT. N1 ) THEN
        !          1643:                CALL ZLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU )
        !          1644:                CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),LDU )
        !          1645:             END IF
        !          1646:          END IF
        !          1647: *
        !          1648:          CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
        !          1649:      $               LDU, CWORK(N+1), LWORK-N, IERR )
        !          1650: *
        !          1651:          IF ( ROWPIV )
        !          1652:      $       CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
        !          1653: *
        !          1654:          DO 1974 p = 1, N1
        !          1655:             XSC = ONE / DZNRM2( M, U(1,p), 1 )
        !          1656:             CALL ZDSCAL( M, XSC, U(1,p), 1 )
        !          1657:  1974    CONTINUE
        !          1658: *
        !          1659:          IF ( TRANSP ) THEN
        !          1660:             CALL ZLACPY( 'A', N, N, U, LDU, V, LDV )
        !          1661:          END IF
        !          1662: *
        !          1663:       ELSE
        !          1664: *
        !          1665: *        .. Full SVD ..
        !          1666: *
        !          1667:          IF ( .NOT. JRACC ) THEN
        !          1668: *
        !          1669:          IF ( .NOT. ALMORT ) THEN
        !          1670: *
        !          1671: *           Second Preconditioning Step (QRF [with pivoting])
        !          1672: *           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
        !          1673: *           equivalent to an LQF CALL. Since in many libraries the QRF
        !          1674: *           seems to be better optimized than the LQF, we do explicit
        !          1675: *           transpose and use the QRF. This is subject to changes in an
        !          1676: *           optimized implementation of ZGEJSV.
        !          1677: *
        !          1678:             DO 1968 p = 1, NR
        !          1679:                CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
        !          1680:                CALL ZLACGV( N-p+1, V(p,p), 1 )
        !          1681:  1968       CONTINUE
        !          1682: *
        !          1683: *           .. the following two loops perturb small entries to avoid
        !          1684: *           denormals in the second QR factorization, where they are
        !          1685: *           as good as zeros. This is done to avoid painfully slow
        !          1686: *           computation with denormals. The relative size of the perturbation
        !          1687: *           is a parameter that can be changed by the implementer.
        !          1688: *           This perturbation device will be obsolete on machines with
        !          1689: *           properly implemented arithmetic.
        !          1690: *           To switch it off, set L2PERT=.FALSE. To remove it from  the
        !          1691: *           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
        !          1692: *           The following two loops should be blocked and fused with the
        !          1693: *           transposed copy above.
        !          1694: *
        !          1695:             IF ( L2PERT ) THEN
        !          1696:                XSC = SQRT(SMALL)
        !          1697:                DO 2969 q = 1, NR
        !          1698:                   CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
        !          1699:                   DO 2968 p = 1, N
        !          1700:                      IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
        !          1701:      $                   .OR. ( p .LT. q ) )
        !          1702: *     $                   V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
        !          1703:      $                   V(p,q) = CTEMP
        !          1704:                      IF ( p .LT. q ) V(p,q) = - V(p,q)
        !          1705:  2968             CONTINUE
        !          1706:  2969          CONTINUE
        !          1707:             ELSE
        !          1708:                CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
        !          1709:             END IF
        !          1710: *
        !          1711: *           Estimate the row scaled condition number of R1
        !          1712: *           (If R1 is rectangular, N > NR, then the condition number
        !          1713: *           of the leading NR x NR submatrix is estimated.)
        !          1714: *
        !          1715:             CALL ZLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR )
        !          1716:             DO 3950 p = 1, NR
        !          1717:                TEMP1 = DZNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1)
        !          1718:                CALL ZDSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1)
        !          1719:  3950       CONTINUE
        !          1720:             CALL ZPOCON('L',NR,CWORK(2*N+1),NR,ONE,TEMP1,
        !          1721:      $                   CWORK(2*N+NR*NR+1),RWORK,IERR)
        !          1722:             CONDR1 = ONE / SQRT(TEMP1)
        !          1723: *           .. here need a second oppinion on the condition number
        !          1724: *           .. then assume worst case scenario
        !          1725: *           R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
        !          1726: *           more conservative    <=> CONDR1 .LT. SQRT(DBLE(N))
        !          1727: *
        !          1728:             COND_OK = SQRT(SQRT(DBLE(NR)))
        !          1729: *[TP]       COND_OK is a tuning parameter.
