Annotation of rpl/lapack/lapack/zgejsv.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b ZGEJSV
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGEJSV + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgejsv.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgejsv.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgejsv.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *     SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
        !            22: *                         M, N, A, LDA, SVA, U, LDU, V, LDV,
        !            23: *                         CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
        !            24: * 
        !            25: *     .. Scalar Arguments ..
        !            26: *     IMPLICIT    NONE
        !            27: *     INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
        !            28: *     ..
        !            29: *     .. Array Arguments ..
        !            30: *     DOUBLE COMPLEX     A( LDA, * ),  U( LDU, * ), V( LDV, * ), CWORK( LWORK )
        !            31: *     DOUBLE PRECISION   SVA( N ), RWORK( LRWORK )      
        !            32: *     INTEGER     IWORK( * )
        !            33: *     CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
        !            34: *       ..
        !            35: *  
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: * ZGEJSV computes the singular value decomposition (SVD) of a real M-by-N
        !            43: * matrix [A], where M >= N. The SVD of [A] is written as
        !            44: *
        !            45: *              [A] = [U] * [SIGMA] * [V]^*,
        !            46: *
        !            47: * where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
        !            48: * diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and
        !            49: * [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are
        !            50: * the singular values of [A]. The columns of [U] and [V] are the left and
        !            51: * the right singular vectors of [A], respectively. The matrices [U] and [V]
        !            52: * are computed and stored in the arrays U and V, respectively. The diagonal
        !            53: * of [SIGMA] is computed and stored in the array SVA.
        !            54: *
        !            55: *  Arguments:
        !            56: *  ==========
        !            57: *>
        !            58: *> \param[in] JOBA
        !            59: *> \verbatim
        !            60: *>          JOBA is CHARACTER*1
        !            61: *>         Specifies the level of accuracy:
        !            62: *>       = 'C': This option works well (high relative accuracy) if A = B * D,
        !            63: *>              with well-conditioned B and arbitrary diagonal matrix D.
        !            64: *>              The accuracy cannot be spoiled by COLUMN scaling. The
        !            65: *>              accuracy of the computed output depends on the condition of
        !            66: *>              B, and the procedure aims at the best theoretical accuracy.
        !            67: *>              The relative error max_{i=1:N}|d sigma_i| / sigma_i is
        !            68: *>              bounded by f(M,N)*epsilon* cond(B), independent of D.
        !            69: *>              The input matrix is preprocessed with the QRF with column
        !            70: *>              pivoting. This initial preprocessing and preconditioning by
        !            71: *>              a rank revealing QR factorization is common for all values of
        !            72: *>              JOBA. Additional actions are specified as follows:
        !            73: *>       = 'E': Computation as with 'C' with an additional estimate of the
        !            74: *>              condition number of B. It provides a realistic error bound.
        !            75: *>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
        !            76: *>              D1, D2, and well-conditioned matrix C, this option gives
        !            77: *>              higher accuracy than the 'C' option. If the structure of the
        !            78: *>              input matrix is not known, and relative accuracy is
        !            79: *>              desirable, then this option is advisable. The input matrix A
        !            80: *>              is preprocessed with QR factorization with FULL (row and
        !            81: *>              column) pivoting.
        !            82: *>       = 'G'  Computation as with 'F' with an additional estimate of the
        !            83: *>              condition number of B, where A=D*B. If A has heavily weighted
        !            84: *>              rows, then using this condition number gives too pessimistic
        !            85: *>              error bound.
        !            86: *>       = 'A': Small singular values are the noise and the matrix is treated
        !            87: *>              as numerically rank defficient. The error in the computed
        !            88: *>              singular values is bounded by f(m,n)*epsilon*||A||.
        !            89: *>              The computed SVD A = U * S * V^* restores A up to
        !            90: *>              f(m,n)*epsilon*||A||.
        !            91: *>              This gives the procedure the licence to discard (set to zero)
        !            92: *>              all singular values below N*epsilon*||A||.
        !            93: *>       = 'R': Similar as in 'A'. Rank revealing property of the initial
        !            94: *>              QR factorization is used do reveal (using triangular factor)
        !            95: *>              a gap sigma_{r+1} < epsilon * sigma_r in which case the
        !            96: *>              numerical RANK is declared to be r. The SVD is computed with
        !            97: *>              absolute error bounds, but more accurately than with 'A'.
        !            98: *> \endverbatim
        !            99: *> 
        !           100: *> \param[in] JOBU
        !           101: *> \verbatim
        !           102: *>          JOBU is CHARACTER*1
        !           103: *>         Specifies whether to compute the columns of U:
        !           104: *>       = 'U': N columns of U are returned in the array U.
        !           105: *>       = 'F': full set of M left sing. vectors is returned in the array U.
        !           106: *>       = 'W': U may be used as workspace of length M*N. See the description
        !           107: *>              of U.
        !           108: *>       = 'N': U is not computed.
        !           109: *> \endverbatim
        !           110: *> 
        !           111: *> \param[in] JOBV
        !           112: *> \verbatim
        !           113: *>          JOBV is CHARACTER*1
        !           114: *>         Specifies whether to compute the matrix V:
        !           115: *>       = 'V': N columns of V are returned in the array V; Jacobi rotations
        !           116: *>              are not explicitly accumulated.
        !           117: *>       = 'J': N columns of V are returned in the array V, but they are
        !           118: *>              computed as the product of Jacobi rotations. This option is
        !           119: *>              allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.
        !           120: *>       = 'W': V may be used as workspace of length N*N. See the description
        !           121: *>              of V.
        !           122: *>       = 'N': V is not computed.
        !           123: *> \endverbatim
        !           124: *> 
        !           125: *> \param[in] JOBR
        !           126: *> \verbatim
        !           127: *>          JOBR is CHARACTER*1
        !           128: *>         Specifies the RANGE for the singular values. Issues the licence to
        !           129: *>         set to zero small positive singular values if they are outside
        !           130: *>         specified range. If A .NE. 0 is scaled so that the largest singular
        !           131: *>         value of c*A is around SQRT(BIG), BIG=DLAMCH('O'), then JOBR issues
        !           132: *>         the licence to kill columns of A whose norm in c*A is less than
        !           133: *>         SQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,
        !           134: *>         where SFMIN=DLAMCH('S'), EPSLN=DLAMCH('E').
        !           135: *>       = 'N': Do not kill small columns of c*A. This option assumes that
        !           136: *>              BLAS and QR factorizations and triangular solvers are
        !           137: *>              implemented to work in that range. If the condition of A
        !           138: *>              is greater than BIG, use ZGESVJ.
        !           139: *>       = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]
        !           140: *>              (roughly, as described above). This option is recommended.
        !           141: *>                                             ===========================
        !           142: *>         For computing the singular values in the FULL range [SFMIN,BIG]
        !           143: *>         use ZGESVJ.
        !           144: *> \endverbatim
        !           145: *> 
        !           146: *> \param[in] JOBT
        !           147: *> \verbatim
        !           148: *>          JOBT is CHARACTER*1
        !           149: *>         If the matrix is square then the procedure may determine to use
        !           150: *>         transposed A if A^* seems to be better with respect to convergence.
        !           151: *>         If the matrix is not square, JOBT is ignored. This is subject to
        !           152: *>         changes in the future.
        !           153: *>         The decision is based on two values of entropy over the adjoint
        !           154: *>         orbit of A^* * A. See the descriptions of WORK(6) and WORK(7).
        !           155: *>       = 'T': transpose if entropy test indicates possibly faster
        !           156: *>         convergence of Jacobi process if A^* is taken as input. If A is
        !           157: *>         replaced with A^*, then the row pivoting is included automatically.
        !           158: *>       = 'N': do not speculate.
        !           159: *>         This option can be used to compute only the singular values, or the
        !           160: *>         full SVD (U, SIGMA and V). For only one set of singular vectors
        !           161: *>         (U or V), the caller should provide both U and V, as one of the
        !           162: *>         matrices is used as workspace if the matrix A is transposed.
        !           163: *>         The implementer can easily remove this constraint and make the
        !           164: *>         code more complicated. See the descriptions of U and V.
        !           165: *> \endverbatim
        !           166: *> 
        !           167: *> \param[in] JOBP
        !           168: *> \verbatim
        !           169: *>          JOBP is CHARACTER*1
        !           170: *>         Issues the licence to introduce structured perturbations to drown
        !           171: *>         denormalized numbers. This licence should be active if the
        !           172: *>         denormals are poorly implemented, causing slow computation,
        !           173: *>         especially in cases of fast convergence (!). For details see [1,2].
        !           174: *>         For the sake of simplicity, this perturbations are included only
        !           175: *>         when the full SVD or only the singular values are requested. The
        !           176: *>         implementer/user can easily add the perturbation for the cases of
        !           177: *>         computing one set of singular vectors.
        !           178: *>       = 'P': introduce perturbation
        !           179: *>       = 'N': do not perturb
        !           180: *> \endverbatim
        !           181: *>
        !           182: *> \param[in] M
        !           183: *> \verbatim
        !           184: *>          M is INTEGER
        !           185: *>         The number of rows of the input matrix A.  M >= 0.
        !           186: *> \endverbatim
        !           187: *>
        !           188: *> \param[in] N
        !           189: *> \verbatim
        !           190: *>          N is INTEGER
        !           191: *>         The number of columns of the input matrix A. M >= N >= 0.
        !           192: *> \endverbatim
        !           193: *>
        !           194: *> \param[in,out] A
        !           195: *> \verbatim
        !           196: *>          A is DOUBLE COMPLEX array, dimension (LDA,N)
        !           197: *>          On entry, the M-by-N matrix A.
        !           198: *> \endverbatim
        !           199: *>
        !           200: *> \param[in] LDA
        !           201: *> \verbatim
        !           202: *>          LDA is INTEGER
        !           203: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !           204: *> \endverbatim
        !           205: *>
        !           206: *> \param[out] SVA
        !           207: *> \verbatim
        !           208: *>          SVA is DOUBLE PRECISION array, dimension (N)
        !           209: *>          On exit,
        !           210: *>          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
        !           211: *>            computation SVA contains Euclidean column norms of the
        !           212: *>            iterated matrices in the array A.
        !           213: *>          - For WORK(1) .NE. WORK(2): The singular values of A are
        !           214: *>            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
        !           215: *>            sigma_max(A) overflows or if small singular values have been
        !           216: *>            saved from underflow by scaling the input matrix A.
        !           217: *>          - If JOBR='R' then some of the singular values may be returned
        !           218: *>            as exact zeros obtained by "set to zero" because they are
        !           219: *>            below the numerical rank threshold or are denormalized numbers.
        !           220: *> \endverbatim
        !           221: *>
        !           222: *> \param[out] U
        !           223: *> \verbatim
        !           224: *>          U is DOUBLE COMPLEX array, dimension ( LDU, N )
        !           225: *>          If JOBU = 'U', then U contains on exit the M-by-N matrix of
        !           226: *>                         the left singular vectors.
        !           227: *>          If JOBU = 'F', then U contains on exit the M-by-M matrix of
        !           228: *>                         the left singular vectors, including an ONB
        !           229: *>                         of the orthogonal complement of the Range(A).
        !           230: *>          If JOBU = 'W'  .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),
        !           231: *>                         then U is used as workspace if the procedure
        !           232: *>                         replaces A with A^*. In that case, [V] is computed
        !           233: *>                         in U as left singular vectors of A^* and then
        !           234: *>                         copied back to the V array. This 'W' option is just
        !           235: *>                         a reminder to the caller that in this case U is
        !           236: *>                         reserved as workspace of length N*N.
        !           237: *>          If JOBU = 'N'  U is not referenced.
