Diff for /rpl/lapack/lapack/zgejsv.f between versions 1.3 and 1.4

version 1.3, 2016/08/27 15:34:45 version 1.4, 2017/06/17 10:54:09
Line 1 Line 1
 *> \brief \b ZGEJSV  *> \brief \b ZGEJSV
 *  *
 *  =========== DOCUMENTATION ===========  *  =========== DOCUMENTATION ===========
 *  *
 * Online html documentation available at   * Online html documentation available at
 *            http://www.netlib.org/lapack/explore-html/   *            http://www.netlib.org/lapack/explore-html/
 *  *
 *> \htmlonly  *> \htmlonly
 *> Download ZGEJSV + dependencies   *> Download ZGEJSV + dependencies
 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgejsv.f">   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgejsv.f">
 *> [TGZ]</a>   *> [TGZ]</a>
 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgejsv.f">   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgejsv.f">
 *> [ZIP]</a>   *> [ZIP]</a>
 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgejsv.f">   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgejsv.f">
 *> [TXT]</a>  *> [TXT]</a>
 *> \endhtmlonly   *> \endhtmlonly
 *  *
 *  Definition:  *  Definition:
 *  ===========  *  ===========
 *  *
 *     SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,  *     SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
 *                         M, N, A, LDA, SVA, U, LDU, V, LDV,  *                         M, N, A, LDA, SVA, U, LDU, V, LDV,
 *                         CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )  *                         CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
 *   *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
 *     IMPLICIT    NONE  *     IMPLICIT    NONE
 *     INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N  *     INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
 *     ..  *     ..
 *     .. Array Arguments ..  *     .. Array Arguments ..
 *     COMPLEX*16     A( LDA, * ),  U( LDU, * ), V( LDV, * ), CWORK( LWORK )  *     COMPLEX*16     A( LDA, * ),  U( LDU, * ), V( LDV, * ), CWORK( LWORK )
 *     DOUBLE PRECISION   SVA( N ), RWORK( LRWORK )        *     DOUBLE PRECISION   SVA( N ), RWORK( LRWORK )
 *     INTEGER     IWORK( * )  *     INTEGER     IWORK( * )
 *     CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV  *     CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
 *       ..  *       ..
 *    *
 *  *
 *> \par Purpose:  *> \par Purpose:
 *  =============  *  =============
 *>  *>
 *> \verbatim  *> \verbatim
 *>  *>
 *> ZGEJSV computes the singular value decomposition (SVD) of a complex M-by-N  *> ZGEJSV computes the singular value decomposition (SVD) of a complex M-by-N
 *> matrix [A], where M >= N. The SVD of [A] is written as  *> matrix [A], where M >= N. The SVD of [A] is written as
 *>  *>
 *>              [A] = [U] * [SIGMA] * [V]^*,  *>              [A] = [U] * [SIGMA] * [V]^*,
 *>  *>
 *> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N  *> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
 *> diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and  *> diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and
 *> [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are  *> [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are
 *> the singular values of [A]. The columns of [U] and [V] are the left and  *> the singular values of [A]. The columns of [U] and [V] are the left and
 *> the right singular vectors of [A], respectively. The matrices [U] and [V]  *> the right singular vectors of [A], respectively. The matrices [U] and [V]
 *> are computed and stored in the arrays U and V, respectively. The diagonal  *> are computed and stored in the arrays U and V, respectively. The diagonal
 *> of [SIGMA] is computed and stored in the array SVA.  *> of [SIGMA] is computed and stored in the array SVA.
 *> \endverbatim  *> \endverbatim
 *>  *>
 *>  Arguments:  *>  Arguments:
 *>  ==========  *>  ==========
 *>  *>
 *> \param[in] JOBA  *> \param[in] JOBA
 *> \verbatim  *> \verbatim
 *>          JOBA is CHARACTER*1  *>          JOBA is CHARACTER*1
 *>         Specifies the level of accuracy:  *>         Specifies the level of accuracy:
 *>       = 'C': This option works well (high relative accuracy) if A = B * D,  *>       = 'C': This option works well (high relative accuracy) if A = B * D,
 *>              with well-conditioned B and arbitrary diagonal matrix D.  *>              with well-conditioned B and arbitrary diagonal matrix D.
 *>              The accuracy cannot be spoiled by COLUMN scaling. The  *>              The accuracy cannot be spoiled by COLUMN scaling. The
 *>              accuracy of the computed output depends on the condition of  *>              accuracy of the computed output depends on the condition of
 *>              B, and the procedure aims at the best theoretical accuracy.  *>              B, and the procedure aims at the best theoretical accuracy.
 *>              The relative error max_{i=1:N}|d sigma_i| / sigma_i is  *>              The relative error max_{i=1:N}|d sigma_i| / sigma_i is
 *>              bounded by f(M,N)*epsilon* cond(B), independent of D.  *>              bounded by f(M,N)*epsilon* cond(B), independent of D.
 *>              The input matrix is preprocessed with the QRF with column  *>              The input matrix is preprocessed with the QRF with column
 *>              pivoting. This initial preprocessing and preconditioning by  *>              pivoting. This initial preprocessing and preconditioning by
 *>              a rank revealing QR factorization is common for all values of  *>              a rank revealing QR factorization is common for all values of
 *>              JOBA. Additional actions are specified as follows:  *>              JOBA. Additional actions are specified as follows:
 *>       = 'E': Computation as with 'C' with an additional estimate of the  *>       = 'E': Computation as with 'C' with an additional estimate of the
 *>              condition number of B. It provides a realistic error bound.  *>              condition number of B. It provides a realistic error bound.
 *>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings  *>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
 *>              D1, D2, and well-conditioned matrix C, this option gives  *>              D1, D2, and well-conditioned matrix C, this option gives
 *>              higher accuracy than the 'C' option. If the structure of the  *>              higher accuracy than the 'C' option. If the structure of the
 *>              input matrix is not known, and relative accuracy is  *>              input matrix is not known, and relative accuracy is
 *>              desirable, then this option is advisable. The input matrix A  *>              desirable, then this option is advisable. The input matrix A
 *>              is preprocessed with QR factorization with FULL (row and  *>              is preprocessed with QR factorization with FULL (row and
 *>              column) pivoting.  *>              column) pivoting.
 *>       = 'G'  Computation as with 'F' with an additional estimate of the  *>       = 'G'  Computation as with 'F' with an additional estimate of the
 *>              condition number of B, where A=D*B. If A has heavily weighted  *>              condition number of B, where A=B*D. If A has heavily weighted
 *>              rows, then using this condition number gives too pessimistic  *>              rows, then using this condition number gives too pessimistic
 *>              error bound.  *>              error bound.
 *>       = 'A': Small singular values are the noise and the matrix is treated  *>       = 'A': Small singular values are not well determined by the data
 *>              as numerically rank defficient. The error in the computed  *>              and are considered as noisy; the matrix is treated as
 *>              singular values is bounded by f(m,n)*epsilon*||A||.  *>              numerically rank defficient. The error in the computed
 *>              The computed SVD A = U * S * V^* restores A up to  *>              singular values is bounded by f(m,n)*epsilon*||A||.
 *>              f(m,n)*epsilon*||A||.  *>              The computed SVD A = U * S * V^* restores A up to
 *>              This gives the procedure the licence to discard (set to zero)  *>              f(m,n)*epsilon*||A||.
 *>              all singular values below N*epsilon*||A||.  *>              This gives the procedure the licence to discard (set to zero)
 *>       = 'R': Similar as in 'A'. Rank revealing property of the initial  *>              all singular values below N*epsilon*||A||.
 *>              QR factorization is used do reveal (using triangular factor)  *>       = 'R': Similar as in 'A'. Rank revealing property of the initial
 *>              a gap sigma_{r+1} < epsilon * sigma_r in which case the  *>              QR factorization is used do reveal (using triangular factor)
 *>              numerical RANK is declared to be r. The SVD is computed with  *>              a gap sigma_{r+1} < epsilon * sigma_r in which case the
 *>              absolute error bounds, but more accurately than with 'A'.  *>              numerical RANK is declared to be r. The SVD is computed with
 *> \endverbatim  *>              absolute error bounds, but more accurately than with 'A'.
 *>   *> \endverbatim
 *> \param[in] JOBU  *>
 *> \verbatim  *> \param[in] JOBU
 *>          JOBU is CHARACTER*1  *> \verbatim
 *>         Specifies whether to compute the columns of U:  *>          JOBU is CHARACTER*1
 *>       = 'U': N columns of U are returned in the array U.  *>         Specifies whether to compute the columns of U:
 *>       = 'F': full set of M left sing. vectors is returned in the array U.  *>       = 'U': N columns of U are returned in the array U.
 *>       = 'W': U may be used as workspace of length M*N. See the description  *>       = 'F': full set of M left sing. vectors is returned in the array U.
 *>              of U.  *>       = 'W': U may be used as workspace of length M*N. See the description
 *>       = 'N': U is not computed.  *>              of U.
 *> \endverbatim  *>       = 'N': U is not computed.
 *>   *> \endverbatim
 *> \param[in] JOBV  *>
 *> \verbatim  *> \param[in] JOBV
 *>          JOBV is CHARACTER*1  *> \verbatim
 *>         Specifies whether to compute the matrix V:  *>          JOBV is CHARACTER*1
 *>       = 'V': N columns of V are returned in the array V; Jacobi rotations  *>         Specifies whether to compute the matrix V:
 *>              are not explicitly accumulated.  *>       = 'V': N columns of V are returned in the array V; Jacobi rotations
 *>       = 'J': N columns of V are returned in the array V, but they are  *>              are not explicitly accumulated.
 *>              computed as the product of Jacobi rotations. This option is  *>       = 'J': N columns of V are returned in the array V, but they are
 *>              allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.  *>              computed as the product of Jacobi rotations, if JOBT .EQ. 'N'.
 *>       = 'W': V may be used as workspace of length N*N. See the description  *>       = 'W': V may be used as workspace of length N*N. See the description
 *>              of V.  *>              of V.
 *>       = 'N': V is not computed.  *>       = 'N': V is not computed.