        !          1730: *
        !          1731:             IF ( CONDR1 .LT. COND_OK ) THEN
        !          1732: *              .. the second QRF without pivoting. Note: in an optimized
        !          1733: *              implementation, this QRF should be implemented as the QRF
        !          1734: *              of a lower triangular matrix.
        !          1735: *              R1^* = Q2 * R2
        !          1736:                CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
        !          1737:      $              LWORK-2*N, IERR )
        !          1738: *
        !          1739:                IF ( L2PERT ) THEN
        !          1740:                   XSC = SQRT(SMALL)/EPSLN
        !          1741:                   DO 3959 p = 2, NR
        !          1742:                      DO 3958 q = 1, p - 1
        !          1743:                         CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
        !          1744:      $                              ZERO)
        !          1745:                         IF ( ABS(V(q,p)) .LE. TEMP1 )
        !          1746: *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
        !          1747:      $                     V(q,p) = CTEMP
        !          1748:  3958                CONTINUE
        !          1749:  3959             CONTINUE
        !          1750:                END IF
        !          1751: *
        !          1752:                IF ( NR .NE. N )
        !          1753:      $         CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
        !          1754: *              .. save ...
        !          1755: *
        !          1756: *           .. this transposed copy should be better than naive
        !          1757:                DO 1969 p = 1, NR - 1
        !          1758:                   CALL ZCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
        !          1759:                   CALL ZLACGV(NR-p+1, V(p,p), 1 )
        !          1760:  1969          CONTINUE
        !          1761:                V(NR,NR)=CONJG(V(NR,NR))
        !          1762: *
        !          1763:                CONDR2 = CONDR1
        !          1764: *
        !          1765:             ELSE
        !          1766: *
        !          1767: *              .. ill-conditioned case: second QRF with pivoting
        !          1768: *              Note that windowed pivoting would be equaly good
        !          1769: *              numerically, and more run-time efficient. So, in
        !          1770: *              an optimal implementation, the next call to ZGEQP3
        !          1771: *              should be replaced with eg. CALL ZGEQPX (ACM TOMS #782)
        !          1772: *              with properly (carefully) chosen parameters.
        !          1773: *
        !          1774: *              R1^* * P2 = Q2 * R2
        !          1775:                DO 3003 p = 1, NR
        !          1776:                   IWORK(N+p) = 0
        !          1777:  3003          CONTINUE
        !          1778:                CALL ZGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1),
        !          1779:      $                  CWORK(2*N+1), LWORK-2*N, RWORK, IERR )
        !          1780: **               CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
        !          1781: **     $              LWORK-2*N, IERR )
        !          1782:                IF ( L2PERT ) THEN
        !          1783:                   XSC = SQRT(SMALL)
        !          1784:                   DO 3969 p = 2, NR
        !          1785:                      DO 3968 q = 1, p - 1
        !          1786:                         CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
        !          1787:      $                                ZERO)
        !          1788:                         IF ( ABS(V(q,p)) .LE. TEMP1 )
        !          1789: *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
        !          1790:      $                     V(q,p) = CTEMP
        !          1791:  3968                CONTINUE
        !          1792:  3969             CONTINUE
        !          1793:                END IF
        !          1794: *
        !          1795:                CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
        !          1796: *
        !          1797:                IF ( L2PERT ) THEN
        !          1798:                   XSC = SQRT(SMALL)
        !          1799:                   DO 8970 p = 2, NR
        !          1800:                      DO 8971 q = 1, p - 1
        !          1801:                         CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
        !          1802:      $                               ZERO)
        !          1803: *                        V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) )
        !          1804:                         V(p,q) = - CTEMP
        !          1805:  8971                CONTINUE
        !          1806:  8970             CONTINUE
        !          1807:                ELSE
        !          1808:                   CALL ZLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV )
        !          1809:                END IF
        !          1810: *              Now, compute R2 = L3 * Q3, the LQ factorization.