        !           238: *> \endverbatim
        !           239: *>
        !           240: *> \param[in] LDU
        !           241: *> \verbatim
        !           242: *>          LDU is INTEGER
        !           243: *>          The leading dimension of the array U,  LDU >= 1.
        !           244: *>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
        !           245: *> \endverbatim
        !           246: *>
        !           247: *> \param[out] V
        !           248: *> \verbatim
        !           249: *>          V is DOUBLE COMPLEX array, dimension ( LDV, N )
        !           250: *>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
        !           251: *>                         the right singular vectors;
        !           252: *>          If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),
        !           253: *>                         then V is used as workspace if the pprocedure
        !           254: *>                         replaces A with A^*. In that case, [U] is computed
        !           255: *>                         in V as right singular vectors of A^* and then
        !           256: *>                         copied back to the U array. This 'W' option is just
        !           257: *>                         a reminder to the caller that in this case V is
        !           258: *>                         reserved as workspace of length N*N.
        !           259: *>          If JOBV = 'N'  V is not referenced.
        !           260: *> \endverbatim
        !           261: *>
        !           262: *> \param[in] LDV
        !           263: *> \verbatim
        !           264: *>          LDV is INTEGER
        !           265: *>          The leading dimension of the array V,  LDV >= 1.
        !           266: *>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
        !           267: *> \endverbatim
        !           268: *>
        !           269: *> \param[out] CWORK
        !           270: *> \verbatim
        !           271: *> CWORK (workspace)
        !           272: *>          CWORK is DOUBLE COMPLEX array, dimension at least LWORK.     
        !           273: *> \endverbatim
        !           274: *>
        !           275: *> \param[in] LWORK
        !           276: *> \verbatim
        !           277: *>          LWORK is INTEGER
        !           278: *>          Length of CWORK to confirm proper allocation of workspace.
        !           279: *>          LWORK depends on the job:
        !           280: *>
        !           281: *>          1. If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and
        !           282: *>            1.1 .. no scaled condition estimate required (JOBE.EQ.'N'):
        !           283: *>               LWORK >= 2*N+1. This is the minimal requirement.
        !           284: *>               ->> For optimal performance (blocked code) the optimal value
        !           285: *>               is LWORK >= N + (N+1)*NB. Here NB is the optimal
        !           286: *>               block size for ZGEQP3 and ZGEQRF.
        !           287: *>               In general, optimal LWORK is computed as 
        !           288: *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF)).        
        !           289: *>            1.2. .. an estimate of the scaled condition number of A is
        !           290: *>               required (JOBA='E', or 'G'). In this case, LWORK the minimal
        !           291: *>               requirement is LWORK >= N*N + 3*N.
        !           292: *>               ->> For optimal performance (blocked code) the optimal value 
        !           293: *>               is LWORK >= max(N+(N+1)*NB, N*N+3*N).
        !           294: *>               In general, the optimal length LWORK is computed as
        !           295: *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), 
        !           296: *>                                                     N+N*N+LWORK(CPOCON)).
        !           297: *>
        !           298: *>          2. If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),
        !           299: *>             (JOBU.EQ.'N')
        !           300: *>            -> the minimal requirement is LWORK >= 3*N.
        !           301: *>            -> For optimal performance, LWORK >= max(N+(N+1)*NB, 3*N,2*N+N*NB),
        !           302: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQ,
        !           303: *>               CUNMLQ. In general, the optimal length LWORK is computed as
        !           304: *>               LWORK >= max(N+LWORK(ZGEQP3), N+LWORK(CPOCON), N+LWORK(ZGESVJ),
        !           305: *>                       N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(CUNMLQ)).
        !           306: *>
        !           307: *>          3. If SIGMA and the left singular vectors are needed
        !           308: *>            -> the minimal requirement is LWORK >= 3*N.
        !           309: *>            -> For optimal performance:
        !           310: *>               if JOBU.EQ.'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB),
        !           311: *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, CUNMQR.
        !           312: *>               In general, the optimal length LWORK is computed as
        !           313: *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(CPOCON),
        !           314: *>                        2*N+LWORK(ZGEQRF), N+LWORK(CUNMQR)). 
        !           315: *>               
        !           316: *>          4. If the full SVD is needed: (JOBU.EQ.'U' or JOBU.EQ.'F') and 
        !           317: *>            4.1. if JOBV.EQ.'V'  
        !           318: *>               the minimal requirement is LWORK >= 5*N+2*N*N. 
        !           319: *>            4.2. if JOBV.EQ.'J' the minimal requirement is 
        !           320: *>               LWORK >= 4*N+N*N.
        !           321: *>            In both cases, the allocated CWORK can accomodate blocked runs
        !           322: *>            of ZGEQP3, ZGEQRF, ZGELQF, SUNMQR, CUNMLQ.
        !           323: *> \endverbatim
        !           324: *>
        !           325: *> \param[out] RWORK
        !           326: *> \verbatim
        !           327: *>          RWORK is DOUBLE PRECISION array, dimension at least LRWORK.
        !           328: *>          On exit,
        !           329: *>          RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1)
        !           330: *>                    such that SCALE*SVA(1:N) are the computed singular values
        !           331: *>                    of A. (See the description of SVA().)
        !           332: *>          RWORK(2) = See the description of RWORK(1).
        !           333: *>          RWORK(3) = SCONDA is an estimate for the condition number of
        !           334: *>                    column equilibrated A. (If JOBA .EQ. 'E' or 'G')
        !           335: *>                    SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
        !           336: *>                    It is computed using SPOCON. It holds
        !           337: *>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
        !           338: *>                    where R is the triangular factor from the QRF of A.
        !           339: *>                    However, if R is truncated and the numerical rank is
        !           340: *>                    determined to be strictly smaller than N, SCONDA is
        !           341: *>                    returned as -1, thus indicating that the smallest
        !           342: *>                    singular values might be lost.
        !           343: *>
        !           344: *>          If full SVD is needed, the following two condition numbers are
        !           345: *>          useful for the analysis of the algorithm. They are provied for
        !           346: *>          a developer/implementer who is familiar with the details of
        !           347: *>          the method.
        !           348: *>
        !           349: *>          RWORK(4) = an estimate of the scaled condition number of the
        !           350: *>                    triangular factor in the first QR factorization.
        !           351: *>          RWORK(5) = an estimate of the scaled condition number of the
        !           352: *>                    triangular factor in the second QR factorization.
        !           353: *>          The following two parameters are computed if JOBT .EQ. 'T'.
        !           354: *>          They are provided for a developer/implementer who is familiar
        !           355: *>          with the details of the method.
        !           356: *>          RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy
        !           357: *>                    of diag(A^* * A) / Trace(A^* * A) taken as point in the
        !           358: *>                    probability simplex.
        !           359: *>          RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).)
        !           360: *> \endverbatim
        !           361: *>
        !           362: *> \param[in] LRWORK
        !           363: *> \verbatim
        !           364: *>          LRWORK is INTEGER
        !           365: *>          Length of RWORK to confirm proper allocation of workspace.
        !           366: *>          LRWORK depends on the job:
        !           367: *>
        !           368: *>       1. If only singular values are requested i.e. if 
        !           369: *>          LSAME(JOBU,'N') .AND. LSAME(JOBV,'N') 
        !           370: *>          then:
        !           371: *>          1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
        !           372: *>          then LRWORK = max( 7, N + 2 * M ). 
        !           373: *>          1.2. Otherwise, LRWORK  = max( 7, 2 * N ).
        !           374: *>       2. If singular values with the right singular vectors are requested
        !           375: *>          i.e. if 
        !           376: *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND. 
        !           377: *>          .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F'))
        !           378: *>          then:
        !           379: *>          2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
        !           380: *>          then LRWORK = max( 7, N + 2 * M ). 
        !           381: *>          2.2. Otherwise, LRWORK  = max( 7, 2 * N ).      
        !           382: *>       3. If singular values with the left singular vectors are requested, i.e. if    
        !           383: *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
        !           384: *>          .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
        !           385: *>          then:
        !           386: *>          3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
        !           387: *>          then LRWORK = max( 7, N + 2 * M ). 
        !           388: *>          3.2. Otherwise, LRWORK  = max( 7, 2 * N ).    
        !           389: *>       4. If singular values with both the left and the right singular vectors 
        !           390: *>          are requested, i.e. if     
        !           391: *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
        !           392: *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
        !           393: *>          then:
        !           394: *>          4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
        !           395: *>          then LRWORK = max( 7, N + 2 * M ). 
        !           396: *>          4.2. Otherwise, LRWORK  = max( 7, 2 * N ).    
        !           397: *> \endverbatim
        !           398: *>          
        !           399: *> \param[out] IWORK
        !           400: *> \verbatim
        !           401: *>          IWORK is INTEGER array, of dimension:
        !           402: *>                If LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), then 
        !           403: *>                the dimension of IWORK is max( 3, 2 * N + M ).
        !           404: *>                Otherwise, the dimension of IWORK is 
        !           405: *>                -> max( 3, 2*N ) for full SVD
        !           406: *>                -> max( 3, N ) for singular values only or singular
        !           407: *>                   values with one set of singular vectors (left or right)
        !           408: *>          On exit,
        !           409: *>          IWORK(1) = the numerical rank determined after the initial
        !           410: *>                     QR factorization with pivoting. See the descriptions
        !           411: *>                     of JOBA and JOBR.
        !           412: *>          IWORK(2) = the number of the computed nonzero singular values
        !           413: *>          IWORK(3) = if nonzero, a warning message:
        !           414: *>                     If IWORK(3).EQ.1 then some of the column norms of A
        !           415: *>                     were denormalized floats. The requested high accuracy
        !           416: *>                     is not warranted by the data.
        !           417: *> \endverbatim
        !           418: *>
        !           419: *> \param[out] INFO
        !           420: *> \verbatim
        !           421: *>          INFO is INTEGER
        !           422: *>           < 0  : if INFO = -i, then the i-th argument had an illegal value.
        !           423: *>           = 0 :  successfull exit;
        !           424: *>           > 0 :  ZGEJSV  did not converge in the maximal allowed number
        !           425: *>                  of sweeps. The computed values may be inaccurate.
        !           426: *> \endverbatim
        !           427: *
        !           428: *  Authors:
        !           429: *  ========
        !           430: *
        !           431: *> \author Univ. of Tennessee 
        !           432: *> \author Univ. of California Berkeley 
        !           433: *> \author Univ. of Colorado Denver 
        !           434: *> \author NAG Ltd. 
        !           435: *
        !           436: *> \date November 2015
        !           437: *
        !           438: *> \ingroup complex16GEsing
        !           439: *
        !           440: *> \par Further Details:
        !           441: *  =====================
        !           442: *>
        !           443: *> \verbatim
        !           444: *>
        !           445: *>  ZGEJSV implements a preconditioned Jacobi SVD algorithm. It uses ZGEQP3,
        !           446: *>  ZGEQRF, and ZGELQF as preprocessors and preconditioners. Optionally, an
        !           447: *>  additional row pivoting can be used as a preprocessor, which in some
        !           448: *>  cases results in much higher accuracy. An example is matrix A with the
        !           449: *>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
        !           450: *>  diagonal matrices and C is well-conditioned matrix. In that case, complete
        !           451: *>  pivoting in the first QR factorizations provides accuracy dependent on the
        !           452: *>  condition number of C, and independent of D1, D2. Such higher accuracy is
        !           453: *>  not completely understood theoretically, but it works well in practice.
        !           454: *>  Further, if A can be written as A = B*D, with well-conditioned B and some
        !           455: *>  diagonal D, then the high accuracy is guaranteed, both theoretically and
        !           456: *>  in software, independent of D. For more details see [1], [2].