 *> \endverbatim  *> \endverbatim
 *>   *>
 *> \param[in] JOBR  *> \param[in] JOBR
 *> \verbatim  *> \verbatim
 *>          JOBR is CHARACTER*1  *>          JOBR is CHARACTER*1
 *>         Specifies the RANGE for the singular values. Issues the licence to  *>         Specifies the RANGE for the singular values. Issues the licence to
 *>         set to zero small positive singular values if they are outside  *>         set to zero small positive singular values if they are outside
 *>         specified range. If A .NE. 0 is scaled so that the largest singular  *>         specified range. If A .NE. 0 is scaled so that the largest singular
 *>         value of c*A is around SQRT(BIG), BIG=DLAMCH('O'), then JOBR issues  *>         value of c*A is around SQRT(BIG), BIG=DLAMCH('O'), then JOBR issues
 *>         the licence to kill columns of A whose norm in c*A is less than  *>         the licence to kill columns of A whose norm in c*A is less than
 *>         SQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,  *>         SQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,
 *>         where SFMIN=DLAMCH('S'), EPSLN=DLAMCH('E').  *>         where SFMIN=DLAMCH('S'), EPSLN=DLAMCH('E').
 *>       = 'N': Do not kill small columns of c*A. This option assumes that  *>       = 'N': Do not kill small columns of c*A. This option assumes that
 *>              BLAS and QR factorizations and triangular solvers are  *>              BLAS and QR factorizations and triangular solvers are
 *>              implemented to work in that range. If the condition of A  *>              implemented to work in that range. If the condition of A
 *>              is greater than BIG, use ZGESVJ.  *>              is greater than BIG, use ZGESVJ.
 *>       = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]  *>       = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]
 *>              (roughly, as described above). This option is recommended.  *>              (roughly, as described above). This option is recommended.
 *>                                             ===========================  *>                                             ===========================
 *>         For computing the singular values in the FULL range [SFMIN,BIG]  *>         For computing the singular values in the FULL range [SFMIN,BIG]
 *>         use ZGESVJ.  *>         use ZGESVJ.
 *> \endverbatim  *> \endverbatim
 *>   *>
 *> \param[in] JOBT  *> \param[in] JOBT
 *> \verbatim  *> \verbatim
 *>          JOBT is CHARACTER*1  *>          JOBT is CHARACTER*1
 *>         If the matrix is square then the procedure may determine to use  *>         If the matrix is square then the procedure may determine to use
 *>         transposed A if A^* seems to be better with respect to convergence.  *>         transposed A if A^* seems to be better with respect to convergence.
 *>         If the matrix is not square, JOBT is ignored. This is subject to  *>         If the matrix is not square, JOBT is ignored.
 *>         changes in the future.  *>         The decision is based on two values of entropy over the adjoint
 *>         The decision is based on two values of entropy over the adjoint  *>         orbit of A^* * A. See the descriptions of WORK(6) and WORK(7).
 *>         orbit of A^* * A. See the descriptions of WORK(6) and WORK(7).  *>       = 'T': transpose if entropy test indicates possibly faster
 *>       = 'T': transpose if entropy test indicates possibly faster  *>         convergence of Jacobi process if A^* is taken as input. If A is
 *>         convergence of Jacobi process if A^* is taken as input. If A is  *>         replaced with A^*, then the row pivoting is included automatically.
 *>         replaced with A^*, then the row pivoting is included automatically.  *>       = 'N': do not speculate.
 *>       = 'N': do not speculate.  *>         The option 'T' can be used to compute only the singular values, or
 *>         This option can be used to compute only the singular values, or the  *>         the full SVD (U, SIGMA and V). For only one set of singular vectors
 *>         full SVD (U, SIGMA and V). For only one set of singular vectors  *>         (U or V), the caller should provide both U and V, as one of the
 *>         (U or V), the caller should provide both U and V, as one of the  *>         matrices is used as workspace if the matrix A is transposed.
 *>         matrices is used as workspace if the matrix A is transposed.  *>         The implementer can easily remove this constraint and make the
 *>         The implementer can easily remove this constraint and make the  *>         code more complicated. See the descriptions of U and V.
 *>         code more complicated. See the descriptions of U and V.  *>         In general, this option is considered experimental, and 'N'; should
 *> \endverbatim  *>         be preferred. This is subject to changes in the future.
 *>   *> \endverbatim
 *> \param[in] JOBP  *>
 *> \verbatim  *> \param[in] JOBP
 *>          JOBP is CHARACTER*1  *> \verbatim
 *>         Issues the licence to introduce structured perturbations to drown  *>          JOBP is CHARACTER*1
 *>         denormalized numbers. This licence should be active if the  *>         Issues the licence to introduce structured perturbations to drown
 *>         denormals are poorly implemented, causing slow computation,  *>         denormalized numbers. This licence should be active if the
 *>         especially in cases of fast convergence (!). For details see [1,2].  *>         denormals are poorly implemented, causing slow computation,
 *>         For the sake of simplicity, this perturbations are included only  *>         especially in cases of fast convergence (!). For details see [1,2].
 *>         when the full SVD or only the singular values are requested. The  *>         For the sake of simplicity, this perturbations are included only
 *>         implementer/user can easily add the perturbation for the cases of  *>         when the full SVD or only the singular values are requested. The
 *>         computing one set of singular vectors.  *>         implementer/user can easily add the perturbation for the cases of
 *>       = 'P': introduce perturbation  *>         computing one set of singular vectors.
 *>       = 'N': do not perturb  *>       = 'P': introduce perturbation
 *> \endverbatim  *>       = 'N': do not perturb
 *>  *> \endverbatim
 *> \param[in] M  *>
 *> \verbatim  *> \param[in] M
 *>          M is INTEGER  *> \verbatim
 *>         The number of rows of the input matrix A.  M >= 0.  *>          M is INTEGER
 *> \endverbatim  *>         The number of rows of the input matrix A.  M >= 0.
 *>  *> \endverbatim
 *> \param[in] N  *>
 *> \verbatim  *> \param[in] N
 *>          N is INTEGER  *> \verbatim
 *>         The number of columns of the input matrix A. M >= N >= 0.  *>          N is INTEGER
 *> \endverbatim  *>         The number of columns of the input matrix A. M >= N >= 0.
 *>  *> \endverbatim
 *> \param[in,out] A  *>
 *> \verbatim  *> \param[in,out] A
 *>          A is COMPLEX*16 array, dimension (LDA,N)  *> \verbatim
 *>          On entry, the M-by-N matrix A.  *>          A is COMPLEX*16 array, dimension (LDA,N)
 *> \endverbatim  *>          On entry, the M-by-N matrix A.
 *>  *> \endverbatim
 *> \param[in] LDA  *>
 *> \verbatim  *> \param[in] LDA
 *>          LDA is INTEGER  *> \verbatim
 *>          The leading dimension of the array A.  LDA >= max(1,M).  *>          LDA is INTEGER
 *> \endverbatim  *>          The leading dimension of the array A.  LDA >= max(1,M).
 *>  *> \endverbatim
 *> \param[out] SVA  *>
 *> \verbatim  *> \param[out] SVA
 *>          SVA is DOUBLE PRECISION array, dimension (N)  *> \verbatim
 *>          On exit,  *>          SVA is DOUBLE PRECISION array, dimension (N)
 *>          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the  *>          On exit,
 *>            computation SVA contains Euclidean column norms of the  *>          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
 *>            iterated matrices in the array A.  *>            computation SVA contains Euclidean column norms of the
 *>          - For WORK(1) .NE. WORK(2): The singular values of A are  *>            iterated matrices in the array A.
 *>            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if  *>          - For WORK(1) .NE. WORK(2): The singular values of A are
 *>            sigma_max(A) overflows or if small singular values have been  *>            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
 *>            saved from underflow by scaling the input matrix A.  *>            sigma_max(A) overflows or if small singular values have been
 *>          - If JOBR='R' then some of the singular values may be returned  *>            saved from underflow by scaling the input matrix A.
 *>            as exact zeros obtained by "set to zero" because they are  *>          - If JOBR='R' then some of the singular values may be returned
 *>            below the numerical rank threshold or are denormalized numbers.  *>            as exact zeros obtained by "set to zero" because they are
 *> \endverbatim  *>            below the numerical rank threshold or are denormalized numbers.
 *>  *> \endverbatim
 *> \param[out] U  *>
 *> \verbatim  *> \param[out] U
 *>          U is COMPLEX*16 array, dimension ( LDU, N )  *> \verbatim
 *>          If JOBU = 'U', then U contains on exit the M-by-N matrix of  *>          U is COMPLEX*16 array, dimension ( LDU, N )
 *>                         the left singular vectors.  *>          If JOBU = 'U', then U contains on exit the M-by-N matrix of
 *>          If JOBU = 'F', then U contains on exit the M-by-M matrix of  *>                         the left singular vectors.
 *>                         the left singular vectors, including an ONB  *>          If JOBU = 'F', then U contains on exit the M-by-M matrix of
 *>                         of the orthogonal complement of the Range(A).  *>                         the left singular vectors, including an ONB
 *>          If JOBU = 'W'  .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),  *>                         of the orthogonal complement of the Range(A).
 *>                         then U is used as workspace if the procedure  *>          If JOBU = 'W'  .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),
 *>                         replaces A with A^*. In that case, [V] is computed  *>                         then U is used as workspace if the procedure
 *>                         in U as left singular vectors of A^* and then  *>                         replaces A with A^*. In that case, [V] is computed
 *>                         copied back to the V array. This 'W' option is just  *>                         in U as left singular vectors of A^* and then
 *>                         a reminder to the caller that in this case U is  *>                         copied back to the V array. This 'W' option is just
 *>                         reserved as workspace of length N*N.  *>                         a reminder to the caller that in this case U is
 *>          If JOBU = 'N'  U is not referenced, unless JOBT='T'.  *>                         reserved as workspace of length N*N.
 *> \endverbatim  *>          If JOBU = 'N'  U is not referenced, unless JOBT='T'.
 *>  *> \endverbatim
 *> \param[in] LDU  *>
 *> \verbatim  *> \param[in] LDU
 *>          LDU is INTEGER  *> \verbatim
 *>          The leading dimension of the array U,  LDU >= 1.  *>          LDU is INTEGER
 *>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.  *>          The leading dimension of the array U,  LDU >= 1.