        !          1811:                CALL ZGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1),
        !          1812:      $               CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
        !          1813: *              .. and estimate the condition number
        !          1814:                CALL ZLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR )
        !          1815:                DO 4950 p = 1, NR
        !          1816:                   TEMP1 = DZNRM2( p, CWORK(2*N+N*NR+NR+p), NR )
        !          1817:                   CALL ZDSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p), NR )
        !          1818:  4950          CONTINUE
        !          1819:                CALL ZPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
        !          1820:      $              CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR )
        !          1821:                CONDR2 = ONE / SQRT(TEMP1)
        !          1822: *
        !          1823: *
        !          1824:                IF ( CONDR2 .GE. COND_OK ) THEN
        !          1825: *                 .. save the Householder vectors used for Q3
        !          1826: *                 (this overwrittes the copy of R2, as it will not be
        !          1827: *                 needed in this branch, but it does not overwritte the
        !          1828: *                 Huseholder vectors of Q2.).
        !          1829:                   CALL ZLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N )
        !          1830: *                 .. and the rest of the information on Q3 is in
        !          1831: *                 WORK(2*N+N*NR+1:2*N+N*NR+N)
        !          1832:                END IF
        !          1833: *
        !          1834:             END IF
        !          1835: *
        !          1836:             IF ( L2PERT ) THEN
        !          1837:                XSC = SQRT(SMALL)
        !          1838:                DO 4968 q = 2, NR
        !          1839:                   CTEMP = XSC * V(q,q)
        !          1840:                   DO 4969 p = 1, q - 1
        !          1841: *                     V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) )
        !          1842:                      V(p,q) = - CTEMP
        !          1843:  4969             CONTINUE
        !          1844:  4968          CONTINUE
        !          1845:             ELSE
        !          1846:                CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
        !          1847:             END IF
        !          1848: *
        !          1849: *        Second preconditioning finished; continue with Jacobi SVD
        !          1850: *        The input matrix is lower trinagular.
        !          1851: *
        !          1852: *        Recover the right singular vectors as solution of a well
        !          1853: *        conditioned triangular matrix equation.
        !          1854: *
        !          1855:             IF ( CONDR1 .LT. COND_OK ) THEN
        !          1856: *
        !          1857:                CALL ZGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU,
        !          1858:      $              CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK,
        !          1859:      $              LRWORK, INFO )
        !          1860:                SCALEM  = RWORK(1)
        !          1861:                NUMRANK = NINT(RWORK(2))
        !          1862:                DO 3970 p = 1, NR
        !          1863:                   CALL ZCOPY(  NR, V(1,p), 1, U(1,p), 1 )
        !          1864:                   CALL ZDSCAL( NR, SVA(p),    V(1,p), 1 )
        !          1865:  3970          CONTINUE
        !          1866: 
        !          1867: *        .. pick the right matrix equation and solve it
        !          1868: *
        !          1869:                IF ( NR .EQ. N ) THEN
        !          1870: * :))             .. best case, R1 is inverted. The solution of this matrix
        !          1871: *                 equation is Q2*V2 = the product of the Jacobi rotations
        !          1872: *                 used in ZGESVJ, premultiplied with the orthogonal matrix
        !          1873: *                 from the second QR factorization.
        !          1874:                   CALL ZTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,LDV)
        !          1875:                ELSE
        !          1876: *                 .. R1 is well conditioned, but non-square. Adjoint of R2
        !          1877: *                 is inverted to get the product of the Jacobi rotations
        !          1878: *                 used in ZGESVJ. The Q-factor from the second QR
        !          1879: *                 factorization is then built in explicitly.
        !          1880:                   CALL ZTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1),
        !          1881:      $                 N,V,LDV)
        !          1882:                   IF ( NR .LT. N ) THEN
        !          1883:                   CALL ZLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
        !          1884:                   CALL ZLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
        !          1885:                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
        !          1886:                   END IF
        !          1887:                   CALL ZUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
        !          1888:      $                V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
        !          1889:                END IF
        !          1890: *
        !          1891:             ELSE IF ( CONDR2 .LT. COND_OK ) THEN
        !          1892: *
        !          1893: *              The matrix R2 is inverted. The solution of the matrix equation
        !          1894: *              is Q3^* * V3 = the product of the Jacobi rotations (appplied to
        !          1895: *              the lower triangular L3 from the LQ factorization of
        !          1896: *              R2=L3*Q3), pre-multiplied with the transposed Q3.