        !           457: *>     The computational range for the singular values can be the full range
        !           458: *>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
        !           459: *>  & LAPACK routines called by ZGEJSV are implemented to work in that range.
        !           460: *>  If that is not the case, then the restriction for safe computation with
        !           461: *>  the singular values in the range of normalized IEEE numbers is that the
        !           462: *>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
        !           463: *>  overflow. This code (ZGEJSV) is best used in this restricted range,
        !           464: *>  meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
        !           465: *>  returned as zeros. See JOBR for details on this.
        !           466: *>     Further, this implementation is somewhat slower than the one described
        !           467: *>  in [1,2] due to replacement of some non-LAPACK components, and because
        !           468: *>  the choice of some tuning parameters in the iterative part (ZGESVJ) is
        !           469: *>  left to the implementer on a particular machine.
        !           470: *>     The rank revealing QR factorization (in this code: ZGEQP3) should be
        !           471: *>  implemented as in [3]. We have a new version of ZGEQP3 under development
        !           472: *>  that is more robust than the current one in LAPACK, with a cleaner cut in
        !           473: *>  rank defficient cases. It will be available in the SIGMA library [4].
        !           474: *>  If M is much larger than N, it is obvious that the inital QRF with
        !           475: *>  column pivoting can be preprocessed by the QRF without pivoting. That
        !           476: *>  well known trick is not used in ZGEJSV because in some cases heavy row
        !           477: *>  weighting can be treated with complete pivoting. The overhead in cases
        !           478: *>  M much larger than N is then only due to pivoting, but the benefits in
        !           479: *>  terms of accuracy have prevailed. The implementer/user can incorporate
        !           480: *>  this extra QRF step easily. The implementer can also improve data movement
        !           481: *>  (matrix transpose, matrix copy, matrix transposed copy) - this
        !           482: *>  implementation of ZGEJSV uses only the simplest, naive data movement.
        !           483: *
        !           484: *> \par Contributors:
        !           485: *  ==================
        !           486: *>
        !           487: *>  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
        !           488: *
        !           489: *> \par References:
        !           490: *  ================
        !           491: *>
        !           492: *> \verbatim
        !           493: *>
        !           494: * [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
        !           495: *     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
        !           496: *     LAPACK Working note 169.
        !           497: * [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
        !           498: *     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
        !           499: *     LAPACK Working note 170.
        !           500: * [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
        !           501: *     factorization software - a case study.
        !           502: *     ACM Trans. math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
        !           503: *     LAPACK Working note 176.
        !           504: * [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
        !           505: *     QSVD, (H,K)-SVD computations.
        !           506: *     Department of Mathematics, University of Zagreb, 2008.
        !           507: *> \endverbatim
        !           508: *
        !           509: *>  \par Bugs, examples and comments:
        !           510: *   =================================
        !           511: *>
        !           512: *>  Please report all bugs and send interesting examples and/or comments to
        !           513: *>  drmac@math.hr. Thank you.
        !           514: *>
        !           515: *  =====================================================================
        !           516:       SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
        !           517:      $                   M, N, A, LDA, SVA, U, LDU, V, LDV,
        !           518:      $                   CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
        !           519: *
        !           520: *  -- LAPACK computational routine (version 3.6.0) --
        !           521: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           522: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           523: *     November 2015
        !           524: *
        !           525: *     .. Scalar Arguments ..
        !           526:       IMPLICIT    NONE
        !           527:       INTEGER     INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N
        !           528: *     ..
        !           529: *     .. Array Arguments ..
        !           530:       DOUBLE COMPLEX   A( LDA, * ), U( LDU, * ), V( LDV, * ), 
        !           531:      $                 CWORK( LWORK )
        !           532:       DOUBLE PRECISION SVA( N ), RWORK( * )
        !           533:       INTEGER          IWORK( * )
        !           534:       CHARACTER*1      JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
        !           535: *     ..
        !           536: *
        !           537: *  ===========================================================================
        !           538: *
        !           539: *     .. Local Parameters ..
        !           540:       DOUBLE PRECISION ZERO,         ONE
        !           541:       PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           542:       DOUBLE COMPLEX            CZERO,       CONE
        !           543:       PARAMETER  ( CZERO = ( 0.0D0, 0.0D0 ), CONE = ( 1.0D0, 0.0D0 ) )
        !           544: *     ..
        !           545: *     .. Local Scalars ..
        !           546:       DOUBLE COMPLEX   CTEMP
        !           547:       DOUBLE PRECISION AAPP,    AAQQ,   AATMAX, AATMIN, BIG,    BIG1,   
        !           548:      $                 COND_OK, CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,  
        !           549:      $                 MAXPRJ,  SCALEM, SCONDA, SFMIN,  SMALL,  TEMP1,  
        !           550:      $                 USCAL1,  USCAL2, XSC
        !           551:       INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
        !           552:       LOGICAL ALMORT, DEFR,   ERREST, GOSCAL, JRACC,  KILL,   LSVEC,
        !           553:      $        L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,
        !           554:      $        NOSCAL, ROWPIV, RSVEC,  TRANSP
        !           555: *     ..
        !           556: *     .. Intrinsic Functions ..
        !           557:       INTRINSIC ABS,  DCMPLX, DCONJG, DLOG, DMAX1, DMIN1, DFLOAT,
        !           558:      $          MAX0, MIN0, NINT,  DSQRT
        !           559: *     ..
        !           560: *     .. External Functions ..
        !           561:       DOUBLE PRECISION      DLAMCH, DZNRM2
        !           562:       INTEGER   IDAMAX
        !           563:       LOGICAL   LSAME
        !           564:       EXTERNAL  IDAMAX, LSAME, DLAMCH, DZNRM2
        !           565: *     ..
        !           566: *     .. External Subroutines ..
        !           567:       EXTERNAL  ZCOPY,  ZGELQF, ZGEQP3, ZGEQRF, ZLACPY, ZLASCL,
        !           568:      $          ZLASET, ZLASSQ, ZLASWP, ZUNGQR, ZUNMLQ,
        !           569:      $          ZUNMQR, ZPOCON, DSCAL, ZDSCAL, ZSWAP,  ZTRSM,  XERBLA
        !           570: *
        !           571:       EXTERNAL  ZGESVJ
        !           572: *     ..
        !           573: *
        !           574: *     Test the input arguments
        !           575: *
        !           576: 
        !           577:       LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
        !           578:       JRACC  = LSAME( JOBV, 'J' )
        !           579:       RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
        !           580:       ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
        !           581:       L2RANK = LSAME( JOBA, 'R' )
        !           582:       L2ABER = LSAME( JOBA, 'A' )
        !           583:       ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
        !           584:       L2TRAN = LSAME( JOBT, 'T' )
        !           585:       L2KILL = LSAME( JOBR, 'R' )
        !           586:       DEFR   = LSAME( JOBR, 'N' )
        !           587:       L2PERT = LSAME( JOBP, 'P' )
        !           588: *
        !           589:       IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
        !           590:      $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
        !           591:          INFO = - 1
        !           592:       ELSE IF ( .NOT.( LSVEC  .OR. LSAME( JOBU, 'N' ) .OR.
        !           593:      $                             LSAME( JOBU, 'W' )) ) THEN
        !           594:          INFO = - 2
        !           595:       ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
        !           596:      $   LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN
        !           597:          INFO = - 3
        !           598:       ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
        !           599:          INFO = - 4
        !           600:       ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN
        !           601:          INFO = - 5
        !           602:       ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
        !           603:          INFO = - 6
        !           604:       ELSE IF ( M .LT. 0 ) THEN
        !           605:          INFO = - 7
        !           606:       ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
        !           607:          INFO = - 8
        !           608:       ELSE IF ( LDA .LT. M ) THEN
        !           609:          INFO = - 10
        !           610:       ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
        !           611:          INFO = - 13
        !           612:       ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
        !           613:          INFO = - 15
        !           614:       ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.
        !           615:      $                           (LWORK .LT. 2*N+1)) .OR.
        !           616:      $ (.NOT.(LSVEC .OR. RSVEC) .AND. ERREST .AND.
        !           617:      $                         (LWORK .LT. N*N+3*N)) .OR.
        !           618:      $ (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. 3*N))
        !           619:      $ .OR.
        !           620:      $ (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. 3*N))
        !           621:      $ .OR.
        !           622:      $ (LSVEC .AND. RSVEC .AND. (.NOT.JRACC) .AND. 
        !           623:      $                          (LWORK.LT.5*N+2*N*N))
        !           624:      $ .OR. (LSVEC .AND. RSVEC .AND. JRACC .AND.
        !           625:      $                          LWORK.LT.4*N+N*N))
        !           626:      $   THEN
        !           627:          INFO = - 17
        !           628:       ELSE IF ( LRWORK.LT. MAX0(N+2*M,7)) THEN
        !           629:          INFO = -19 
        !           630:       ELSE
        !           631: *        #:)
        !           632:          INFO = 0
        !           633:       END IF
        !           634: *
        !           635:       IF ( INFO .NE. 0 ) THEN
        !           636: *       #:(
        !           637:          CALL XERBLA( 'ZGEJSV', - INFO )
        !           638:          RETURN
        !           639:       END IF
        !           640: *
        !           641: *     Quick return for void matrix (Y3K safe)
        !           642: * #:)
        !           643:       IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) RETURN
        !           644: *
        !           645: *     Determine whether the matrix U should be M x N or M x M
        !           646: *
        !           647:       IF ( LSVEC ) THEN
        !           648:          N1 = N
        !           649:          IF ( LSAME( JOBU, 'F' ) ) N1 = M
        !           650:       END IF
        !           651: *
        !           652: *     Set numerical parameters
        !           653: *
        !           654: *!    NOTE: Make sure DLAMCH() does not fail on the target architecture.
        !           655: *
        !           656:       EPSLN = DLAMCH('Epsilon')
        !           657:       SFMIN = DLAMCH('SafeMinimum')
        !           658:       SMALL = SFMIN / EPSLN
        !           659:       BIG   = DLAMCH('O')
        !           660: *     BIG   = ONE / SFMIN
        !           661: *
        !           662: *     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
        !           663: *
        !           664: *(!)  If necessary, scale SVA() to protect the largest norm from
        !           665: *     overflow. It is possible that this scaling pushes the smallest
        !           666: *     column norm left from the underflow threshold (extreme case).
        !           667: *
        !           668:       SCALEM  = ONE / DSQRT(DFLOAT(M)*DFLOAT(N))
        !           669:       NOSCAL  = .TRUE.
        !           670:       GOSCAL  = .TRUE.
        !           671:       DO 1874 p = 1, N
        !           672:          AAPP = ZERO
        !           673:          AAQQ = ONE
        !           674:          CALL ZLASSQ( M, A(1,p), 1, AAPP, AAQQ )
        !           675:          IF ( AAPP .GT. BIG ) THEN
        !           676:             INFO = - 9
        !           677:             CALL XERBLA( 'ZGEJSV', -INFO )
        !           678:             RETURN
        !           679:          END IF
        !           680:          AAQQ = DSQRT(AAQQ)
        !           681:          IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
        !           682:             SVA(p)  = AAPP * AAQQ
        !           683:          ELSE
        !           684:             NOSCAL  = .FALSE.
        !           685:             SVA(p)  = AAPP * ( AAQQ * SCALEM )
        !           686:             IF ( GOSCAL ) THEN
        !           687:                GOSCAL = .FALSE.