 *> \endverbatim  *>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
 *>  *> \endverbatim
 *> \param[out] V  *>
 *> \verbatim  *> \param[out] V
 *>          V is COMPLEX*16 array, dimension ( LDV, N )  *> \verbatim
 *>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of  *>          V is COMPLEX*16 array, dimension ( LDV, N )
 *>                         the right singular vectors;  *>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
 *>          If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),  *>                         the right singular vectors;
 *>                         then V is used as workspace if the pprocedure  *>          If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),
 *>                         replaces A with A^*. In that case, [U] is computed  *>                         then V is used as workspace if the pprocedure
 *>                         in V as right singular vectors of A^* and then  *>                         replaces A with A^*. In that case, [U] is computed
 *>                         copied back to the U array. This 'W' option is just  *>                         in V as right singular vectors of A^* and then
 *>                         a reminder to the caller that in this case V is  *>                         copied back to the U array. This 'W' option is just
 *>                         reserved as workspace of length N*N.  *>                         a reminder to the caller that in this case V is
 *>          If JOBV = 'N'  V is not referenced, unless JOBT='T'.  *>                         reserved as workspace of length N*N.
 *> \endverbatim  *>          If JOBV = 'N'  V is not referenced, unless JOBT='T'.
 *>  *> \endverbatim
 *> \param[in] LDV  *>
 *> \verbatim  *> \param[in] LDV
 *>          LDV is INTEGER  *> \verbatim
 *>          The leading dimension of the array V,  LDV >= 1.  *>          LDV is INTEGER
 *>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.  *>          The leading dimension of the array V,  LDV >= 1.
 *> \endverbatim  *>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
 *>  *> \endverbatim
 *> \param[out] CWORK  *>
 *> \verbatim  *> \param[out] CWORK
 *>          CWORK is COMPLEX*16 array, dimension at least LWORK.       *> \verbatim
 *> \endverbatim  *>          CWORK is COMPLEX*16 array, dimension (MAX(2,LWORK))
 *>  *>          If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
 *> \param[in] LWORK  *>          LRWORK=-1), then on exit CWORK(1) contains the required length of
 *> \verbatim  *>          CWORK for the job parameters used in the call.
 *>          LWORK is INTEGER  *> \endverbatim
 *>          Length of CWORK to confirm proper allocation of workspace.  *>
 *>          LWORK depends on the job:  *> \param[in] LWORK
 *>  *> \verbatim
 *>          1. If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and  *>          LWORK is INTEGER
 *>            1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'):  *>          Length of CWORK to confirm proper allocation of workspace.
 *>               LWORK >= 2*N+1. This is the minimal requirement.  *>          LWORK depends on the job:
 *>               ->> For optimal performance (blocked code) the optimal value  *>
 *>               is LWORK >= N + (N+1)*NB. Here NB is the optimal  *>          1. If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and
 *>               block size for ZGEQP3 and ZGEQRF.  *>            1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'):
 *>               In general, optimal LWORK is computed as   *>               LWORK >= 2*N+1. This is the minimal requirement.
 *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF)).          *>               ->> For optimal performance (blocked code) the optimal value
 *>            1.2. .. an estimate of the scaled condition number of A is  *>               is LWORK >= N + (N+1)*NB. Here NB is the optimal
 *>               required (JOBA='E', or 'G'). In this case, LWORK the minimal  *>               block size for ZGEQP3 and ZGEQRF.
 *>               requirement is LWORK >= N*N + 3*N.  *>               In general, optimal LWORK is computed as
 *>               ->> For optimal performance (blocked code) the optimal value   *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ)).
 *>               is LWORK >= max(N+(N+1)*NB, N*N+3*N).  *>            1.2. .. an estimate of the scaled condition number of A is
 *>               In general, the optimal length LWORK is computed as  *>               required (JOBA='E', or 'G'). In this case, LWORK the minimal
 *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF),   *>               requirement is LWORK >= N*N + 2*N.
 *>                                                     N+N*N+LWORK(ZPOCON)).  *>               ->> For optimal performance (blocked code) the optimal value
 *>  *>               is LWORK >= max(N+(N+1)*NB, N*N+2*N)=N**2+2*N.
 *>          2. If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),  *>               In general, the optimal length LWORK is computed as
 *>             (JOBU.EQ.'N')  *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZGEQRF), LWORK(ZGESVJ),
 *>            -> the minimal requirement is LWORK >= 3*N.  *>                            N*N+LWORK(ZPOCON)).
 *>            -> For optimal performance, LWORK >= max(N+(N+1)*NB, 3*N,2*N+N*NB),  *>          2. If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),
 *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQF,  *>             (JOBU.EQ.'N')
 *>               ZUNMLQ. In general, the optimal length LWORK is computed as  *>            2.1   .. no scaled condition estimate requested (JOBE.EQ.'N'):    
 *>               LWORK >= max(N+LWORK(ZGEQP3), N+LWORK(ZPOCON), N+LWORK(ZGESVJ),  *>            -> the minimal requirement is LWORK >= 3*N.
 *>                       N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).  *>            -> For optimal performance,
 *>  *>               LWORK >= max(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
 *>          3. If SIGMA and the left singular vectors are needed  *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQ,
 *>            -> the minimal requirement is LWORK >= 3*N.  *>               ZUNMLQ. In general, the optimal length LWORK is computed as
 *>            -> For optimal performance:  *>               LWORK >= max(N+LWORK(ZGEQP3), N+LWORK(ZGESVJ),
 *>               if JOBU.EQ.'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB),  *>                       N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).
 *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.  *>            2.2 .. an estimate of the scaled condition number of A is
 *>               In general, the optimal length LWORK is computed as  *>               required (JOBA='E', or 'G').
 *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZPOCON),  *>            -> the minimal requirement is LWORK >= 3*N.      
 *>                        2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)).   *>            -> For optimal performance,
 *>                 *>               LWORK >= max(N+(N+1)*NB, 2*N,2*N+N*NB)=2*N+N*NB,
 *>          4. If the full SVD is needed: (JOBU.EQ.'U' or JOBU.EQ.'F') and   *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZGELQ,
 *>            4.1. if JOBV.EQ.'V'    *>               ZUNMLQ. In general, the optimal length LWORK is computed as
 *>               the minimal requirement is LWORK >= 5*N+2*N*N.   *>               LWORK >= max(N+LWORK(ZGEQP3), LWORK(ZPOCON), N+LWORK(ZGESVJ),
 *>            4.2. if JOBV.EQ.'J' the minimal requirement is   *>                       N+LWORK(ZGELQF), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMLQ)).  
 *>               LWORK >= 4*N+N*N.  *>          3. If SIGMA and the left singular vectors are needed
 *>            In both cases, the allocated CWORK can accommodate blocked runs  *>            3.1  .. no scaled condition estimate requested (JOBE.EQ.'N'):
 *>            of ZGEQP3, ZGEQRF, ZGELQF, ZUNMQR, ZUNMLQ.  *>            -> the minimal requirement is LWORK >= 3*N.
 *> \endverbatim  *>            -> For optimal performance:
 *>  *>               if JOBU.EQ.'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
 *> \param[out] RWORK  *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
 *> \verbatim  *>               In general, the optimal length LWORK is computed as
 *>          RWORK is DOUBLE PRECISION array, dimension at least LRWORK.  *>               LWORK >= max(N+LWORK(ZGEQP3), 2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)).
 *>          On exit,  *>            3.2  .. an estimate of the scaled condition number of A is
 *>          RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1)  *>               required (JOBA='E', or 'G').
 *>                    such that SCALE*SVA(1:N) are the computed singular values  *>            -> the minimal requirement is LWORK >= 3*N.
 *>                    of A. (See the description of SVA().)  *>            -> For optimal performance:
 *>          RWORK(2) = See the description of RWORK(1).  *>               if JOBU.EQ.'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
 *>          RWORK(3) = SCONDA is an estimate for the condition number of  *>               where NB is the optimal block size for ZGEQP3, ZGEQRF, ZUNMQR.
 *>                    column equilibrated A. (If JOBA .EQ. 'E' or 'G')  *>               In general, the optimal length LWORK is computed as
 *>                    SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).  *>               LWORK >= max(N+LWORK(ZGEQP3),N+LWORK(ZPOCON),
 *>                    It is computed using SPOCON. It holds  *>                        2*N+LWORK(ZGEQRF), N+LWORK(ZUNMQR)).
 *>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA  *>          4. If the full SVD is needed: (JOBU.EQ.'U' or JOBU.EQ.'F') and
 *>                    where R is the triangular factor from the QRF of A.  *>            4.1. if JOBV.EQ.'V'  
 *>                    However, if R is truncated and the numerical rank is  *>               the minimal requirement is LWORK >= 5*N+2*N*N.
 *>                    determined to be strictly smaller than N, SCONDA is  *>            4.2. if JOBV.EQ.'J' the minimal requirement is
 *>                    returned as -1, thus indicating that the smallest  *>               LWORK >= 4*N+N*N.
 *>                    singular values might be lost.  *>            In both cases, the allocated CWORK can accomodate blocked runs
 *>  *>            of ZGEQP3, ZGEQRF, ZGELQF, SUNMQR, ZUNMLQ.
 *>          If full SVD is needed, the following two condition numbers are  *>
 *>          useful for the analysis of the algorithm. They are provied for  *>          If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
 *>          a developer/implementer who is familiar with the details of  *>          LRWORK=-1), then on exit CWORK(1) contains the optimal and CWORK(2) contains the
 *>          the method.  *>          minimal length of CWORK for the job parameters used in the call.
 *>  *> \endverbatim
 *>          RWORK(4) = an estimate of the scaled condition number of the  *>
 *>                    triangular factor in the first QR factorization.  *> \param[out] RWORK
 *>          RWORK(5) = an estimate of the scaled condition number of the  *> \verbatim
 *>                    triangular factor in the second QR factorization.  *>          RWORK is DOUBLE PRECISION array, dimension (MAX(7,LWORK))
 *>          The following two parameters are computed if JOBT .EQ. 'T'.  *>          On exit,
 *>          They are provided for a developer/implementer who is familiar  *>          RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1)
 *>          with the details of the method.  *>                    such that SCALE*SVA(1:N) are the computed singular values
 *>          RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy  *>                    of A. (See the description of SVA().)
 *>                    of diag(A^* * A) / Trace(A^* * A) taken as point in the  *>          RWORK(2) = See the description of RWORK(1).