        !          1897:                CALL ZGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
        !          1898:      $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
        !          1899:      $              RWORK, LRWORK, INFO )
        !          1900:                SCALEM  = RWORK(1)
        !          1901:                NUMRANK = NINT(RWORK(2))
        !          1902:                DO 3870 p = 1, NR
        !          1903:                   CALL ZCOPY( NR, V(1,p), 1, U(1,p), 1 )
        !          1904:                   CALL ZDSCAL( NR, SVA(p),    U(1,p), 1 )
        !          1905:  3870          CONTINUE
        !          1906:                CALL ZTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N,
        !          1907:      $                    U,LDU)
        !          1908: *              .. apply the permutation from the second QR factorization
        !          1909:                DO 873 q = 1, NR
        !          1910:                   DO 872 p = 1, NR
        !          1911:                      CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
        !          1912:  872              CONTINUE
        !          1913:                   DO 874 p = 1, NR
        !          1914:                      U(p,q) = CWORK(2*N+N*NR+NR+p)
        !          1915:  874              CONTINUE
        !          1916:  873           CONTINUE
        !          1917:                IF ( NR .LT. N ) THEN
        !          1918:                   CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
        !          1919:                   CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
        !          1920:                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
        !          1921:                END IF
        !          1922:                CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
        !          1923:      $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
        !          1924:             ELSE
        !          1925: *              Last line of defense.
        !          1926: * #:(          This is a rather pathological case: no scaled condition
        !          1927: *              improvement after two pivoted QR factorizations. Other
        !          1928: *              possibility is that the rank revealing QR factorization
        !          1929: *              or the condition estimator has failed, or the COND_OK
        !          1930: *              is set very close to ONE (which is unnecessary). Normally,
        !          1931: *              this branch should never be executed, but in rare cases of
        !          1932: *              failure of the RRQR or condition estimator, the last line of
        !          1933: *              defense ensures that ZGEJSV completes the task.
        !          1934: *              Compute the full SVD of L3 using ZGESVJ with explicit
        !          1935: *              accumulation of Jacobi rotations.
        !          1936:                CALL ZGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
        !          1937:      $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
        !          1938:      $                         RWORK, LRWORK, INFO )
        !          1939:                SCALEM  = RWORK(1)
        !          1940:                NUMRANK = NINT(RWORK(2))
        !          1941:                IF ( NR .LT. N ) THEN
        !          1942:                   CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
        !          1943:                   CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
        !          1944:                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
        !          1945:                END IF
        !          1946:                CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
        !          1947:      $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
        !          1948: *
        !          1949:                CALL ZUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N,
        !          1950:      $              CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1),
        !          1951:      $              LWORK-2*N-N*NR-NR, IERR )
        !          1952:                DO 773 q = 1, NR
        !          1953:                   DO 772 p = 1, NR
        !          1954:                      CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
        !          1955:  772              CONTINUE
        !          1956:                   DO 774 p = 1, NR
        !          1957:                      U(p,q) = CWORK(2*N+N*NR+NR+p)
        !          1958:  774              CONTINUE
        !          1959:  773           CONTINUE
        !          1960: *
        !          1961:             END IF
        !          1962: *
        !          1963: *           Permute the rows of V using the (column) permutation from the
        !          1964: *           first QRF. Also, scale the columns to make them unit in
        !          1965: *           Euclidean norm. This applies to all cases.
        !          1966: *
        !          1967:             TEMP1 = SQRT(DBLE(N)) * EPSLN
        !          1968:             DO 1972 q = 1, N
        !          1969:                DO 972 p = 1, N
        !          1970:                   CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
        !          1971:   972          CONTINUE
        !          1972:                DO 973 p = 1, N
        !          1973:                   V(p,q) = CWORK(2*N+N*NR+NR+p)
        !          1974:   973          CONTINUE
        !          1975:                XSC = ONE / DZNRM2( N, V(1,q), 1 )
        !          1976:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        !          1977:      $           CALL ZDSCAL( N, XSC, V(1,q), 1 )
        !          1978:  1972       CONTINUE
        !          1979: *           At this moment, V contains the right singular vectors of A.