        !           688:                CALL DSCAL( p-1, SCALEM, SVA, 1 )
        !           689:             END IF
        !           690:          END IF
        !           691:  1874 CONTINUE
        !           692: *
        !           693:       IF ( NOSCAL ) SCALEM = ONE
        !           694: *
        !           695:       AAPP = ZERO
        !           696:       AAQQ = BIG
        !           697:       DO 4781 p = 1, N
        !           698:          AAPP = DMAX1( AAPP, SVA(p) )
        !           699:          IF ( SVA(p) .NE. ZERO ) AAQQ = DMIN1( AAQQ, SVA(p) )
        !           700:  4781 CONTINUE
        !           701: *
        !           702: *     Quick return for zero M x N matrix
        !           703: * #:)
        !           704:       IF ( AAPP .EQ. ZERO ) THEN
        !           705:          IF ( LSVEC ) CALL ZLASET( 'G', M, N1, CZERO, CONE, U, LDU )
        !           706:          IF ( RSVEC ) CALL ZLASET( 'G', N, N,  CZERO, CONE, V, LDV )
        !           707:          RWORK(1) = ONE
        !           708:          RWORK(2) = ONE
        !           709:          IF ( ERREST ) RWORK(3) = ONE
        !           710:          IF ( LSVEC .AND. RSVEC ) THEN
        !           711:             RWORK(4) = ONE
        !           712:             RWORK(5) = ONE
        !           713:          END IF
        !           714:          IF ( L2TRAN ) THEN
        !           715:             RWORK(6) = ZERO
        !           716:             RWORK(7) = ZERO
        !           717:          END IF
        !           718:          IWORK(1) = 0
        !           719:          IWORK(2) = 0
        !           720:          IWORK(3) = 0
        !           721:          RETURN
        !           722:       END IF
        !           723: *
        !           724: *     Issue warning if denormalized column norms detected. Override the
        !           725: *     high relative accuracy request. Issue licence to kill columns
        !           726: *     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
        !           727: * #:(
        !           728:       WARNING = 0
        !           729:       IF ( AAQQ .LE. SFMIN ) THEN
        !           730:          L2RANK = .TRUE.
        !           731:          L2KILL = .TRUE.
        !           732:          WARNING = 1
        !           733:       END IF
        !           734: *
        !           735: *     Quick return for one-column matrix
        !           736: * #:)
        !           737:       IF ( N .EQ. 1 ) THEN
        !           738: *
        !           739:          IF ( LSVEC ) THEN
        !           740:             CALL ZLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
        !           741:             CALL ZLACPY( 'A', M, 1, A, LDA, U, LDU )
        !           742: *           computing all M left singular vectors of the M x 1 matrix
        !           743:             IF ( N1 .NE. N  ) THEN
        !           744:               CALL ZGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,IERR )
        !           745:               CALL ZUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,IERR )
        !           746:               CALL ZCOPY( M, A(1,1), 1, U(1,1), 1 )
        !           747:             END IF
        !           748:          END IF
        !           749:          IF ( RSVEC ) THEN
        !           750:              V(1,1) = CONE
        !           751:          END IF
        !           752:          IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
        !           753:             SVA(1)  = SVA(1) / SCALEM
        !           754:             SCALEM  = ONE
        !           755:          END IF
        !           756:          RWORK(1) = ONE / SCALEM
        !           757:          RWORK(2) = ONE
        !           758:          IF ( SVA(1) .NE. ZERO ) THEN
        !           759:             IWORK(1) = 1
        !           760:             IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
        !           761:                IWORK(2) = 1
        !           762:             ELSE
        !           763:                IWORK(2) = 0
        !           764:             END IF
        !           765:          ELSE
        !           766:             IWORK(1) = 0
        !           767:             IWORK(2) = 0
        !           768:          END IF
        !           769:          IWORK(3) = 0 
        !           770:          IF ( ERREST ) RWORK(3) = ONE
        !           771:          IF ( LSVEC .AND. RSVEC ) THEN
        !           772:             RWORK(4) = ONE
        !           773:             RWORK(5) = ONE
        !           774:          END IF
        !           775:          IF ( L2TRAN ) THEN
        !           776:             RWORK(6) = ZERO
        !           777:             RWORK(7) = ZERO
        !           778:          END IF
        !           779:          RETURN
        !           780: *
        !           781:       END IF
        !           782: *
        !           783:       TRANSP = .FALSE.
        !           784:       L2TRAN = L2TRAN .AND. ( M .EQ. N )
        !           785: *
        !           786:       AATMAX = -ONE
        !           787:       AATMIN =  BIG
        !           788:       IF ( ROWPIV .OR. L2TRAN ) THEN
        !           789: *
        !           790: *     Compute the row norms, needed to determine row pivoting sequence
        !           791: *     (in the case of heavily row weighted A, row pivoting is strongly
        !           792: *     advised) and to collect information needed to compare the
        !           793: *     structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.).
        !           794: *
        !           795:          IF ( L2TRAN ) THEN
        !           796:             DO 1950 p = 1, M
        !           797:                XSC   = ZERO
        !           798:                TEMP1 = ONE
        !           799:                CALL ZLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
        !           800: *              ZLASSQ gets both the ell_2 and the ell_infinity norm
        !           801: *              in one pass through the vector
        !           802:                RWORK(M+N+p)  = XSC * SCALEM
        !           803:                RWORK(N+p)    = XSC * (SCALEM*DSQRT(TEMP1))
        !           804:                AATMAX = DMAX1( AATMAX, RWORK(N+p) )
        !           805:                IF (RWORK(N+p) .NE. ZERO) 
        !           806:      $            AATMIN = DMIN1(AATMIN,RWORK(N+p))
        !           807:  1950       CONTINUE
        !           808:          ELSE
        !           809:             DO 1904 p = 1, M
        !           810:                RWORK(M+N+p) = SCALEM*ABS( A(p,IDAMAX(N,A(p,1),LDA)) )
        !           811:                AATMAX = DMAX1( AATMAX, RWORK(M+N+p) )
        !           812:                AATMIN = DMIN1( AATMIN, RWORK(M+N+p) )
        !           813:  1904       CONTINUE
        !           814:          END IF
        !           815: *
        !           816:       END IF
        !           817: *
        !           818: *     For square matrix A try to determine whether A^*  would be  better
        !           819: *     input for the preconditioned Jacobi SVD, with faster convergence.
        !           820: *     The decision is based on an O(N) function of the vector of column
        !           821: *     and row norms of A, based on the Shannon entropy. This should give
        !           822: *     the right choice in most cases when the difference actually matters.
        !           823: *     It may fail and pick the slower converging side.
        !           824: *
        !           825:       ENTRA  = ZERO
        !           826:       ENTRAT = ZERO
        !           827:       IF ( L2TRAN ) THEN
        !           828: *
        !           829:          XSC   = ZERO
        !           830:          TEMP1 = ONE
        !           831:          CALL ZLASSQ( N, SVA, 1, XSC, TEMP1 )
        !           832:          TEMP1 = ONE / TEMP1
        !           833: *
        !           834:          ENTRA = ZERO
        !           835:          DO 1113 p = 1, N
        !           836:             BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
        !           837:             IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
        !           838:  1113    CONTINUE
        !           839:          ENTRA = - ENTRA / DLOG(DFLOAT(N))
        !           840: *
        !           841: *        Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex.
        !           842: *        It is derived from the diagonal of  A^* * A.  Do the same with the
        !           843: *        diagonal of A * A^*, compute the entropy of the corresponding
        !           844: *        probability distribution. Note that A * A^* and A^* * A have the
        !           845: *        same trace.
        !           846: *
        !           847:          ENTRAT = ZERO
        !           848:          DO 1114 p = N+1, N+M
        !           849:             BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1
        !           850:             IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
        !           851:  1114    CONTINUE
        !           852:          ENTRAT = - ENTRAT / DLOG(DFLOAT(M))
        !           853: *
        !           854: *        Analyze the entropies and decide A or A^*. Smaller entropy
        !           855: *        usually means better input for the algorithm.
        !           856: *
        !           857:          TRANSP = ( ENTRAT .LT. ENTRA )
        !           858:          TRANSP = .TRUE.
        !           859: *
        !           860: *        If A^* is better than A, take the adjoint of A.
        !           861: *
        !           862:          IF ( TRANSP ) THEN
        !           863: *           In an optimal implementation, this trivial transpose
        !           864: *           should be replaced with faster transpose.
        !           865:             DO 1115 p = 1, N - 1
        !           866:                A(p,p) = DCONJG(A(p,p)) 
        !           867:                DO 1116 q = p + 1, N
        !           868:                    CTEMP = DCONJG(A(q,p))
        !           869:                   A(q,p) = DCONJG(A(p,q))
        !           870:                   A(p,q) = CTEMP
        !           871:  1116          CONTINUE
        !           872:  1115       CONTINUE
        !           873:             A(N,N) = DCONJG(A(N,N))
        !           874:             DO 1117 p = 1, N
        !           875:                RWORK(M+N+p) = SVA(p)
        !           876:                SVA(p)      = RWORK(N+p)
        !           877: *              previously computed row 2-norms are now column 2-norms 
        !           878: *              of the transposed matrix               
        !           879:  1117       CONTINUE
        !           880:             TEMP1  = AAPP
        !           881:             AAPP   = AATMAX
        !           882:             AATMAX = TEMP1
        !           883:             TEMP1  = AAQQ
        !           884:             AAQQ   = AATMIN
        !           885:             AATMIN = TEMP1
        !           886:             KILL   = LSVEC
        !           887:             LSVEC  = RSVEC
        !           888:             RSVEC  = KILL
        !           889:             IF ( LSVEC ) N1 = N 
        !           890: *
        !           891:             ROWPIV = .TRUE.
        !           892:          END IF
        !           893: *
        !           894:       END IF
        !           895: *     END IF L2TRAN
        !           896: *
        !           897: *     Scale the matrix so that its maximal singular value remains less
        !           898: *     than SQRT(BIG) -- the matrix is scaled so that its maximal column
        !           899: *     has Euclidean norm equal to SQRT(BIG/N). The only reason to keep
        !           900: *     SQRT(BIG) instead of BIG is the fact that ZGEJSV uses LAPACK and
        !           901: *     BLAS routines that, in some implementations, are not capable of
        !           902: *     working in the full interval [SFMIN,BIG] and that they may provoke
        !           903: *     overflows in the intermediate results. If the singular values spread
        !           904: *     from SFMIN to BIG, then ZGESVJ will compute them. So, in that case,
        !           905: *     one should use ZGESVJ instead of ZGEJSV.
        !           906: *
        !           907:       BIG1   = DSQRT( BIG )
        !           908:       TEMP1  = DSQRT( BIG / DFLOAT(N) )
        !           909: *
        !           910:       CALL ZLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
        !           911:       IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
        !           912:           AAQQ = ( AAQQ / AAPP ) * TEMP1
        !           913:       ELSE
        !           914:           AAQQ = ( AAQQ * TEMP1 ) / AAPP
        !           915:       END IF
        !           916:       TEMP1 = TEMP1 * SCALEM
        !           917:       CALL ZLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
        !           918: *
        !           919: *     To undo scaling at the end of this procedure, multiply the
        !           920: *     computed singular values with USCAL2 / USCAL1.
        !           921: *
        !           922:       USCAL1 = TEMP1
        !           923:       USCAL2 = AAPP
        !           924: *
        !           925:       IF ( L2KILL ) THEN
        !           926: *        L2KILL enforces computation of nonzero singular values in
        !           927: *        the restricted range of condition number of the initial A,
        !           928: *        sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).
        !           929:          XSC = DSQRT( SFMIN )
        !           930:       ELSE
        !           931:          XSC = SMALL
        !           932: *
        !           933: *        Now, if the condition number of A is too big,
        !           934: *        sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,
        !           935: *        as a precaution measure, the full SVD is computed using ZGESVJ
        !           936: *        with accumulated Jacobi rotations. This provides numerically
        !           937: *        more robust computation, at the cost of slightly increased run
        !           938: *        time. Depending on the concrete implementation of BLAS and LAPACK
        !           939: *        (i.e. how they behave in presence of extreme ill-conditioning) the
        !           940: *        implementor may decide to remove this switch.