 *>                    probability simplex.  *>          RWORK(3) = SCONDA is an estimate for the condition number of
 *>          RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).)  *>                    column equilibrated A. (If JOBA .EQ. 'E' or 'G')
 *> \endverbatim  *>                    SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
 *>  *>                    It is computed using SPOCON. It holds
 *> \param[in] LRWORK  *>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
 *> \verbatim  *>                    where R is the triangular factor from the QRF of A.
 *>          LRWORK is INTEGER  *>                    However, if R is truncated and the numerical rank is
 *>          Length of RWORK to confirm proper allocation of workspace.  *>                    determined to be strictly smaller than N, SCONDA is
 *>          LRWORK depends on the job:  *>                    returned as -1, thus indicating that the smallest
 *>  *>                    singular values might be lost.
 *>       1. If only singular values are requested i.e. if   *>
 *>          LSAME(JOBU,'N') .AND. LSAME(JOBV,'N')   *>          If full SVD is needed, the following two condition numbers are
 *>          then:  *>          useful for the analysis of the algorithm. They are provied for
 *>          1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),  *>          a developer/implementer who is familiar with the details of
 *>          then LRWORK = max( 7, N + 2 * M ).   *>          the method.
 *>          1.2. Otherwise, LRWORK  = max( 7, 2 * N ).  *>
 *>       2. If singular values with the right singular vectors are requested  *>          RWORK(4) = an estimate of the scaled condition number of the
 *>          i.e. if   *>                    triangular factor in the first QR factorization.
 *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND.   *>          RWORK(5) = an estimate of the scaled condition number of the
 *>          .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F'))  *>                    triangular factor in the second QR factorization.
 *>          then:  *>          The following two parameters are computed if JOBT .EQ. 'T'.
 *>          2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),  *>          They are provided for a developer/implementer who is familiar
 *>          then LRWORK = max( 7, N + 2 * M ).   *>          with the details of the method.
 *>          2.2. Otherwise, LRWORK  = max( 7, 2 * N ).        *>          RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy
 *>       3. If singular values with the left singular vectors are requested, i.e. if      *>                    of diag(A^* * A) / Trace(A^* * A) taken as point in the
 *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.  *>                    probability simplex.
 *>          .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))  *>          RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).)
 *>          then:  *>          If the call to ZGEJSV is a workspace query (indicated by LWORK=-1 or
 *>          3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),  *>          LRWORK=-1), then on exit RWORK(1) contains the required length of
 *>          then LRWORK = max( 7, N + 2 * M ).   *>          RWORK for the job parameters used in the call.
 *>          3.2. Otherwise, LRWORK  = max( 7, 2 * N ).      *> \endverbatim
 *>       4. If singular values with both the left and the right singular vectors   *>
 *>          are requested, i.e. if       *> \param[in] LRWORK
 *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.  *> \verbatim
 *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))  *>          LRWORK is INTEGER
 *>          then:  *>          Length of RWORK to confirm proper allocation of workspace.
 *>          4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),  *>          LRWORK depends on the job:
 *>          then LRWORK = max( 7, N + 2 * M ).   *>
 *>          4.2. Otherwise, LRWORK  = max( 7, 2 * N ).      *>       1. If only the singular values are requested i.e. if
 *> \endverbatim  *>          LSAME(JOBU,'N') .AND. LSAME(JOBV,'N')
 *>            *>          then:
 *> \param[out] IWORK  *>          1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
 *> \verbatim  *>               then: LRWORK = max( 7, 2 * M ).
 *>          IWORK is INTEGER array, of dimension:  *>          1.2. Otherwise, LRWORK  = max( 7,  N ).
 *>                If LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'), then   *>       2. If singular values with the right singular vectors are requested
 *>                the dimension of IWORK is max( 3, 2 * N + M ).  *>          i.e. if
 *>                Otherwise, the dimension of IWORK is   *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND.
 *>                -> max( 3, 2*N ) for full SVD  *>          .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F'))
 *>                -> max( 3, N ) for singular values only or singular  *>          then:
 *>                   values with one set of singular vectors (left or right)  *>          2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
 *>          On exit,  *>          then LRWORK = max( 7, 2 * M ).
 *>          IWORK(1) = the numerical rank determined after the initial  *>          2.2. Otherwise, LRWORK  = max( 7,  N ).
 *>                     QR factorization with pivoting. See the descriptions  *>       3. If singular values with the left singular vectors are requested, i.e. if
 *>                     of JOBA and JOBR.  *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
 *>          IWORK(2) = the number of the computed nonzero singular values  *>          .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
 *>          IWORK(3) = if nonzero, a warning message:  *>          then:
 *>                     If IWORK(3).EQ.1 then some of the column norms of A  *>          3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
 *>                     were denormalized floats. The requested high accuracy  *>          then LRWORK = max( 7, 2 * M ).
 *>                     is not warranted by the data.  *>          3.2. Otherwise, LRWORK  = max( 7,  N ).
 *> \endverbatim  *>       4. If singular values with both the left and the right singular vectors
 *>  *>          are requested, i.e. if
 *> \param[out] INFO  *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
 *> \verbatim  *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
 *>          INFO is INTEGER  *>          then:
 *>           < 0  : if INFO = -i, then the i-th argument had an illegal value.  *>          4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
 *>           = 0 :  successfull exit;  *>          then LRWORK = max( 7, 2 * M ).
 *>           > 0 :  ZGEJSV  did not converge in the maximal allowed number  *>          4.2. Otherwise, LRWORK  = max( 7, N ).
 *>                  of sweeps. The computed values may be inaccurate.  *>
 *> \endverbatim  *>          If, on entry, LRWORK = -1 ot LWORK=-1, a workspace query is assumed and
 *  *>          the length of RWORK is returned in RWORK(1).
 *  Authors:  *> \endverbatim
 *  ========  *>
 *  *> \param[out] IWORK
 *> \author Univ. of Tennessee   *> \verbatim
 *> \author Univ. of California Berkeley   *>          IWORK is INTEGER array, of dimension at least 4, that further depends
 *> \author Univ. of Colorado Denver   *>          on the job:
 *> \author NAG Ltd.   *>
 *  *>          1. If only the singular values are requested then:
 *> \date June 2016  *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
 *  *>             then the length of IWORK is N+M; otherwise the length of IWORK is N.
 *> \ingroup complex16GEsing  *>          2. If the singular values and the right singular vectors are requested then:
 *  *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
 *> \par Further Details:  *>             then the length of IWORK is N+M; otherwise the length of IWORK is N.
 *  =====================  *>          3. If the singular values and the left singular vectors are requested then:
 *>  *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
 *> \verbatim  *>             then the length of IWORK is N+M; otherwise the length of IWORK is N.
 *>  *>          4. If the singular values with both the left and the right singular vectors
 *>  ZGEJSV implements a preconditioned Jacobi SVD algorithm. It uses ZGEQP3,  *>             are requested, then:      
 *>  ZGEQRF, and ZGELQF as preprocessors and preconditioners. Optionally, an  *>             4.1. If LSAME(JOBV,'J') the length of IWORK is determined as follows:
 *>  additional row pivoting can be used as a preprocessor, which in some  *>                  If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
 *>  cases results in much higher accuracy. An example is matrix A with the  *>                  then the length of IWORK is N+M; otherwise the length of IWORK is N.
 *>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned  *>             4.2. If LSAME(JOBV,'V') the length of IWORK is determined as follows:
 *>  diagonal matrices and C is well-conditioned matrix. In that case, complete  *>                  If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') )
 *>  pivoting in the first QR factorizations provides accuracy dependent on the  *>                  then the length of IWORK is 2*N+M; otherwise the length of IWORK is 2*N.
 *>  condition number of C, and independent of D1, D2. Such higher accuracy is  *>        
 *>  not completely understood theoretically, but it works well in practice.  *>          On exit,
 *>  Further, if A can be written as A = B*D, with well-conditioned B and some  *>          IWORK(1) = the numerical rank determined after the initial
 *>  diagonal D, then the high accuracy is guaranteed, both theoretically and  *>                     QR factorization with pivoting. See the descriptions
 *>  in software, independent of D. For more details see [1], [2].  *>                     of JOBA and JOBR.
 *>     The computational range for the singular values can be the full range  *>          IWORK(2) = the number of the computed nonzero singular values
 *>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS  *>          IWORK(3) = if nonzero, a warning message:
 *>  & LAPACK routines called by ZGEJSV are implemented to work in that range.  *>                     If IWORK(3).EQ.1 then some of the column norms of A
 *>  If that is not the case, then the restriction for safe computation with  *>                     were denormalized floats. The requested high accuracy
 *>  the singular values in the range of normalized IEEE numbers is that the  *>                     is not warranted by the data.
 *>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not  *>          IWORK(4) = 1 or -1. If IWORK(4) .EQ. 1, then the procedure used A^* to
 *>  overflow. This code (ZGEJSV) is best used in this restricted range,  *>                     do the job as specified by the JOB parameters.
 *>  meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are  *>          If the call to ZGEJSV is a workspace query (indicated by LWORK .EQ. -1 or
 *>  returned as zeros. See JOBR for details on this.  *>          LRWORK .EQ. -1), then on exit IWORK(1) contains the required length of
 *>     Further, this implementation is somewhat slower than the one described  *>          IWORK for the job parameters used in the call.
 *>  in [1,2] due to replacement of some non-LAPACK components, and because  *> \endverbatim
 *>  the choice of some tuning parameters in the iterative part (ZGESVJ) is  *>
 *>  left to the implementer on a particular machine.  *> \param[out] INFO
 *>     The rank revealing QR factorization (in this code: ZGEQP3) should be  *> \verbatim
 *>  implemented as in [3]. We have a new version of ZGEQP3 under development  *>          INFO is INTEGER
 *>  that is more robust than the current one in LAPACK, with a cleaner cut in  *>           < 0  : if INFO = -i, then the i-th argument had an illegal value.
 *>  rank defficient cases. It will be available in the SIGMA library [4].  *>           = 0 :  successful exit;
 *>  If M is much larger than N, it is obvious that the inital QRF with  *>           > 0 :  ZGEJSV  did not converge in the maximal allowed number
 *>  column pivoting can be preprocessed by the QRF without pivoting. That  *>                  of sweeps. The computed values may be inaccurate.