        !          1980: *           Next, assemble the left singular vector matrix U (M x N).
        !          1981:             IF ( NR .LT. M ) THEN
        !          1982:                CALL ZLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)
        !          1983:                IF ( NR .LT. N1 ) THEN
        !          1984:                   CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
        !          1985:                   CALL ZLASET('A',M-NR,N1-NR,CZERO,CONE,
        !          1986:      $                        U(NR+1,NR+1),LDU)
        !          1987:                END IF
        !          1988:             END IF
        !          1989: *
        !          1990: *           The Q matrix from the first QRF is built into the left singular
        !          1991: *           matrix U. This applies to all cases.
        !          1992: *
        !          1993:             CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
        !          1994:      $           LDU, CWORK(N+1), LWORK-N, IERR )
        !          1995: 
        !          1996: *           The columns of U are normalized. The cost is O(M*N) flops.
        !          1997:             TEMP1 = SQRT(DBLE(M)) * EPSLN
        !          1998:             DO 1973 p = 1, NR
        !          1999:                XSC = ONE / DZNRM2( M, U(1,p), 1 )
        !          2000:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        !          2001:      $          CALL ZDSCAL( M, XSC, U(1,p), 1 )
        !          2002:  1973       CONTINUE
        !          2003: *
        !          2004: *           If the initial QRF is computed with row pivoting, the left
        !          2005: *           singular vectors must be adjusted.
        !          2006: *
        !          2007:             IF ( ROWPIV )
        !          2008:      $          CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
        !          2009: *
        !          2010:          ELSE
        !          2011: *
        !          2012: *        .. the initial matrix A has almost orthogonal columns and
        !          2013: *        the second QRF is not needed
        !          2014: *
        !          2015:             CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
        !          2016:             IF ( L2PERT ) THEN
        !          2017:                XSC = SQRT(SMALL)
        !          2018:                DO 5970 p = 2, N
        !          2019:                   CTEMP = XSC * CWORK( N + (p-1)*N + p )
        !          2020:                   DO 5971 q = 1, p - 1
        !          2021: *                     CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) /
        !          2022: *     $                                        ABS(CWORK(N+(p-1)*N+q)) )
        !          2023:                      CWORK(N+(q-1)*N+p)=-CTEMP
        !          2024:  5971             CONTINUE
        !          2025:  5970          CONTINUE
        !          2026:             ELSE
        !          2027:                CALL ZLASET( 'L',N-1,N-1,CZERO,CZERO,CWORK(N+2),N )
        !          2028:             END IF
        !          2029: *
        !          2030:             CALL ZGESVJ( 'U', 'U', 'N', N, N, CWORK(N+1), N, SVA,
        !          2031:      $           N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK,
        !          2032:      $       INFO )
        !          2033: *
        !          2034:             SCALEM  = RWORK(1)
        !          2035:             NUMRANK = NINT(RWORK(2))
        !          2036:             DO 6970 p = 1, N
        !          2037:                CALL ZCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 )
        !          2038:                CALL ZDSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 )
        !          2039:  6970       CONTINUE
        !          2040: *
        !          2041:             CALL ZTRSM( 'L', 'U', 'N', 'N', N, N,
        !          2042:      $           CONE, A, LDA, CWORK(N+1), N )
        !          2043:             DO 6972 p = 1, N
        !          2044:                CALL ZCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV )
        !          2045:  6972       CONTINUE
        !          2046:             TEMP1 = SQRT(DBLE(N))*EPSLN
        !          2047:             DO 6971 p = 1, N
        !          2048:                XSC = ONE / DZNRM2( N, V(1,p), 1 )
        !          2049:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        !          2050:      $            CALL ZDSCAL( N, XSC, V(1,p), 1 )
        !          2051:  6971       CONTINUE
        !          2052: *
        !          2053: *           Assemble the left singular vector matrix U (M x N).