        !           941:          IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
        !           942:             JRACC = .TRUE.
        !           943:          END IF
        !           944: *
        !           945:       END IF
        !           946:       IF ( AAQQ .LT. XSC ) THEN
        !           947:          DO 700 p = 1, N
        !           948:             IF ( SVA(p) .LT. XSC ) THEN
        !           949:                CALL ZLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA )
        !           950:                SVA(p) = ZERO
        !           951:             END IF
        !           952:  700     CONTINUE
        !           953:       END IF
        !           954: *
        !           955: *     Preconditioning using QR factorization with pivoting
        !           956: *
        !           957:       IF ( ROWPIV ) THEN
        !           958: *        Optional row permutation (Bjoerck row pivoting):
        !           959: *        A result by Cox and Higham shows that the Bjoerck's
        !           960: *        row pivoting combined with standard column pivoting
        !           961: *        has similar effect as Powell-Reid complete pivoting.
        !           962: *        The ell-infinity norms of A are made nonincreasing.
        !           963:          DO 1952 p = 1, M - 1
        !           964:             q = IDAMAX( M-p+1, RWORK(M+N+p), 1 ) + p - 1
        !           965:             IWORK(2*N+p) = q
        !           966:             IF ( p .NE. q ) THEN
        !           967:                TEMP1        = RWORK(M+N+p)
        !           968:                RWORK(M+N+p) = RWORK(M+N+q)
        !           969:                RWORK(M+N+q) = TEMP1
        !           970:             END IF
        !           971:  1952    CONTINUE
        !           972:          CALL ZLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )
        !           973:       END IF
        !           974: 
        !           975: *
        !           976: *     End of the preparation phase (scaling, optional sorting and
        !           977: *     transposing, optional flushing of small columns).
        !           978: *
        !           979: *     Preconditioning
        !           980: *
        !           981: *     If the full SVD is needed, the right singular vectors are computed
        !           982: *     from a matrix equation, and for that we need theoretical analysis
        !           983: *     of the Businger-Golub pivoting. So we use ZGEQP3 as the first RR QRF.
        !           984: *     In all other cases the first RR QRF can be chosen by other criteria
        !           985: *     (eg speed by replacing global with restricted window pivoting, such
        !           986: *     as in xGEQPX from TOMS # 782). Good results will be obtained using
        !           987: *     xGEQPX with properly (!) chosen numerical parameters.
        !           988: *     Any improvement of ZGEQP3 improves overal performance of ZGEJSV.
        !           989: *
        !           990: *     A * P1 = Q1 * [ R1^* 0]^*:
        !           991:       DO 1963 p = 1, N
        !           992: *        .. all columns are free columns
        !           993:          IWORK(p) = 0
        !           994:  1963 CONTINUE
        !           995:       CALL ZGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N, 
        !           996:      $             RWORK, IERR )
        !           997: *
        !           998: *     The upper triangular matrix R1 from the first QRF is inspected for
        !           999: *     rank deficiency and possibilities for deflation, or possible
        !          1000: *     ill-conditioning. Depending on the user specified flag L2RANK,
        !          1001: *     the procedure explores possibilities to reduce the numerical
        !          1002: *     rank by inspecting the computed upper triangular factor. If
        !          1003: *     L2RANK or L2ABER are up, then ZGEJSV will compute the SVD of
        !          1004: *     A + dA, where ||dA|| <= f(M,N)*EPSLN.
        !          1005: *
        !          1006:       NR = 1
        !          1007:       IF ( L2ABER ) THEN
        !          1008: *        Standard absolute error bound suffices. All sigma_i with
        !          1009: *        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
        !          1010: *        agressive enforcement of lower numerical rank by introducing a
        !          1011: *        backward error of the order of N*EPSLN*||A||.
        !          1012:          TEMP1 = DSQRT(DFLOAT(N))*EPSLN
        !          1013:          DO 3001 p = 2, N
        !          1014:             IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN
        !          1015:                NR = NR + 1
        !          1016:             ELSE
        !          1017:                GO TO 3002
        !          1018:             END IF
        !          1019:  3001    CONTINUE
        !          1020:  3002    CONTINUE
        !          1021:       ELSE IF ( L2RANK ) THEN
        !          1022: *        .. similarly as above, only slightly more gentle (less agressive).
        !          1023: *        Sudden drop on the diagonal of R1 is used as the criterion for
        !          1024: *        close-to-rank-defficient.
        !          1025:          TEMP1 = DSQRT(SFMIN)
        !          1026:          DO 3401 p = 2, N
        !          1027:             IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
        !          1028:      $           ( ABS(A(p,p)) .LT. SMALL ) .OR.
        !          1029:      $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
        !          1030:             NR = NR + 1
        !          1031:  3401    CONTINUE
        !          1032:  3402    CONTINUE
        !          1033: *
        !          1034:       ELSE
        !          1035: *        The goal is high relative accuracy. However, if the matrix
        !          1036: *        has high scaled condition number the relative accuracy is in
        !          1037: *        general not feasible. Later on, a condition number estimator
        !          1038: *        will be deployed to estimate the scaled condition number.
        !          1039: *        Here we just remove the underflowed part of the triangular
        !          1040: *        factor. This prevents the situation in which the code is
        !          1041: *        working hard to get the accuracy not warranted by the data.
        !          1042:          TEMP1  = DSQRT(SFMIN)
        !          1043:          DO 3301 p = 2, N
        !          1044:             IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.
        !          1045:      $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
        !          1046:             NR = NR + 1
        !          1047:  3301    CONTINUE
        !          1048:  3302    CONTINUE
        !          1049: *
        !          1050:       END IF
        !          1051: *
        !          1052:       ALMORT = .FALSE.
        !          1053:       IF ( NR .EQ. N ) THEN
        !          1054:          MAXPRJ = ONE
        !          1055:          DO 3051 p = 2, N
        !          1056:             TEMP1  = ABS(A(p,p)) / SVA(IWORK(p))
        !          1057:             MAXPRJ = DMIN1( MAXPRJ, TEMP1 )
        !          1058:  3051    CONTINUE
        !          1059:          IF ( MAXPRJ**2 .GE. ONE - DFLOAT(N)*EPSLN ) ALMORT = .TRUE.
        !          1060:       END IF
        !          1061: *
        !          1062: *
        !          1063:       SCONDA = - ONE
        !          1064:       CONDR1 = - ONE
        !          1065:       CONDR2 = - ONE
        !          1066: *
        !          1067:       IF ( ERREST ) THEN
        !          1068:          IF ( N .EQ. NR ) THEN
        !          1069:             IF ( RSVEC ) THEN
        !          1070: *              .. V is available as workspace
        !          1071:                CALL ZLACPY( 'U', N, N, A, LDA, V, LDV )
        !          1072:                DO 3053 p = 1, N
        !          1073:                   TEMP1 = SVA(IWORK(p))
        !          1074:                   CALL ZDSCAL( p, ONE/TEMP1, V(1,p), 1 )
        !          1075:  3053          CONTINUE
        !          1076:                CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
        !          1077:      $              CWORK(N+1), RWORK, IERR )
        !          1078: *          
        !          1079:             ELSE IF ( LSVEC ) THEN
        !          1080: *              .. U is available as workspace
        !          1081:                CALL ZLACPY( 'U', N, N, A, LDA, U, LDU )
        !          1082:                DO 3054 p = 1, N
        !          1083:                   TEMP1 = SVA(IWORK(p))
        !          1084:                   CALL ZDSCAL( p, ONE/TEMP1, U(1,p), 1 )
        !          1085:  3054          CONTINUE
        !          1086:                CALL ZPOCON( 'U', N, U, LDU, ONE, TEMP1,
        !          1087:      $              CWORK(N+1), RWORK, IERR )
        !          1088:             ELSE
        !          1089:                CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
        !          1090:                DO 3052 p = 1, N
        !          1091:                   TEMP1 = SVA(IWORK(p))
        !          1092:                   CALL ZDSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 )
        !          1093:  3052          CONTINUE
        !          1094: *           .. the columns of R are scaled to have unit Euclidean lengths.
        !          1095:                CALL ZPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1,
        !          1096:      $              CWORK(N+N*N+1), RWORK, IERR )
        !          1097: *              
        !          1098:             END IF
        !          1099:             SCONDA = ONE / DSQRT(TEMP1)
        !          1100: *           SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
        !          1101: *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
        !          1102:          ELSE
        !          1103:             SCONDA = - ONE
        !          1104:          END IF
        !          1105:       END IF
        !          1106: *
        !          1107:       L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) )
        !          1108: *     If there is no violent scaling, artificial perturbation is not needed.
        !          1109: *
        !          1110: *     Phase 3:
        !          1111: *
        !          1112:       IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
        !          1113: *
        !          1114: *         Singular Values only
        !          1115: *
        !          1116: *         .. transpose A(1:NR,1:N)
        !          1117:          DO 1946 p = 1, MIN0( N-1, NR )
        !          1118:             CALL ZCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
        !          1119:             CALL ZLACGV( N-p+1, A(p,p), 1 )
        !          1120:  1946    CONTINUE
        !          1121:          IF ( NR .EQ. N ) A(N,N) = DCONJG(A(N,N))        
        !          1122: *
        !          1123: *        The following two DO-loops introduce small relative perturbation
        !          1124: *        into the strict upper triangle of the lower triangular matrix.
        !          1125: *        Small entries below the main diagonal are also changed.
        !          1126: *        This modification is useful if the computing environment does not
        !          1127: *        provide/allow FLUSH TO ZERO underflow, for it prevents many
        !          1128: *        annoying denormalized numbers in case of strongly scaled matrices.
        !          1129: *        The perturbation is structured so that it does not introduce any
        !          1130: *        new perturbation of the singular values, and it does not destroy
        !          1131: *        the job done by the preconditioner.
        !          1132: *        The licence for this perturbation is in the variable L2PERT, which
        !          1133: *        should be .FALSE. if FLUSH TO ZERO underflow is active.
        !          1134: *
        !          1135:          IF ( .NOT. ALMORT ) THEN
        !          1136: *
        !          1137:             IF ( L2PERT ) THEN
        !          1138: *              XSC = SQRT(SMALL)
        !          1139:                XSC = EPSLN / DFLOAT(N)
        !          1140:                DO 4947 q = 1, NR
        !          1141:                   CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
        !          1142:                   DO 4949 p = 1, N
        !          1143:                      IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
        !          1144:      $                    .OR. ( p .LT. q ) )
        !          1145: *     $                     A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
        !          1146:      $                     A(p,q) = CTEMP
        !          1147:  4949             CONTINUE
        !          1148:  4947          CONTINUE
        !          1149:             ELSE
        !          1150:                CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA )
        !          1151:             END IF
        !          1152: *
        !          1153: *            .. second preconditioning using the QR factorization
        !          1154: *
        !          1155:             CALL ZGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N, IERR )
        !          1156: *
        !          1157: *           .. and transpose upper to lower triangular
        !          1158:             DO 1948 p = 1, NR - 1
        !          1159:                CALL ZCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
        !          1160:                CALL ZLACGV( NR-p+1, A(p,p), 1 )
        !          1161:  1948       CONTINUE
        !          1162: *
        !          1163:       END IF
        !          1164: *
        !          1165: *           Row-cyclic Jacobi SVD algorithm with column pivoting
        !          1166: *
        !          1167: *           .. again some perturbation (a "background noise") is added
        !          1168: *           to drown denormals
        !          1169:             IF ( L2PERT ) THEN
        !          1170: *              XSC = SQRT(SMALL)
        !          1171:                XSC = EPSLN / DFLOAT(N)
        !          1172:                DO 1947 q = 1, NR
        !          1173:                   CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
        !          1174:                   DO 1949 p = 1, NR
        !          1175:                      IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
        !          1176:      $                       .OR. ( p .LT. q ) )
        !          1177: *     $                   A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
        !          1178:      $                   A(p,q) = CTEMP 
        !          1179:  1949             CONTINUE
        !          1180:  1947          CONTINUE
        !          1181:             ELSE
        !          1182:                CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2), LDA )
        !          1183:             END IF
        !          1184: *
        !          1185: *           .. and one-sided Jacobi rotations are started on a lower
        !          1186: *           triangular matrix (plus perturbation which is ignored in
        !          1187: *           the part which destroys triangular form (confusing?!))