 *>  well known trick is not used in ZGEJSV because in some cases heavy row  *> \endverbatim
 *>  weighting can be treated with complete pivoting. The overhead in cases  *
 *>  M much larger than N is then only due to pivoting, but the benefits in  *  Authors:
 *>  terms of accuracy have prevailed. The implementer/user can incorporate  *  ========
 *>  this extra QRF step easily. The implementer can also improve data movement  *
 *>  (matrix transpose, matrix copy, matrix transposed copy) - this  *> \author Univ. of Tennessee
 *>  implementation of ZGEJSV uses only the simplest, naive data movement.  *> \author Univ. of California Berkeley
 *  *> \author Univ. of Colorado Denver
 *> \par Contributors:  *> \author NAG Ltd.
 *  ==================  *
 *>  *> \date June 2016
 *>  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)  *
 *  *> \ingroup complex16GEsing
 *> \par References:  *
 *  ================  *> \par Further Details:
 *>  *  =====================
 *> \verbatim  *>
 *>  *> \verbatim
 *> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.  *>
 *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.  *>  ZGEJSV implements a preconditioned Jacobi SVD algorithm. It uses ZGEQP3,
 *>     LAPACK Working note 169.  *>  ZGEQRF, and ZGELQF as preprocessors and preconditioners. Optionally, an
 *> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.  *>  additional row pivoting can be used as a preprocessor, which in some
 *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.  *>  cases results in much higher accuracy. An example is matrix A with the
 *>     LAPACK Working note 170.  *>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
 *> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR  *>  diagonal matrices and C is well-conditioned matrix. In that case, complete
 *>     factorization software - a case study.  *>  pivoting in the first QR factorizations provides accuracy dependent on the
 *>     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.  *>  condition number of C, and independent of D1, D2. Such higher accuracy is
 *>     LAPACK Working note 176.  *>  not completely understood theoretically, but it works well in practice.
 *> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,  *>  Further, if A can be written as A = B*D, with well-conditioned B and some
 *>     QSVD, (H,K)-SVD computations.  *>  diagonal D, then the high accuracy is guaranteed, both theoretically and
 *>     Department of Mathematics, University of Zagreb, 2008.  *>  in software, independent of D. For more details see [1], [2].
 *> \endverbatim  *>     The computational range for the singular values can be the full range
 *  *>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
 *>  \par Bugs, examples and comments:  *>  & LAPACK routines called by ZGEJSV are implemented to work in that range.
 *   =================================  *>  If that is not the case, then the restriction for safe computation with
 *>  *>  the singular values in the range of normalized IEEE numbers is that the
 *>  Please report all bugs and send interesting examples and/or comments to  *>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
 *>  drmac@math.hr. Thank you.  *>  overflow. This code (ZGEJSV) is best used in this restricted range,
 *>  *>  meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
 *  =====================================================================  *>  returned as zeros. See JOBR for details on this.
       SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,  *>     Further, this implementation is somewhat slower than the one described
      $                   M, N, A, LDA, SVA, U, LDU, V, LDV,  *>  in [1,2] due to replacement of some non-LAPACK components, and because
      $                   CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )  *>  the choice of some tuning parameters in the iterative part (ZGESVJ) is
 *  *>  left to the implementer on a particular machine.
 *  -- LAPACK computational routine (version 3.6.1) --  *>     The rank revealing QR factorization (in this code: ZGEQP3) should be
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *>  implemented as in [3]. We have a new version of ZGEQP3 under development
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *>  that is more robust than the current one in LAPACK, with a cleaner cut in
 *     June 2016  *>  rank deficient cases. It will be available in the SIGMA library [4].
 *  *>  If M is much larger than N, it is obvious that the initial QRF with
 *     .. Scalar Arguments ..  *>  column pivoting can be preprocessed by the QRF without pivoting. That
       IMPLICIT    NONE  *>  well known trick is not used in ZGEJSV because in some cases heavy row
       INTEGER     INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N  *>  weighting can be treated with complete pivoting. The overhead in cases
 *     ..  *>  M much larger than N is then only due to pivoting, but the benefits in
 *     .. Array Arguments ..  *>  terms of accuracy have prevailed. The implementer/user can incorporate
       COMPLEX*16       A( LDA, * ), U( LDU, * ), V( LDV, * ),   *>  this extra QRF step easily. The implementer can also improve data movement
      $                 CWORK( LWORK )  *>  (matrix transpose, matrix copy, matrix transposed copy) - this
       DOUBLE PRECISION SVA( N ), RWORK( * )  *>  implementation of ZGEJSV uses only the simplest, naive data movement.
       INTEGER          IWORK( * )  *> \endverbatim
       CHARACTER*1      JOBA, JOBP, JOBR, JOBT, JOBU, JOBV  *
 *     ..  *> \par Contributor:
 *  *  ==================
 *  ===========================================================================  *>
 *  *>  Zlatko Drmac, Department of Mathematics, Faculty of Science,
 *     .. Local Parameters ..  *>  University of Zagreb (Zagreb, Croatia); drmac@math.hr
       DOUBLE PRECISION ZERO,         ONE  *
       PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )  *> \par References:
       COMPLEX*16                CZERO,       CONE  *  ================
       PARAMETER  ( CZERO = ( 0.0D0, 0.0D0 ), CONE = ( 1.0D0, 0.0D0 ) )  *>
 *     ..  *> \verbatim
 *     .. Local Scalars ..  *>
       COMPLEX*16       CTEMP  *> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
       DOUBLE PRECISION AAPP,    AAQQ,   AATMAX, AATMIN, BIG,    BIG1,     *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
      $                 COND_OK, CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,    *>     LAPACK Working note 169.
      $                 MAXPRJ,  SCALEM, SCONDA, SFMIN,  SMALL,  TEMP1,    *> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
      $                 USCAL1,  USCAL2, XSC  *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
       INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING  *>     LAPACK Working note 170.
       LOGICAL ALMORT, DEFR,   ERREST, GOSCAL, JRACC,  KILL,   LSVEC,  *> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
      $        L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,  *>     factorization software - a case study.
      $        NOSCAL, ROWPIV, RSVEC,  TRANSP  *>     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
 *     ..  *>     LAPACK Working note 176.
 *     .. Intrinsic Functions ..  *> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
       INTRINSIC ABS,  DCMPLX, DCONJG, DLOG, DMAX1, DMIN1, DBLE,  *>     QSVD, (H,K)-SVD computations.
      $          MAX0, MIN0, NINT,  DSQRT  *>     Department of Mathematics, University of Zagreb, 2008, 2016.
 *     ..  *> \endverbatim
 *     .. External Functions ..  *
       DOUBLE PRECISION      DLAMCH, DZNRM2  *>  \par Bugs, examples and comments:
       INTEGER   IDAMAX, IZAMAX  *   =================================
       LOGICAL   LSAME  *>
       EXTERNAL  IDAMAX, IZAMAX, LSAME, DLAMCH, DZNRM2  *>  Please report all bugs and send interesting examples and/or comments to
 *     ..  *>  drmac@math.hr. Thank you.
 *     .. External Subroutines ..  *>
       EXTERNAL  DLASSQ, ZCOPY,  ZGELQF, ZGEQP3, ZGEQRF, ZLACPY, ZLASCL,  *  =====================================================================
      $          DLASCL, ZLASET, ZLASSQ, ZLASWP, ZUNGQR, ZUNMLQ,        SUBROUTINE ZGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
      $          ZUNMQR, ZPOCON, DSCAL, ZDSCAL, ZSWAP,  ZTRSM,  XERBLA       $                   M, N, A, LDA, SVA, U, LDU, V, LDV,
 *       $                   CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
       EXTERNAL  ZGESVJ  *
 *     ..  *  -- LAPACK computational routine (version 3.7.0) --
 *  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *     Test the input arguments  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *  *     December 2016
   *
       LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )  *     .. Scalar Arguments ..
       JRACC  = LSAME( JOBV, 'J' )        IMPLICIT    NONE
       RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC        INTEGER     INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N
       ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )  *     ..
       L2RANK = LSAME( JOBA, 'R' )  *     .. Array Arguments ..
       L2ABER = LSAME( JOBA, 'A' )        COMPLEX*16       A( LDA, * ), U( LDU, * ), V( LDV, * ),
       ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )       $                 CWORK( LWORK )
       L2TRAN = LSAME( JOBT, 'T' )        DOUBLE PRECISION SVA( N ), RWORK( LRWORK )
       L2KILL = LSAME( JOBR, 'R' )        INTEGER          IWORK( * )
       DEFR   = LSAME( JOBR, 'N' )        CHARACTER*1      JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
       L2PERT = LSAME( JOBP, 'P' )  *     ..
 *  *
       IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.  *  ===========================================================================
      $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN  *
          INFO = - 1  *     .. Local Parameters ..
       ELSE IF ( .NOT.( LSVEC  .OR. LSAME( JOBU, 'N' ) .OR.        DOUBLE PRECISION ZERO, ONE
      $                             LSAME( JOBU, 'W' )) ) THEN        PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
          INFO = - 2        COMPLEX*16 CZERO, CONE
       ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.        PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ), CONE = ( 1.0D0, 0.0D0 ) )
      $   LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN  *     ..
          INFO = - 3  *     .. Local Scalars ..
       ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN        COMPLEX*16       CTEMP
          INFO = - 4        DOUBLE PRECISION AAPP,    AAQQ,   AATMAX, AATMIN, BIG,    BIG1,
       ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN       $                 COND_OK, CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,
          INFO = - 5       $                 MAXPRJ,  SCALEM, SCONDA, SFMIN,  SMALL,  TEMP1,
       ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN       $                 USCAL1,  USCAL2, XSC
          INFO = - 6        INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
       ELSE IF ( M .LT. 0 ) THEN        LOGICAL ALMORT, DEFR,   ERREST, GOSCAL,  JRACC,  KILL,   LQUERY,
          INFO = - 7       $        LSVEC,  L2ABER, L2KILL, L2PERT,  L2RANK, L2TRAN, NOSCAL,
       ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN       $        ROWPIV, RSVEC,  TRANSP
          INFO = - 8  *
       ELSE IF ( LDA .LT. M ) THEN        INTEGER OPTWRK, MINWRK, MINRWRK, MINIWRK
          INFO = - 10        INTEGER LWCON,  LWLQF, LWQP3, LWQRF, LWUNMLQ, LWUNMQR, LWUNMQRM,
       ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN       $        LWSVDJ, LWSVDJV, LRWQP3, LRWCON, LRWSVDJ, IWOFF
          INFO = - 13        INTEGER LWRK_ZGELQF, LWRK_ZGEQP3,  LWRK_ZGEQP3N, LWRK_ZGEQRF,  
       ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN       $        LWRK_ZGESVJ, LWRK_ZGESVJV, LWRK_ZGESVJU, LWRK_ZUNMLQ,
          INFO = - 15       $        LWRK_ZUNMQR, LWRK_ZUNMQRM    
       ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.  *     ..