        !          2054: *
        !          2055:             IF ( N .LT. M ) THEN
        !          2056:                CALL ZLASET( 'A',  M-N, N, CZERO, CZERO, U(N+1,1), LDU )
        !          2057:                IF ( N .LT. N1 ) THEN
        !          2058:                   CALL ZLASET('A',N,  N1-N, CZERO, CZERO,  U(1,N+1),LDU)
        !          2059:                   CALL ZLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),LDU)
        !          2060:                END IF
        !          2061:             END IF
        !          2062:             CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
        !          2063:      $           LDU, CWORK(N+1), LWORK-N, IERR )
        !          2064:             TEMP1 = SQRT(DBLE(M))*EPSLN
        !          2065:             DO 6973 p = 1, N1
        !          2066:                XSC = ONE / DZNRM2( M, U(1,p), 1 )
        !          2067:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        !          2068:      $            CALL ZDSCAL( M, XSC, U(1,p), 1 )
        !          2069:  6973       CONTINUE
        !          2070: *
        !          2071:             IF ( ROWPIV )
        !          2072:      $         CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
        !          2073: *
        !          2074:          END IF
        !          2075: *
        !          2076: *        end of the  >> almost orthogonal case <<  in the full SVD
        !          2077: *
        !          2078:          ELSE
        !          2079: *
        !          2080: *        This branch deploys a preconditioned Jacobi SVD with explicitly
        !          2081: *        accumulated rotations. It is included as optional, mainly for
        !          2082: *        experimental purposes. It does perfom well, and can also be used.
        !          2083: *        In this implementation, this branch will be automatically activated
        !          2084: *        if the  condition number sigma_max(A) / sigma_min(A) is predicted
        !          2085: *        to be greater than the overflow threshold. This is because the
        !          2086: *        a posteriori computation of the singular vectors assumes robust
        !          2087: *        implementation of BLAS and some LAPACK procedures, capable of working
        !          2088: *        in presence of extreme values, e.g. when the singular values spread from
        !          2089: *        the underflow to the overflow threshold. 
        !          2090: *
        !          2091:          DO 7968 p = 1, NR
        !          2092:             CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
        !          2093:             CALL ZLACGV( N-p+1, V(p,p), 1 )
        !          2094:  7968    CONTINUE
        !          2095: *
        !          2096:          IF ( L2PERT ) THEN
        !          2097:             XSC = SQRT(SMALL/EPSLN)
        !          2098:             DO 5969 q = 1, NR
        !          2099:                CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
        !          2100:                DO 5968 p = 1, N
        !          2101:                   IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
        !          2102:      $                .OR. ( p .LT. q ) )
        !          2103: *     $                V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
        !          2104:      $                V(p,q) = CTEMP
        !          2105:                   IF ( p .LT. q ) V(p,q) = - V(p,q)
        !          2106:  5968          CONTINUE
        !          2107:  5969       CONTINUE
        !          2108:          ELSE
        !          2109:             CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
        !          2110:          END IF
        !          2111: 
        !          2112:          CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
        !          2113:      $        LWORK-2*N, IERR )
        !          2114:          CALL ZLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N )
        !          2115: *
        !          2116:          DO 7969 p = 1, NR
        !          2117:             CALL ZCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
        !          2118:             CALL ZLACGV( NR-p+1, U(p,p), 1 )
        !          2119:  7969    CONTINUE
        !          2120: 
        !          2121:          IF ( L2PERT ) THEN
        !          2122:             XSC = SQRT(SMALL/EPSLN)
        !          2123:             DO 9970 q = 2, NR
        !          2124:                DO 9971 p = 1, q - 1
        !          2125:                   CTEMP = DCMPLX(XSC * MIN(ABS(U(p,p)),ABS(U(q,q))),
        !          2126:      $                            ZERO)
        !          2127: *                  U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) )
        !          2128:                   U(p,q) = - CTEMP
        !          2129:  9971          CONTINUE
        !          2130:  9970       CONTINUE
        !          2131:          ELSE
        !          2132:             CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
        !          2133:          END IF
        !          2134: 
        !          2135:          CALL ZGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,
        !          2136:      $        N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR,
        !          2137:      $         RWORK, LRWORK, INFO )
        !          2138:          SCALEM  = RWORK(1)
        !          2139:          NUMRANK = NINT(RWORK(2))
        !          2140: 
        !          2141:          IF ( NR .LT. N ) THEN
        !          2142:             CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
        !          2143:             CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
        !          2144:             CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV )
        !          2145:          END IF
        !          2146: 
        !          2147:          CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
        !          2148:      $        V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
        !          2149: *
        !          2150: *           Permute the rows of V using the (column) permutation from the
        !          2151: *           first QRF. Also, scale the columns to make them unit in
        !          2152: *           Euclidean norm. This applies to all cases.