        !          1188: *
        !          1189:             CALL ZGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,
        !          1190:      $                N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
        !          1191: *
        !          1192:             SCALEM  = RWORK(1)
        !          1193:             NUMRANK = NINT(RWORK(2))
        !          1194: *
        !          1195: *
        !          1196:       ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
        !          1197: *
        !          1198: *        -> Singular Values and Right Singular Vectors <-
        !          1199: *
        !          1200:          IF ( ALMORT ) THEN
        !          1201: *
        !          1202: *           .. in this case NR equals N
        !          1203:             DO 1998 p = 1, NR
        !          1204:                CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
        !          1205:                CALL ZLACGV( N-p+1, V(p,p), 1 )
        !          1206:  1998       CONTINUE
        !          1207:             CALL ZLASET( 'Upper', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
        !          1208: *
        !          1209:             CALL ZGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,
        !          1210:      $                  CWORK, LWORK, RWORK, LRWORK, INFO )
        !          1211:             SCALEM  = RWORK(1)
        !          1212:             NUMRANK = NINT(RWORK(2))
        !          1213: 
        !          1214:          ELSE
        !          1215: *
        !          1216: *        .. two more QR factorizations ( one QRF is not enough, two require
        !          1217: *        accumulated product of Jacobi rotations, three are perfect )
        !          1218: *
        !          1219:             CALL ZLASET( 'Lower', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA )
        !          1220:             CALL ZGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N, IERR)
        !          1221:             CALL ZLACPY( 'Lower', NR, NR, A, LDA, V, LDV )
        !          1222:             CALL ZLASET( 'Upper', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
        !          1223:             CALL ZGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
        !          1224:      $                   LWORK-2*N, IERR )
        !          1225:             DO 8998 p = 1, NR
        !          1226:                CALL ZCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
        !          1227:                CALL ZLACGV( NR-p+1, V(p,p), 1 ) 
        !          1228:  8998       CONTINUE
        !          1229:             CALL ZLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
        !          1230: *
        !          1231:             CALL ZGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,
        !          1232:      $                  LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
        !          1233:             SCALEM  = RWORK(1)
        !          1234:             NUMRANK = NINT(RWORK(2))
        !          1235:             IF ( NR .LT. N ) THEN
        !          1236:                CALL ZLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1),  LDV )
        !          1237:                CALL ZLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1),  LDV )
        !          1238:                CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),LDV )
        !          1239:             END IF
        !          1240: *
        !          1241:          CALL ZUNMLQ( 'Left', 'C', N, N, NR, A, LDA, CWORK,
        !          1242:      $               V, LDV, CWORK(N+1), LWORK-N, IERR )
        !          1243: *
        !          1244:          END IF
        !          1245: *
        !          1246:          DO 8991 p = 1, N
        !          1247:             CALL ZCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
        !          1248:  8991    CONTINUE
        !          1249:          CALL ZLACPY( 'All', N, N, A, LDA, V, LDV )
        !          1250: *
        !          1251:          IF ( TRANSP ) THEN
        !          1252:             CALL ZLACPY( 'All', N, N, V, LDV, U, LDU )
        !          1253:          END IF
        !          1254: *
        !          1255:       ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
        !          1256: *
        !          1257: *        .. Singular Values and Left Singular Vectors                 ..
        !          1258: *
        !          1259: *        .. second preconditioning step to avoid need to accumulate
        !          1260: *        Jacobi rotations in the Jacobi iterations.
        !          1261:          DO 1965 p = 1, NR
        !          1262:             CALL ZCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
        !          1263:             CALL ZLACGV( N-p+1, U(p,p), 1 )
        !          1264:  1965    CONTINUE
        !          1265:          CALL ZLASET( 'Upper', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
        !          1266: *
        !          1267:          CALL ZGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1),
        !          1268:      $              LWORK-2*N, IERR )
        !          1269: *
        !          1270:          DO 1967 p = 1, NR - 1
        !          1271:             CALL ZCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
        !          1272:             CALL ZLACGV( N-p+1, U(p,p), 1 )            
        !          1273:  1967    CONTINUE
        !          1274:          CALL ZLASET( 'Upper', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
        !          1275: *
        !          1276:          CALL ZGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
        !          1277:      $        LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
        !          1278:          SCALEM  = RWORK(1)
        !          1279:          NUMRANK = NINT(RWORK(2))
        !          1280: *
        !          1281:          IF ( NR .LT. M ) THEN
        !          1282:             CALL ZLASET( 'A',  M-NR, NR,CZERO, CZERO, U(NR+1,1), LDU )
        !          1283:             IF ( NR .LT. N1 ) THEN
        !          1284:                CALL ZLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU )
        !          1285:                CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),LDU )
        !          1286:             END IF
        !          1287:          END IF
        !          1288: *
        !          1289:          CALL ZUNMQR( 'Left', 'No Tr', M, N1, N, A, LDA, CWORK, U,
        !          1290:      $               LDU, CWORK(N+1), LWORK-N, IERR )
        !          1291: *
        !          1292:          IF ( ROWPIV )
        !          1293:      $       CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
        !          1294: *
        !          1295:          DO 1974 p = 1, N1
        !          1296:             XSC = ONE / DZNRM2( M, U(1,p), 1 )
        !          1297:             CALL ZDSCAL( M, XSC, U(1,p), 1 )
        !          1298:  1974    CONTINUE
        !          1299: *
        !          1300:          IF ( TRANSP ) THEN
        !          1301:             CALL ZLACPY( 'All', N, N, U, LDU, V, LDV )
        !          1302:          END IF
        !          1303: *
        !          1304:       ELSE
        !          1305: *
        !          1306: *        .. Full SVD ..
        !          1307: *
        !          1308:          IF ( .NOT. JRACC ) THEN
        !          1309: *
        !          1310:          IF ( .NOT. ALMORT ) THEN
        !          1311: *
        !          1312: *           Second Preconditioning Step (QRF [with pivoting])
        !          1313: *           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
        !          1314: *           equivalent to an LQF CALL. Since in many libraries the QRF
        !          1315: *           seems to be better optimized than the LQF, we do explicit
        !          1316: *           transpose and use the QRF. This is subject to changes in an
        !          1317: *           optimized implementation of ZGEJSV.
        !          1318: *
        !          1319:             DO 1968 p = 1, NR
        !          1320:                CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
        !          1321:                CALL ZLACGV( N-p+1, V(p,p), 1 )
        !          1322:  1968       CONTINUE
        !          1323: *
        !          1324: *           .. the following two loops perturb small entries to avoid
        !          1325: *           denormals in the second QR factorization, where they are
        !          1326: *           as good as zeros. This is done to avoid painfully slow
        !          1327: *           computation with denormals. The relative size of the perturbation
        !          1328: *           is a parameter that can be changed by the implementer.
        !          1329: *           This perturbation device will be obsolete on machines with
        !          1330: *           properly implemented arithmetic.
        !          1331: *           To switch it off, set L2PERT=.FALSE. To remove it from  the
        !          1332: *           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
        !          1333: *           The following two loops should be blocked and fused with the
        !          1334: *           transposed copy above.
        !          1335: *
        !          1336:             IF ( L2PERT ) THEN
        !          1337:                XSC = DSQRT(SMALL)
        !          1338:                DO 2969 q = 1, NR
        !          1339:                   CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
        !          1340:                   DO 2968 p = 1, N
        !          1341:                      IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
        !          1342:      $                   .OR. ( p .LT. q ) )
        !          1343: *     $                   V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
        !          1344:      $                   V(p,q) = CTEMP      
        !          1345:                      IF ( p .LT. q ) V(p,q) = - V(p,q)
        !          1346:  2968             CONTINUE
        !          1347:  2969          CONTINUE
        !          1348:             ELSE
        !          1349:                CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
        !          1350:             END IF
        !          1351: *
        !          1352: *           Estimate the row scaled condition number of R1
        !          1353: *           (If R1 is rectangular, N > NR, then the condition number
        !          1354: *           of the leading NR x NR submatrix is estimated.)
        !          1355: *
        !          1356:             CALL ZLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR )
        !          1357:             DO 3950 p = 1, NR
        !          1358:                TEMP1 = DZNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1)
        !          1359:                CALL ZDSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1)
        !          1360:  3950       CONTINUE
        !          1361:             CALL ZPOCON('Lower',NR,CWORK(2*N+1),NR,ONE,TEMP1,
        !          1362:      $                   CWORK(2*N+NR*NR+1),RWORK,IERR)
        !          1363:             CONDR1 = ONE / DSQRT(TEMP1)
        !          1364: *           .. here need a second oppinion on the condition number
        !          1365: *           .. then assume worst case scenario
        !          1366: *           R1 is OK for inverse <=> CONDR1 .LT. DFLOAT(N)
        !          1367: *           more conservative    <=> CONDR1 .LT. SQRT(DFLOAT(N))
        !          1368: *
        !          1369:             COND_OK = DSQRT(DSQRT(DFLOAT(NR)))
        !          1370: *[TP]       COND_OK is a tuning parameter.
        !          1371: *
        !          1372:             IF ( CONDR1 .LT. COND_OK ) THEN
        !          1373: *              .. the second QRF without pivoting. Note: in an optimized
        !          1374: *              implementation, this QRF should be implemented as the QRF
        !          1375: *              of a lower triangular matrix.
        !          1376: *              R1^* = Q2 * R2
        !          1377:                CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
        !          1378:      $              LWORK-2*N, IERR )
        !          1379: *
        !          1380:                IF ( L2PERT ) THEN
        !          1381:                   XSC = DSQRT(SMALL)/EPSLN
        !          1382:                   DO 3959 p = 2, NR
        !          1383:                      DO 3958 q = 1, p - 1
        !          1384:                         CTEMP=DCMPLX(XSC*DMIN1(ABS(V(p,p)),ABS(V(q,q))),
        !          1385:      $                              ZERO)
        !          1386:                         IF ( ABS(V(q,p)) .LE. TEMP1 )
        !          1387: *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
        !          1388:      $                     V(q,p) = CTEMP    
        !          1389:  3958                CONTINUE
        !          1390:  3959             CONTINUE
        !          1391:                END IF
        !          1392: *
        !          1393:                IF ( NR .NE. N )
        !          1394:      $         CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
        !          1395: *              .. save ...
        !          1396: *
        !          1397: *           .. this transposed copy should be better than naive
        !          1398:                DO 1969 p = 1, NR - 1
        !          1399:                   CALL ZCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
        !          1400:                   CALL ZLACGV(NR-p+1, V(p,p), 1 )
        !          1401:  1969          CONTINUE
        !          1402:                V(NR,NR)=DCONJG(V(NR,NR))   
        !          1403: *
        !          1404:                CONDR2 = CONDR1
        !          1405: *
        !          1406:             ELSE
        !          1407: *
        !          1408: *              .. ill-conditioned case: second QRF with pivoting
        !          1409: *              Note that windowed pivoting would be equaly good
        !          1410: *              numerically, and more run-time efficient. So, in
        !          1411: *              an optimal implementation, the next call to ZGEQP3
        !          1412: *              should be replaced with eg. CALL ZGEQPX (ACM TOMS #782)
        !          1413: *              with properly (carefully) chosen parameters.