      $                           (LWORK .LT. 2*N+1)) .OR.  *     .. Local Arrays
      $ (.NOT.(LSVEC .OR. RSVEC) .AND. ERREST .AND.        COMPLEX*16         CDUMMY(1)
      $                         (LWORK .LT. N*N+3*N)) .OR.        DOUBLE PRECISION   RDUMMY(1)
      $ (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. 3*N))  *
      $ .OR.  *     .. Intrinsic Functions ..
      $ (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. 3*N))        INTRINSIC ABS, DCMPLX, CONJG, DLOG, MAX, MIN, DBLE, NINT, SQRT
      $ .OR.  *     ..
      $ (LSVEC .AND. RSVEC .AND. (.NOT.JRACC) .AND.   *     .. External Functions ..
      $                          (LWORK.LT.5*N+2*N*N))        DOUBLE PRECISION      DLAMCH, DZNRM2
      $ .OR. (LSVEC .AND. RSVEC .AND. JRACC .AND.        INTEGER   IDAMAX, IZAMAX
      $                          LWORK.LT.4*N+N*N))        LOGICAL   LSAME
      $   THEN        EXTERNAL  IDAMAX, IZAMAX, LSAME, DLAMCH, DZNRM2
          INFO = - 17  *     ..
       ELSE IF ( LRWORK.LT. MAX0(N+2*M,7)) THEN  *     .. External Subroutines ..
          INFO = -19         EXTERNAL  DLASSQ, ZCOPY,  ZGELQF, ZGEQP3, ZGEQRF, ZLACPY, ZLAPMR,
       ELSE       $          ZLASCL, DLASCL, ZLASET, ZLASSQ, ZLASWP, ZUNGQR, ZUNMLQ,
 *        #:)       $          ZUNMQR, ZPOCON, DSCAL,  ZDSCAL, ZSWAP,  ZTRSM,  ZLACGV,
          INFO = 0       $          XERBLA
       END IF  *
 *        EXTERNAL  ZGESVJ
       IF ( INFO .NE. 0 ) THEN  *     ..
 *       #:(  *
          CALL XERBLA( 'ZGEJSV', - INFO )  *     Test the input arguments
          RETURN  *
       END IF        LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
 *        JRACC  = LSAME( JOBV, 'J' )
 *     Quick return for void matrix (Y3K safe)        RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
 * #:)        ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
       IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN        L2RANK = LSAME( JOBA, 'R' )
          IWORK(1:3) = 0        L2ABER = LSAME( JOBA, 'A' )
          RWORK(1:7) = 0        ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
          RETURN        L2TRAN = LSAME( JOBT, 'T' ) .AND. ( M .EQ. N )
       ENDIF        L2KILL = LSAME( JOBR, 'R' )
 *        DEFR   = LSAME( JOBR, 'N' )
 *     Determine whether the matrix U should be M x N or M x M        L2PERT = LSAME( JOBP, 'P' )
 *  *
       IF ( LSVEC ) THEN        LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 )
          N1 = N  *
          IF ( LSAME( JOBU, 'F' ) ) N1 = M        IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
       END IF       $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
 *           INFO = - 1
 *     Set numerical parameters        ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.
 *       $   ( LSAME( JOBU, 'W' ) .AND. RSVEC .AND. L2TRAN ) ) ) THEN
 *!    NOTE: Make sure DLAMCH() does not fail on the target architecture.           INFO = - 2
 *        ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
       EPSLN = DLAMCH('Epsilon')       $   ( LSAME( JOBV, 'W' ) .AND. LSVEC .AND. L2TRAN ) ) ) THEN
       SFMIN = DLAMCH('SafeMinimum')           INFO = - 3
       SMALL = SFMIN / EPSLN        ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
       BIG   = DLAMCH('O')           INFO = - 4
 *     BIG   = ONE / SFMIN        ELSE IF ( .NOT. ( LSAME(JOBT,'T') .OR. LSAME(JOBT,'N') ) ) THEN
 *           INFO = - 5
 *     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N        ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
 *           INFO = - 6
 *(!)  If necessary, scale SVA() to protect the largest norm from        ELSE IF ( M .LT. 0 ) THEN
 *     overflow. It is possible that this scaling pushes the smallest           INFO = - 7
 *     column norm left from the underflow threshold (extreme case).        ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
 *           INFO = - 8
       SCALEM  = ONE / DSQRT(DBLE(M)*DBLE(N))        ELSE IF ( LDA .LT. M ) THEN
       NOSCAL  = .TRUE.           INFO = - 10
       GOSCAL  = .TRUE.        ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
       DO 1874 p = 1, N           INFO = - 13
          AAPP = ZERO        ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
          AAQQ = ONE           INFO = - 15
          CALL ZLASSQ( M, A(1,p), 1, AAPP, AAQQ )        ELSE
          IF ( AAPP .GT. BIG ) THEN  *        #:)
             INFO = - 9           INFO = 0
             CALL XERBLA( 'ZGEJSV', -INFO )        END IF
             RETURN  *
          END IF        IF ( INFO .EQ. 0 ) THEN
          AAQQ = DSQRT(AAQQ)  *         .. compute the minimal and the optimal workspace lengths
          IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN  *         [[The expressions for computing the minimal and the optimal
             SVA(p)  = AAPP * AAQQ  *         values of LCWORK, LRWORK are written with a lot of redundancy and
          ELSE  *         can be simplified. However, this verbose form is useful for
             NOSCAL  = .FALSE.  *         maintenance and modifications of the code.]]
             SVA(p)  = AAPP * ( AAQQ * SCALEM )  *
             IF ( GOSCAL ) THEN  *        .. minimal workspace length for ZGEQP3 of an M x N matrix,
                GOSCAL = .FALSE.  *         ZGEQRF of an N x N matrix, ZGELQF of an N x N matrix,
                CALL DSCAL( p-1, SCALEM, SVA, 1 )  *         ZUNMLQ for computing N x N matrix, ZUNMQR for computing N x N
             END IF  *         matrix, ZUNMQR for computing M x N matrix, respectively.
          END IF            LWQP3 = N+1  
  1874 CONTINUE            LWQRF = MAX( 1, N )
 *            LWLQF = MAX( 1, N )
       IF ( NOSCAL ) SCALEM = ONE            LWUNMLQ  = MAX( 1, N )
 *            LWUNMQR  = MAX( 1, N )
       AAPP = ZERO            LWUNMQRM = MAX( 1, M )
       AAQQ = BIG  *        .. minimal workspace length for ZPOCON of an N x N matrix
       DO 4781 p = 1, N            LWCON = 2 * N
          AAPP = DMAX1( AAPP, SVA(p) )  *        .. minimal workspace length for ZGESVJ of an N x N matrix,
          IF ( SVA(p) .NE. ZERO ) AAQQ = DMIN1( AAQQ, SVA(p) )  *         without and with explicit accumulation of Jacobi rotations
  4781 CONTINUE            LWSVDJ  = MAX( 2 * N, 1 )        
 *            LWSVDJV = MAX( 2 * N, 1 )
 *     Quick return for zero M x N matrix  *         .. minimal REAL workspace length for ZGEQP3, ZPOCON, ZGESVJ
 * #:)            LRWQP3  = N
       IF ( AAPP .EQ. ZERO ) THEN            LRWCON  = N
          IF ( LSVEC ) CALL ZLASET( 'G', M, N1, CZERO, CONE, U, LDU )            LRWSVDJ = N
          IF ( RSVEC ) CALL ZLASET( 'G', N, N,  CZERO, CONE, V, LDV )            IF ( LQUERY ) THEN
          RWORK(1) = ONE                CALL ZGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1,
          RWORK(2) = ONE       $             RDUMMY, IERR )
          IF ( ERREST ) RWORK(3) = ONE                LWRK_ZGEQP3 = CDUMMY(1)
          IF ( LSVEC .AND. RSVEC ) THEN                CALL ZGEQRF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
             RWORK(4) = ONE                LWRK_ZGEQRF = CDUMMY(1)
             RWORK(5) = ONE                CALL ZGELQF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
          END IF                LWRK_ZGELQF = CDUMMY(1)            
          IF ( L2TRAN ) THEN            END IF
             RWORK(6) = ZERO            MINWRK  = 2
             RWORK(7) = ZERO            OPTWRK  = 2
          END IF            MINIWRK = N
          IWORK(1) = 0            IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN
          IWORK(2) = 0  *             .. minimal and optimal sizes of the complex workspace if
          IWORK(3) = 0  *             only the singular values are requested
          RETURN                IF ( ERREST ) THEN
       END IF                    MINWRK = MAX( N+LWQP3, N**2+LWCON, N+LWQRF, LWSVDJ )
 *                ELSE
 *     Issue warning if denormalized column norms detected. Override the                    MINWRK = MAX( N+LWQP3, N+LWQRF, LWSVDJ )
 *     high relative accuracy request. Issue licence to kill columns                END IF
 *     (set them to zero) whose norm is less than sigma_max / BIG (roughly).                IF ( LQUERY ) THEN
 * #:(                    CALL ZGESVJ( 'L', 'N', 'N', N, N, A, LDA, SVA, N, V,
       WARNING = 0       $                 LDV, CDUMMY, -1, RDUMMY, -1, IERR )
       IF ( AAQQ .LE. SFMIN ) THEN                    LWRK_ZGESVJ = CDUMMY(1)
          L2RANK = .TRUE.                    IF ( ERREST ) THEN
          L2KILL = .TRUE.                        OPTWRK = MAX( N+LWRK_ZGEQP3, N**2+LWCON,
          WARNING = 1       $                              N+LWRK_ZGEQRF, LWRK_ZGESVJ )
       END IF                    ELSE
 *                        OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWRK_ZGEQRF,
 *     Quick return for one-column matrix       $                              LWRK_ZGESVJ )
 * #:)                    END IF
       IF ( N .EQ. 1 ) THEN                END IF
 *                IF ( L2TRAN .OR. ROWPIV ) THEN
          IF ( LSVEC ) THEN                    IF ( ERREST ) THEN
             CALL ZLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )                       MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWCON, LRWSVDJ )
             CALL ZLACPY( 'A', M, 1, A, LDA, U, LDU )                    ELSE
 *           computing all M left singular vectors of the M x 1 matrix                       MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
             IF ( N1 .NE. N  ) THEN                    END IF                
               CALL ZGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,IERR )                ELSE
               CALL ZUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,IERR )                    IF ( ERREST ) THEN
               CALL ZCOPY( M, A(1,1), 1, U(1,1), 1 )                       MINRWRK = MAX( 7, LRWQP3, LRWCON, LRWSVDJ )
             END IF                    ELSE
          END IF                       MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
          IF ( RSVEC ) THEN                    END IF
              V(1,1) = CONE                END IF  
          END IF                IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
          IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN            ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
             SVA(1)  = SVA(1) / SCALEM  *            .. minimal and optimal sizes of the complex workspace if the