        !          2153: *
        !          2154:             TEMP1 = SQRT(DBLE(N)) * EPSLN
        !          2155:             DO 7972 q = 1, N
        !          2156:                DO 8972 p = 1, N
        !          2157:                   CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
        !          2158:  8972          CONTINUE
        !          2159:                DO 8973 p = 1, N
        !          2160:                   V(p,q) = CWORK(2*N+N*NR+NR+p)
        !          2161:  8973          CONTINUE
        !          2162:                XSC = ONE / DZNRM2( N, V(1,q), 1 )
        !          2163:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        !          2164:      $           CALL ZDSCAL( N, XSC, V(1,q), 1 )
        !          2165:  7972       CONTINUE
        !          2166: *
        !          2167: *           At this moment, V contains the right singular vectors of A.
        !          2168: *           Next, assemble the left singular vector matrix U (M x N).
        !          2169: *
        !          2170:          IF ( NR .LT. M ) THEN
        !          2171:             CALL ZLASET( 'A',  M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU )
        !          2172:             IF ( NR .LT. N1 ) THEN
        !          2173:                CALL ZLASET('A',NR,  N1-NR, CZERO, CZERO,  U(1,NR+1),LDU)
        !          2174:                CALL ZLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),LDU)
        !          2175:             END IF
        !          2176:          END IF
        !          2177: *
        !          2178:          CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
        !          2179:      $        LDU, CWORK(N+1), LWORK-N, IERR )
        !          2180: *
        !          2181:             IF ( ROWPIV )
        !          2182:      $         CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
        !          2183: *
        !          2184: *
        !          2185:          END IF
        !          2186:          IF ( TRANSP ) THEN
        !          2187: *           .. swap U and V because the procedure worked on A^*
        !          2188:             DO 6974 p = 1, N
        !          2189:                CALL ZSWAP( N, U(1,p), 1, V(1,p), 1 )
        !          2190:  6974       CONTINUE
        !          2191:          END IF
        !          2192: *
        !          2193:       END IF
        !          2194: *     end of the full SVD
        !          2195: *
        !          2196: *     Undo scaling, if necessary (and possible)
        !          2197: *
        !          2198:       IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
        !          2199:          CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
        !          2200:          USCAL1 = ONE
        !          2201:          USCAL2 = ONE
        !          2202:       END IF
        !          2203: *
        !          2204:       IF ( NR .LT. N ) THEN
        !          2205:          DO 3004 p = NR+1, N
        !          2206:             SVA(p) = ZERO
        !          2207:  3004    CONTINUE
        !          2208:       END IF
        !          2209: *
        !          2210:       RWORK(1) = USCAL2 * SCALEM
        !          2211:       RWORK(2) = USCAL1
        !          2212:       IF ( ERREST ) RWORK(3) = SCONDA
        !          2213:       IF ( LSVEC .AND. RSVEC ) THEN
        !          2214:          RWORK(4) = CONDR1
        !          2215:          RWORK(5) = CONDR2
        !          2216:       END IF
        !          2217:       IF ( L2TRAN ) THEN
        !          2218:          RWORK(6) = ENTRA
        !          2219:          RWORK(7) = ENTRAT
        !          2220:       END IF
        !          2221: *
        !          2222:       IWORK(1) = NR
        !          2223:       IWORK(2) = NUMRANK
        !          2224:       IWORK(3) = WARNING
        !          2225:       IF ( TRANSP ) THEN
        !          2226:           IWORK(4) =  1 
        !          2227:       ELSE
        !          2228:           IWORK(4) = -1
        !          2229:       END IF 
        !          2230:       
        !          2231: *
        !          2232:       RETURN
        !          2233: *     ..
        !          2234: *     .. END OF ZGEJSV
        !          2235: *     ..
        !          2236:       END
        !          2237: *

CVSweb interface <joel.bertrand@systella.fr>