        !          1414: *
        !          1415: *              R1^* * P2 = Q2 * R2
        !          1416:                DO 3003 p = 1, NR
        !          1417:                   IWORK(N+p) = 0
        !          1418:  3003          CONTINUE
        !          1419:                CALL ZGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1),
        !          1420:      $                  CWORK(2*N+1), LWORK-2*N, RWORK, IERR )
        !          1421: **               CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
        !          1422: **     $              LWORK-2*N, IERR )
        !          1423:                IF ( L2PERT ) THEN
        !          1424:                   XSC = DSQRT(SMALL)
        !          1425:                   DO 3969 p = 2, NR
        !          1426:                      DO 3968 q = 1, p - 1
        !          1427:                         CTEMP=DCMPLX(XSC*DMIN1(ABS(V(p,p)),ABS(V(q,q))),
        !          1428:      $                                ZERO)
        !          1429:                         IF ( ABS(V(q,p)) .LE. TEMP1 )
        !          1430: *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
        !          1431:      $                     V(q,p) = CTEMP                     
        !          1432:  3968                CONTINUE
        !          1433:  3969             CONTINUE
        !          1434:                END IF
        !          1435: *
        !          1436:                CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
        !          1437: *
        !          1438:                IF ( L2PERT ) THEN
        !          1439:                   XSC = DSQRT(SMALL)
        !          1440:                   DO 8970 p = 2, NR
        !          1441:                      DO 8971 q = 1, p - 1
        !          1442:                         CTEMP=DCMPLX(XSC*DMIN1(ABS(V(p,p)),ABS(V(q,q))),
        !          1443:      $                               ZERO)
        !          1444: *                        V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) )
        !          1445:                         V(p,q) = - CTEMP      
        !          1446:  8971                CONTINUE
        !          1447:  8970             CONTINUE
        !          1448:                ELSE
        !          1449:                   CALL ZLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV )
        !          1450:                END IF
        !          1451: *              Now, compute R2 = L3 * Q3, the LQ factorization.
        !          1452:                CALL ZGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1),
        !          1453:      $               CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
        !          1454: *              .. and estimate the condition number
        !          1455:                CALL ZLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR )
        !          1456:                DO 4950 p = 1, NR
        !          1457:                   TEMP1 = DZNRM2( p, CWORK(2*N+N*NR+NR+p), NR )
        !          1458:                   CALL ZDSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p), NR )
        !          1459:  4950          CONTINUE
        !          1460:                CALL ZPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
        !          1461:      $              CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR ) 
        !          1462:                CONDR2 = ONE / DSQRT(TEMP1)
        !          1463: *
        !          1464: *
        !          1465:                IF ( CONDR2 .GE. COND_OK ) THEN
        !          1466: *                 .. save the Householder vectors used for Q3
        !          1467: *                 (this overwrittes the copy of R2, as it will not be
        !          1468: *                 needed in this branch, but it does not overwritte the
        !          1469: *                 Huseholder vectors of Q2.).
        !          1470:                   CALL ZLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N )
        !          1471: *                 .. and the rest of the information on Q3 is in
        !          1472: *                 WORK(2*N+N*NR+1:2*N+N*NR+N)
        !          1473:                END IF
        !          1474: *
        !          1475:             END IF
        !          1476: *
        !          1477:             IF ( L2PERT ) THEN
        !          1478:                XSC = DSQRT(SMALL)
        !          1479:                DO 4968 q = 2, NR
        !          1480:                   CTEMP = XSC * V(q,q)
        !          1481:                   DO 4969 p = 1, q - 1
        !          1482: *                     V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) )
        !          1483:                      V(p,q) = - CTEMP
        !          1484:  4969             CONTINUE
        !          1485:  4968          CONTINUE
        !          1486:             ELSE
        !          1487:                CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
        !          1488:             END IF
        !          1489: *
        !          1490: *        Second preconditioning finished; continue with Jacobi SVD
        !          1491: *        The input matrix is lower trinagular.
        !          1492: *
        !          1493: *        Recover the right singular vectors as solution of a well
        !          1494: *        conditioned triangular matrix equation.
        !          1495: *
        !          1496:             IF ( CONDR1 .LT. COND_OK ) THEN
        !          1497: *
        !          1498:                CALL ZGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU,
        !          1499:      $              CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK,
        !          1500:      $              LRWORK, INFO )
        !          1501:                SCALEM  = RWORK(1)
        !          1502:                NUMRANK = NINT(RWORK(2))
        !          1503:                DO 3970 p = 1, NR
        !          1504:                   CALL ZCOPY(  NR, V(1,p), 1, U(1,p), 1 )
        !          1505:                   CALL ZDSCAL( NR, SVA(p),    V(1,p), 1 )
        !          1506:  3970          CONTINUE
        !          1507: 
        !          1508: *        .. pick the right matrix equation and solve it
        !          1509: *
        !          1510:                IF ( NR .EQ. N ) THEN
        !          1511: * :))             .. best case, R1 is inverted. The solution of this matrix
        !          1512: *                 equation is Q2*V2 = the product of the Jacobi rotations
        !          1513: *                 used in ZGESVJ, premultiplied with the orthogonal matrix
        !          1514: *                 from the second QR factorization.
        !          1515:                   CALL ZTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,LDV)
        !          1516:                ELSE
        !          1517: *                 .. R1 is well conditioned, but non-square. Adjoint of R2
        !          1518: *                 is inverted to get the product of the Jacobi rotations
        !          1519: *                 used in ZGESVJ. The Q-factor from the second QR
        !          1520: *                 factorization is then built in explicitly.
        !          1521:                   CALL ZTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1),
        !          1522:      $                 N,V,LDV)
        !          1523:                   IF ( NR .LT. N ) THEN
        !          1524:                    CALL ZLASET('A',N-NR,NR,ZERO,CZERO,V(NR+1,1),LDV)
        !          1525:                    CALL ZLASET('A',NR,N-NR,ZERO,CZERO,V(1,NR+1),LDV)
        !          1526:                    CALL ZLASET('A',N-NR,N-NR,ZERO,CONE,V(NR+1,NR+1),LDV)
        !          1527:                   END IF
        !          1528:                   CALL ZUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
        !          1529:      $                V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
        !          1530:                END IF
        !          1531: *
        !          1532:             ELSE IF ( CONDR2 .LT. COND_OK ) THEN
        !          1533: *
        !          1534: *              The matrix R2 is inverted. The solution of the matrix equation
        !          1535: *              is Q3^* * V3 = the product of the Jacobi rotations (appplied to
        !          1536: *              the lower triangular L3 from the LQ factorization of
        !          1537: *              R2=L3*Q3), pre-multiplied with the transposed Q3.
        !          1538:                CALL ZGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
        !          1539:      $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, 
        !          1540:      $          RWORK, LRWORK, INFO )
        !          1541:                SCALEM  = RWORK(1)
        !          1542:                NUMRANK = NINT(RWORK(2))
        !          1543:                DO 3870 p = 1, NR
        !          1544:                   CALL ZCOPY( NR, V(1,p), 1, U(1,p), 1 )
        !          1545:                   CALL ZDSCAL( NR, SVA(p),    U(1,p), 1 )
        !          1546:  3870          CONTINUE
        !          1547:                CALL ZTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N,
        !          1548:      $                    U,LDU)
        !          1549: *              .. apply the permutation from the second QR factorization
        !          1550:                DO 873 q = 1, NR
        !          1551:                   DO 872 p = 1, NR
        !          1552:                      CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
        !          1553:  872              CONTINUE
        !          1554:                   DO 874 p = 1, NR
        !          1555:                      U(p,q) = CWORK(2*N+N*NR+NR+p)
        !          1556:  874              CONTINUE
        !          1557:  873           CONTINUE
        !          1558:                IF ( NR .LT. N ) THEN
        !          1559:                   CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
        !          1560:                   CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
        !          1561:                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
        !          1562:                END IF
        !          1563:                CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
        !          1564:      $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
        !          1565:             ELSE
        !          1566: *              Last line of defense.
        !          1567: * #:(          This is a rather pathological case: no scaled condition
        !          1568: *              improvement after two pivoted QR factorizations. Other
        !          1569: *              possibility is that the rank revealing QR factorization
        !          1570: *              or the condition estimator has failed, or the COND_OK
        !          1571: *              is set very close to ONE (which is unnecessary). Normally,
        !          1572: *              this branch should never be executed, but in rare cases of
        !          1573: *              failure of the RRQR or condition estimator, the last line of
        !          1574: *              defense ensures that ZGEJSV completes the task.
        !          1575: *              Compute the full SVD of L3 using ZGESVJ with explicit
        !          1576: *              accumulation of Jacobi rotations.
        !          1577:                CALL ZGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
        !          1578:      $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, 
        !          1579:      $                         RWORK, LRWORK, INFO )
        !          1580:                SCALEM  = RWORK(1)
        !          1581:                NUMRANK = NINT(RWORK(2))
        !          1582:                IF ( NR .LT. N ) THEN
        !          1583:                   CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
        !          1584:                   CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
        !          1585:                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
        !          1586:                END IF
        !          1587:                CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
        !          1588:      $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
        !          1589: *
        !          1590:                CALL ZUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N,
        !          1591:      $              CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1),
        !          1592:      $              LWORK-2*N-N*NR-NR, IERR )
        !          1593:                DO 773 q = 1, NR
        !          1594:                   DO 772 p = 1, NR
        !          1595:                      CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
        !          1596:  772              CONTINUE
        !          1597:                   DO 774 p = 1, NR
        !          1598:                      U(p,q) = CWORK(2*N+N*NR+NR+p)
        !          1599:  774              CONTINUE
        !          1600:  773           CONTINUE
        !          1601: *
        !          1602:             END IF
        !          1603: *
        !          1604: *           Permute the rows of V using the (column) permutation from the
        !          1605: *           first QRF. Also, scale the columns to make them unit in
        !          1606: *           Euclidean norm. This applies to all cases.
        !          1607: *
        !          1608:             TEMP1 = DSQRT(DFLOAT(N)) * EPSLN
        !          1609:             DO 1972 q = 1, N
        !          1610:                DO 972 p = 1, N
        !          1611:                   CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
        !          1612:   972          CONTINUE
        !          1613:                DO 973 p = 1, N
        !          1614:                   V(p,q) = CWORK(2*N+N*NR+NR+p)
        !          1615:   973          CONTINUE
        !          1616:                XSC = ONE / DZNRM2( N, V(1,q), 1 )
        !          1617:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        !          1618:      $           CALL ZDSCAL( N, XSC, V(1,q), 1 )
        !          1619:  1972       CONTINUE
        !          1620: *           At this moment, V contains the right singular vectors of A.
        !          1621: *           Next, assemble the left singular vector matrix U (M x N).
        !          1622:             IF ( NR .LT. M ) THEN
        !          1623:                CALL ZLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)
        !          1624:                IF ( NR .LT. N1 ) THEN
        !          1625:                   CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
        !          1626:                   CALL ZLASET('A',M-NR,N1-NR,CZERO,CONE,
        !          1627:      $                        U(NR+1,NR+1),LDU)
        !          1628:                END IF
        !          1629:             END IF
        !          1630: *
        !          1631: *           The Q matrix from the first QRF is built into the left singular
        !          1632: *           matrix U. This applies to all cases.