             SCALEM  = ONE  *            singular values and the right singular vectors are requested
          END IF               IF ( ERREST ) THEN
          RWORK(1) = ONE / SCALEM                   MINWRK = MAX( N+LWQP3, LWCON, LWSVDJ, N+LWLQF,  
          RWORK(2) = ONE       $                         2*N+LWQRF, N+LWSVDJ, N+LWUNMLQ )
          IF ( SVA(1) .NE. ZERO ) THEN               ELSE
             IWORK(1) = 1                   MINWRK = MAX( N+LWQP3, LWSVDJ, N+LWLQF, 2*N+LWQRF,
             IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN       $                         N+LWSVDJ, N+LWUNMLQ )
                IWORK(2) = 1               END IF
             ELSE               IF ( LQUERY ) THEN
                IWORK(2) = 0                   CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
             END IF       $                LDA, CDUMMY, -1, RDUMMY, -1, IERR )
          ELSE                   LWRK_ZGESVJ = CDUMMY(1)
             IWORK(1) = 0                   CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
             IWORK(2) = 0       $                V, LDV, CDUMMY, -1, IERR )
          END IF                   LWRK_ZUNMLQ = CDUMMY(1)                
          IWORK(3) = 0                    IF ( ERREST ) THEN
          IF ( ERREST ) RWORK(3) = ONE                   OPTWRK = MAX( N+LWRK_ZGEQP3, LWCON, LWRK_ZGESVJ,
          IF ( LSVEC .AND. RSVEC ) THEN       $                         N+LWRK_ZGELQF, 2*N+LWRK_ZGEQRF,
             RWORK(4) = ONE       $                         N+LWRK_ZGESVJ,  N+LWRK_ZUNMLQ )
             RWORK(5) = ONE                   ELSE
          END IF                   OPTWRK = MAX( N+LWRK_ZGEQP3, LWRK_ZGESVJ,N+LWRK_ZGELQF,
          IF ( L2TRAN ) THEN       $                         2*N+LWRK_ZGEQRF, N+LWRK_ZGESVJ,
             RWORK(6) = ZERO       $                         N+LWRK_ZUNMLQ )
             RWORK(7) = ZERO                   END IF
          END IF               END IF
          RETURN               IF ( L2TRAN .OR. ROWPIV ) THEN
 *                    IF ( ERREST ) THEN
       END IF                       MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
 *                    ELSE
       TRANSP = .FALSE.                       MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
       L2TRAN = L2TRAN .AND. ( M .EQ. N )                    END IF                  
 *               ELSE
       AATMAX = -ONE                    IF ( ERREST ) THEN
       AATMIN =  BIG                       MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
       IF ( ROWPIV .OR. L2TRAN ) THEN                    ELSE
 *                       MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
 *     Compute the row norms, needed to determine row pivoting sequence                    END IF                
 *     (in the case of heavily row weighted A, row pivoting is strongly               END IF
 *     advised) and to collect information needed to compare the               IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
 *     structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.).            ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN  
 *  *            .. minimal and optimal sizes of the complex workspace if the
          IF ( L2TRAN ) THEN  *            singular values and the left singular vectors are requested
             DO 1950 p = 1, M               IF ( ERREST ) THEN
                XSC   = ZERO                   MINWRK = N + MAX( LWQP3,LWCON,N+LWQRF,LWSVDJ,LWUNMQRM )
                TEMP1 = ONE               ELSE
                CALL ZLASSQ( N, A(p,1), LDA, XSC, TEMP1 )                   MINWRK = N + MAX( LWQP3, N+LWQRF, LWSVDJ, LWUNMQRM )
 *              ZLASSQ gets both the ell_2 and the ell_infinity norm               END IF
 *              in one pass through the vector               IF ( LQUERY ) THEN
                RWORK(M+N+p)  = XSC * SCALEM                   CALL ZGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
                RWORK(N+p)    = XSC * (SCALEM*DSQRT(TEMP1))       $                LDA, CDUMMY, -1, RDUMMY, -1, IERR )
                AATMAX = DMAX1( AATMAX, RWORK(N+p) )                   LWRK_ZGESVJ = CDUMMY(1)
                IF (RWORK(N+p) .NE. ZERO)                    CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
      $            AATMIN = DMIN1(AATMIN,RWORK(N+p))       $               LDU, CDUMMY, -1, IERR )
  1950       CONTINUE                   LWRK_ZUNMQRM = CDUMMY(1)
          ELSE                   IF ( ERREST ) THEN
             DO 1904 p = 1, M                   OPTWRK = N + MAX( LWRK_ZGEQP3, LWCON, N+LWRK_ZGEQRF,
                RWORK(M+N+p) = SCALEM*ABS( A(p,IZAMAX(N,A(p,1),LDA)) )       $                             LWRK_ZGESVJ, LWRK_ZUNMQRM )
                AATMAX = DMAX1( AATMAX, RWORK(M+N+p) )                   ELSE
                AATMIN = DMIN1( AATMIN, RWORK(M+N+p) )                   OPTWRK = N + MAX( LWRK_ZGEQP3, N+LWRK_ZGEQRF,
  1904       CONTINUE       $                             LWRK_ZGESVJ, LWRK_ZUNMQRM )
          END IF                   END IF
 *               END IF
       END IF               IF ( L2TRAN .OR. ROWPIV ) THEN
 *                   IF ( ERREST ) THEN
 *     For square matrix A try to determine whether A^*  would be  better                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
 *     input for the preconditioned Jacobi SVD, with faster convergence.                   ELSE
 *     The decision is based on an O(N) function of the vector of column                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
 *     and row norms of A, based on the Shannon entropy. This should give                   END IF                
 *     the right choice in most cases when the difference actually matters.               ELSE
 *     It may fail and pick the slower converging side.                   IF ( ERREST ) THEN
 *                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
       ENTRA  = ZERO                   ELSE
       ENTRAT = ZERO                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
       IF ( L2TRAN ) THEN                   END IF                
 *               END IF
          XSC   = ZERO               IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
          TEMP1 = ONE            ELSE
          CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )  *            .. minimal and optimal sizes of the complex workspace if the
          TEMP1 = ONE / TEMP1  *            full SVD is requested
 *               IF ( .NOT. JRACC ) THEN                
          ENTRA = ZERO                   IF ( ERREST ) THEN
          DO 1113 p = 1, N                      MINWRK = MAX( N+LWQP3, N+LWCON,  2*N+N**2+LWCON,
             BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1       $                         2*N+LWQRF,         2*N+LWQP3,
             IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)       $                         2*N+N**2+N+LWLQF,  2*N+N**2+N+N**2+LWCON,
  1113    CONTINUE       $                         2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
          ENTRA = - ENTRA / DLOG(DBLE(N))       $                         2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
 *       $                         N+N**2+LWSVDJ,   N+LWUNMQRM )
 *        Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex.                   ELSE
 *        It is derived from the diagonal of  A^* * A.  Do the same with the                      MINWRK = MAX( N+LWQP3,        2*N+N**2+LWCON,
 *        diagonal of A * A^*, compute the entropy of the corresponding       $                         2*N+LWQRF,         2*N+LWQP3,
 *        probability distribution. Note that A * A^* and A^* * A have the       $                         2*N+N**2+N+LWLQF,  2*N+N**2+N+N**2+LWCON,
 *        same trace.       $                         2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
 *       $                         2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
          ENTRAT = ZERO       $                         N+N**2+LWSVDJ,      N+LWUNMQRM )
          DO 1114 p = N+1, N+M                   END IF
             BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1                   MINIWRK = MINIWRK + N
             IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)                   IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
  1114    CONTINUE               ELSE
          ENTRAT = - ENTRAT / DLOG(DBLE(M))                   IF ( ERREST ) THEN
 *                      MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+LWQRF,
 *        Analyze the entropies and decide A or A^*. Smaller entropy       $                         2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR,
 *        usually means better input for the algorithm.       $                         N+LWUNMQRM )
 *                   ELSE
          TRANSP = ( ENTRAT .LT. ENTRA )                      MINWRK = MAX( N+LWQP3, 2*N+LWQRF,
          TRANSP = .TRUE.       $                         2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR,
 *       $                         N+LWUNMQRM )
 *        If A^* is better than A, take the adjoint of A.                   END IF  
 *                   IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
          IF ( TRANSP ) THEN               END IF
 *           In an optimal implementation, this trivial transpose               IF ( LQUERY ) THEN
 *           should be replaced with faster transpose.                   CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
             DO 1115 p = 1, N - 1       $                LDU, CDUMMY, -1, IERR )
                A(p,p) = DCONJG(A(p,p))                    LWRK_ZUNMQRM = CDUMMY(1)
                DO 1116 q = p + 1, N                   CALL ZUNMQR( 'L', 'N', N, N, N, A, LDA, CDUMMY, U,
                    CTEMP = DCONJG(A(q,p))       $                LDU, CDUMMY, -1, IERR )
                   A(q,p) = DCONJG(A(p,q))                   LWRK_ZUNMQR = CDUMMY(1)
                   A(p,q) = CTEMP                   IF ( .NOT. JRACC ) THEN
  1116          CONTINUE                       CALL ZGEQP3( N,N, A, LDA, IWORK, CDUMMY,CDUMMY, -1,
  1115       CONTINUE       $                    RDUMMY, IERR )
             A(N,N) = DCONJG(A(N,N))                       LWRK_ZGEQP3N = CDUMMY(1)
             DO 1117 p = 1, N                       CALL ZGESVJ( 'L', 'U', 'N', N, N, U, LDU, SVA,