        !          1633: *
        !          1634:             CALL ZUNMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, CWORK, U,
        !          1635:      $           LDU, CWORK(N+1), LWORK-N, IERR )
        !          1636: 
        !          1637: *           The columns of U are normalized. The cost is O(M*N) flops.
        !          1638:             TEMP1 = DSQRT(DFLOAT(M)) * EPSLN
        !          1639:             DO 1973 p = 1, NR
        !          1640:                XSC = ONE / DZNRM2( M, U(1,p), 1 )
        !          1641:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        !          1642:      $          CALL ZDSCAL( M, XSC, U(1,p), 1 )
        !          1643:  1973       CONTINUE
        !          1644: *
        !          1645: *           If the initial QRF is computed with row pivoting, the left
        !          1646: *           singular vectors must be adjusted.
        !          1647: *
        !          1648:             IF ( ROWPIV )
        !          1649:      $          CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
        !          1650: *
        !          1651:          ELSE
        !          1652: *
        !          1653: *        .. the initial matrix A has almost orthogonal columns and
        !          1654: *        the second QRF is not needed
        !          1655: *
        !          1656:             CALL ZLACPY( 'Upper', N, N, A, LDA, CWORK(N+1), N )
        !          1657:             IF ( L2PERT ) THEN
        !          1658:                XSC = DSQRT(SMALL)
        !          1659:                DO 5970 p = 2, N
        !          1660:                   CTEMP = XSC * CWORK( N + (p-1)*N + p )
        !          1661:                   DO 5971 q = 1, p - 1
        !          1662: *                     CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) /
        !          1663: *     $                                        ABS(CWORK(N+(p-1)*N+q)) )
        !          1664:                      CWORK(N+(q-1)*N+p)=-CTEMP           
        !          1665:  5971             CONTINUE
        !          1666:  5970          CONTINUE
        !          1667:             ELSE
        !          1668:                CALL ZLASET( 'Lower',N-1,N-1,CZERO,CZERO,CWORK(N+2),N )
        !          1669:             END IF
        !          1670: *
        !          1671:             CALL ZGESVJ( 'Upper', 'U', 'N', N, N, CWORK(N+1), N, SVA,
        !          1672:      $           N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK, 
        !          1673:      $       INFO )
        !          1674: *
        !          1675:             SCALEM  = RWORK(1)
        !          1676:             NUMRANK = NINT(RWORK(2))
        !          1677:             DO 6970 p = 1, N
        !          1678:                CALL ZCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 )
        !          1679:                CALL ZDSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 )
        !          1680:  6970       CONTINUE
        !          1681: *
        !          1682:             CALL ZTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,
        !          1683:      $           CONE, A, LDA, CWORK(N+1), N )
        !          1684:             DO 6972 p = 1, N
        !          1685:                CALL ZCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV )
        !          1686:  6972       CONTINUE
        !          1687:             TEMP1 = DSQRT(DFLOAT(N))*EPSLN
        !          1688:             DO 6971 p = 1, N
        !          1689:                XSC = ONE / DZNRM2( N, V(1,p), 1 )
        !          1690:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        !          1691:      $            CALL ZDSCAL( N, XSC, V(1,p), 1 )
        !          1692:  6971       CONTINUE
        !          1693: *
        !          1694: *           Assemble the left singular vector matrix U (M x N).
        !          1695: *
        !          1696:             IF ( N .LT. M ) THEN
        !          1697:                CALL ZLASET( 'A',  M-N, N, CZERO, CZERO, U(N+1,1), LDU )
        !          1698:                IF ( N .LT. N1 ) THEN
        !          1699:                   CALL ZLASET('A',N,  N1-N, CZERO, CZERO,  U(1,N+1),LDU)
        !          1700:                   CALL ZLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),LDU)
        !          1701:                END IF
        !          1702:             END IF
        !          1703:             CALL ZUNMQR( 'Left', 'No Tr', M, N1, N, A, LDA, CWORK, U,
        !          1704:      $           LDU, CWORK(N+1), LWORK-N, IERR )
        !          1705:             TEMP1 = DSQRT(DFLOAT(M))*EPSLN
        !          1706:             DO 6973 p = 1, N1
        !          1707:                XSC = ONE / DZNRM2( M, U(1,p), 1 )
        !          1708:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        !          1709:      $            CALL ZDSCAL( M, XSC, U(1,p), 1 )
        !          1710:  6973       CONTINUE
        !          1711: *
        !          1712:             IF ( ROWPIV )
        !          1713:      $         CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
        !          1714: *
        !          1715:          END IF
        !          1716: *
        !          1717: *        end of the  >> almost orthogonal case <<  in the full SVD
        !          1718: *
        !          1719:          ELSE
        !          1720: *
        !          1721: *        This branch deploys a preconditioned Jacobi SVD with explicitly
        !          1722: *        accumulated rotations. It is included as optional, mainly for
        !          1723: *        experimental purposes. It does perfom well, and can also be used.
        !          1724: *        In this implementation, this branch will be automatically activated
        !          1725: *        if the  condition number sigma_max(A) / sigma_min(A) is predicted
        !          1726: *        to be greater than the overflow threshold. This is because the
        !          1727: *        a posteriori computation of the singular vectors assumes robust
        !          1728: *        implementation of BLAS and some LAPACK procedures, capable of working
        !          1729: *        in presence of extreme values. Since that is not always the case, ...
        !          1730: *
        !          1731:          DO 7968 p = 1, NR
        !          1732:             CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
        !          1733:             CALL ZLACGV( N-p+1, V(p,p), 1 )
        !          1734:  7968    CONTINUE
        !          1735: *
        !          1736:          IF ( L2PERT ) THEN
        !          1737:             XSC = DSQRT(SMALL/EPSLN)
        !          1738:             DO 5969 q = 1, NR
        !          1739:                CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
        !          1740:                DO 5968 p = 1, N
        !          1741:                   IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
        !          1742:      $                .OR. ( p .LT. q ) )
        !          1743: *     $                V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
        !          1744:      $                V(p,q) = CTEMP        
        !          1745:                   IF ( p .LT. q ) V(p,q) = - V(p,q)
        !          1746:  5968          CONTINUE
        !          1747:  5969       CONTINUE
        !          1748:          ELSE
        !          1749:             CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
        !          1750:          END IF
        !          1751: 
        !          1752:          CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
        !          1753:      $        LWORK-2*N, IERR )
        !          1754:          CALL ZLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N )
        !          1755: *
        !          1756:          DO 7969 p = 1, NR
        !          1757:             CALL ZCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
        !          1758:             CALL ZLACGV( NR-p+1, U(p,p), 1 )
        !          1759:  7969    CONTINUE
        !          1760: 
        !          1761:          IF ( L2PERT ) THEN
        !          1762:             XSC = DSQRT(SMALL/EPSLN)
        !          1763:             DO 9970 q = 2, NR
        !          1764:                DO 9971 p = 1, q - 1
        !          1765:                   CTEMP = DCMPLX(XSC * DMIN1(ABS(U(p,p)),ABS(U(q,q))),
        !          1766:      $                            ZERO)
        !          1767: *                  U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) )
        !          1768:                   U(p,q) = - CTEMP     
        !          1769:  9971          CONTINUE
        !          1770:  9970       CONTINUE
        !          1771:          ELSE
        !          1772:             CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
        !          1773:          END IF
        !          1774: 
        !          1775:          CALL ZGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,
        !          1776:      $        N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR, 
        !          1777:      $         RWORK, LRWORK, INFO )
        !          1778:          SCALEM  = RWORK(1)
        !          1779:          NUMRANK = NINT(RWORK(2))
        !          1780: 
        !          1781:          IF ( NR .LT. N ) THEN
        !          1782:             CALL ZLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
        !          1783:             CALL ZLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
        !          1784:             CALL ZLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
        !          1785:          END IF
        !          1786: 
        !          1787:          CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
        !          1788:      $        V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
        !          1789: *
        !          1790: *           Permute the rows of V using the (column) permutation from the
        !          1791: *           first QRF. Also, scale the columns to make them unit in
        !          1792: *           Euclidean norm. This applies to all cases.
        !          1793: *
        !          1794:             TEMP1 = DSQRT(DFLOAT(N)) * EPSLN
        !          1795:             DO 7972 q = 1, N
        !          1796:                DO 8972 p = 1, N
        !          1797:                   CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
        !          1798:  8972          CONTINUE
        !          1799:                DO 8973 p = 1, N
        !          1800:                   V(p,q) = CWORK(2*N+N*NR+NR+p)
        !          1801:  8973          CONTINUE
        !          1802:                XSC = ONE / DZNRM2( N, V(1,q), 1 )
        !          1803:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        !          1804:      $           CALL ZDSCAL( N, XSC, V(1,q), 1 )
        !          1805:  7972       CONTINUE
        !          1806: *
        !          1807: *           At this moment, V contains the right singular vectors of A.
        !          1808: *           Next, assemble the left singular vector matrix U (M x N).
        !          1809: *
        !          1810:          IF ( NR .LT. M ) THEN
        !          1811:             CALL ZLASET( 'A',  M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU )
        !          1812:             IF ( NR .LT. N1 ) THEN
        !          1813:                CALL ZLASET('A',NR,  N1-NR, CZERO, CZERO,  U(1,NR+1),LDU)
        !          1814:                CALL ZLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),LDU)
        !          1815:             END IF
        !          1816:          END IF
        !          1817: *
        !          1818:          CALL ZUNMQR( 'Left', 'No Tr', M, N1, N, A, LDA, CWORK, U,
        !          1819:      $        LDU, CWORK(N+1), LWORK-N, IERR )
        !          1820: *
        !          1821:             IF ( ROWPIV )
        !          1822:      $         CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
        !          1823: *
        !          1824: *
        !          1825:          END IF
        !          1826:          IF ( TRANSP ) THEN
        !          1827: *           .. swap U and V because the procedure worked on A^*
        !          1828:             DO 6974 p = 1, N
        !          1829:                CALL ZSWAP( N, U(1,p), 1, V(1,p), 1 )
        !          1830:  6974       CONTINUE
        !          1831:          END IF
        !          1832: *
        !          1833:       END IF
        !          1834: *     end of the full SVD
        !          1835: *
        !          1836: *     Undo scaling, if necessary (and possible)
        !          1837: *
        !          1838:       IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
        !          1839:          CALL ZLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
        !          1840:          USCAL1 = ONE
        !          1841:          USCAL2 = ONE
        !          1842:       END IF
        !          1843: *
        !          1844:       IF ( NR .LT. N ) THEN
        !          1845:          DO 3004 p = NR+1, N
        !          1846:             SVA(p) = ZERO
        !          1847:  3004    CONTINUE
        !          1848:       END IF
        !          1849: *
        !          1850:       RWORK(1) = USCAL2 * SCALEM
        !          1851:       RWORK(2) = USCAL1
        !          1852:       IF ( ERREST ) RWORK(3) = SCONDA
        !          1853:       IF ( LSVEC .AND. RSVEC ) THEN
        !          1854:          RWORK(4) = CONDR1
        !          1855:          RWORK(5) = CONDR2
        !          1856:       END IF
        !          1857:       IF ( L2TRAN ) THEN
        !          1858:          RWORK(6) = ENTRA
        !          1859:          RWORK(7) = ENTRAT
        !          1860:       END IF
        !          1861: *
        !          1862:       IWORK(1) = NR
        !          1863:       IWORK(2) = NUMRANK
        !          1864:       IWORK(3) = WARNING
        !          1865: *
        !          1866:       RETURN
        !          1867: *     ..
        !          1868: *     .. END OF ZGEJSV
        !          1869: *     ..
        !          1870:       END
        !          1871: *

CVSweb interface <joel.bertrand@systella.fr>