                RWORK(M+N+p) = SVA(p)       $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
                SVA(p)      = RWORK(N+p)                       LWRK_ZGESVJ = CDUMMY(1)
 *              previously computed row 2-norms are now column 2-norms                        CALL ZGESVJ( 'U', 'U', 'N', N, N, U, LDU, SVA,
 *              of the transposed matrix                      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
  1117       CONTINUE                       LWRK_ZGESVJU = CDUMMY(1)
             TEMP1  = AAPP                       CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
             AAPP   = AATMAX       $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
             AATMAX = TEMP1                       LWRK_ZGESVJV = CDUMMY(1)
             TEMP1  = AAQQ                       CALL ZUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
             AAQQ   = AATMIN       $                    V, LDV, CDUMMY, -1, IERR )
             AATMIN = TEMP1                       LWRK_ZUNMLQ = CDUMMY(1)
             KILL   = LSVEC                       IF ( ERREST ) THEN
             LSVEC  = RSVEC                         OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON,
             RSVEC  = KILL       $                          2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF,
             IF ( LSVEC ) N1 = N        $                          2*N+LWRK_ZGEQP3N,
 *       $                          2*N+N**2+N+LWRK_ZGELQF,  
             ROWPIV = .TRUE.       $                          2*N+N**2+N+N**2+LWCON,
          END IF       $                          2*N+N**2+N+LWRK_ZGESVJ,
 *       $                          2*N+N**2+N+LWRK_ZGESVJV,              
       END IF       $                          2*N+N**2+N+LWRK_ZUNMQR,
 *     END IF L2TRAN       $                          2*N+N**2+N+LWRK_ZUNMLQ,
 *       $                          N+N**2+LWRK_ZGESVJU,                  
 *     Scale the matrix so that its maximal singular value remains less       $                          N+LWRK_ZUNMQRM )
 *     than SQRT(BIG) -- the matrix is scaled so that its maximal column                       ELSE
 *     has Euclidean norm equal to SQRT(BIG/N). The only reason to keep                         OPTWRK = MAX( N+LWRK_ZGEQP3,  
 *     SQRT(BIG) instead of BIG is the fact that ZGEJSV uses LAPACK and       $                          2*N+N**2+LWCON, 2*N+LWRK_ZGEQRF,
 *     BLAS routines that, in some implementations, are not capable of       $                          2*N+LWRK_ZGEQP3N,
 *     working in the full interval [SFMIN,BIG] and that they may provoke       $                          2*N+N**2+N+LWRK_ZGELQF,  
 *     overflows in the intermediate results. If the singular values spread       $                          2*N+N**2+N+N**2+LWCON,
 *     from SFMIN to BIG, then ZGESVJ will compute them. So, in that case,       $                          2*N+N**2+N+LWRK_ZGESVJ,              
 *     one should use ZGESVJ instead of ZGEJSV.       $                          2*N+N**2+N+LWRK_ZGESVJV,
 *       $                          2*N+N**2+N+LWRK_ZUNMQR,
       BIG1   = DSQRT( BIG )       $                          2*N+N**2+N+LWRK_ZUNMLQ,
       TEMP1  = DSQRT( BIG / DBLE(N) )       $                          N+N**2+LWRK_ZGESVJU,
 *       $                          N+LWRK_ZUNMQRM )
       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )                       END IF                    
       IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN                   ELSE
           AAQQ = ( AAQQ / AAPP ) * TEMP1                       CALL ZGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
       ELSE       $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
           AAQQ = ( AAQQ * TEMP1 ) / AAPP                       LWRK_ZGESVJV = CDUMMY(1)
       END IF                       CALL ZUNMQR( 'L', 'N', N, N, N, CDUMMY, N, CDUMMY,
       TEMP1 = TEMP1 * SCALEM       $                    V, LDV, CDUMMY, -1, IERR )
       CALL ZLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )                       LWRK_ZUNMQR = CDUMMY(1)
 *                       CALL ZUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
 *     To undo scaling at the end of this procedure, multiply the       $                    LDU, CDUMMY, -1, IERR )
 *     computed singular values with USCAL2 / USCAL1.                       LWRK_ZUNMQRM = CDUMMY(1)  
 *                       IF ( ERREST ) THEN
       USCAL1 = TEMP1                          OPTWRK = MAX( N+LWRK_ZGEQP3, N+LWCON,  
       USCAL2 = AAPP       $                           2*N+LWRK_ZGEQRF, 2*N+N**2,  
 *       $                           2*N+N**2+LWRK_ZGESVJV,  
       IF ( L2KILL ) THEN       $                           2*N+N**2+N+LWRK_ZUNMQR,N+LWRK_ZUNMQRM )
 *        L2KILL enforces computation of nonzero singular values in                       ELSE
 *        the restricted range of condition number of the initial A,                          OPTWRK = MAX( N+LWRK_ZGEQP3, 2*N+LWRK_ZGEQRF,  
 *        sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).       $                           2*N+N**2, 2*N+N**2+LWRK_ZGESVJV,
          XSC = DSQRT( SFMIN )       $                           2*N+N**2+N+LWRK_ZUNMQR,
       ELSE       $                           N+LWRK_ZUNMQRM )  
          XSC = SMALL                       END IF                  
 *                   END IF              
 *        Now, if the condition number of A is too big,               END IF
 *        sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,               IF ( L2TRAN .OR. ROWPIV ) THEN
 *        as a precaution measure, the full SVD is computed using ZGESVJ                   MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
 *        with accumulated Jacobi rotations. This provides numerically               ELSE
 *        more robust computation, at the cost of slightly increased run                   MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
 *        time. Depending on the concrete implementation of BLAS and LAPACK               END IF
 *        (i.e. how they behave in presence of extreme ill-conditioning) the            END IF
 *        implementor may decide to remove this switch.            MINWRK = MAX( 2, MINWRK )
          IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN            OPTWRK = MAX( 2, OPTWRK )
             JRACC = .TRUE.            IF ( LWORK  .LT. MINWRK  .AND. (.NOT.LQUERY) ) INFO = - 17
          END IF            IF ( LRWORK .LT. MINRWRK .AND. (.NOT.LQUERY) ) INFO = - 19  
 *        END IF
       END IF  *      
       IF ( AAQQ .LT. XSC ) THEN        IF ( INFO .NE. 0 ) THEN
          DO 700 p = 1, N  *       #:(
             IF ( SVA(p) .LT. XSC ) THEN           CALL XERBLA( 'ZGEJSV', - INFO )
                CALL ZLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA )           RETURN
                SVA(p) = ZERO        ELSE IF ( LQUERY ) THEN
             END IF            CWORK(1) = OPTWRK
  700     CONTINUE            CWORK(2) = MINWRK
       END IF            RWORK(1) = MINRWRK
 *            IWORK(1) = MAX( 4, MINIWRK )
 *     Preconditioning using QR factorization with pivoting            RETURN  
 *        END IF
       IF ( ROWPIV ) THEN  *
 *        Optional row permutation (Bjoerck row pivoting):  *     Quick return for void matrix (Y3K safe)
 *        A result by Cox and Higham shows that the Bjoerck's  * #:)
 *        row pivoting combined with standard column pivoting        IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
 *        has similar effect as Powell-Reid complete pivoting.           IWORK(1:4) = 0
 *        The ell-infinity norms of A are made nonincreasing.           RWORK(1:7) = 0
          DO 1952 p = 1, M - 1           RETURN
             q = IDAMAX( M-p+1, RWORK(M+N+p), 1 ) + p - 1        ENDIF
             IWORK(2*N+p) = q  *
             IF ( p .NE. q ) THEN  *     Determine whether the matrix U should be M x N or M x M
                TEMP1        = RWORK(M+N+p)  *
                RWORK(M+N+p) = RWORK(M+N+q)        IF ( LSVEC ) THEN
                RWORK(M+N+q) = TEMP1           N1 = N
             END IF           IF ( LSAME( JOBU, 'F' ) ) N1 = M
  1952    CONTINUE        END IF
          CALL ZLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )  *
       END IF  *     Set numerical parameters
   *
 *  *!    NOTE: Make sure DLAMCH() does not fail on the target architecture.
 *     End of the preparation phase (scaling, optional sorting and  *
 *     transposing, optional flushing of small columns).        EPSLN = DLAMCH('Epsilon')
 *        SFMIN = DLAMCH('SafeMinimum')
 *     Preconditioning        SMALL = SFMIN / EPSLN
 *        BIG   = DLAMCH('O')
 *     If the full SVD is needed, the right singular vectors are computed  *     BIG   = ONE / SFMIN
 *     from a matrix equation, and for that we need theoretical analysis  *
 *     of the Businger-Golub pivoting. So we use ZGEQP3 as the first RR QRF.  *     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
 *     In all other cases the first RR QRF can be chosen by other criteria  *
 *     (eg speed by replacing global with restricted window pivoting, such  *(!)  If necessary, scale SVA() to protect the largest norm from
 *     as in xGEQPX from TOMS # 782). Good results will be obtained using  *     overflow. It is possible that this scaling pushes the smallest
 *     xGEQPX with properly (!) chosen numerical parameters.  *     column norm left from the underflow threshold (extreme case).
 *     Any improvement of ZGEQP3 improves overal performance of ZGEJSV.  *
 *        SCALEM  = ONE / SQRT(DBLE(M)*DBLE(N))
 *     A * P1 = Q1 * [ R1^* 0]^*:        NOSCAL  = .TRUE.
       DO 1963 p = 1, N        GOSCAL  = .TRUE.
 *        .. all columns are free columns        DO 1874 p = 1, N
          IWORK(p) = 0           AAPP = ZERO
  1963 CONTINUE           AAQQ = ONE
       CALL ZGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N,            CALL ZLASSQ( M, A(1,p), 1, AAPP, AAQQ )
      $             RWORK, IERR )           IF ( AAPP .GT. BIG ) THEN
 *              INFO = - 9
 *     The upper triangular matrix R1 from the first QRF is inspected for              CALL XERBLA( 'ZGEJSV', -INFO )
 *     rank deficiency and possibilities for deflation, or possible              RETURN
 *     ill-conditioning. Depending on the user specified flag L2RANK,           END IF
 *     the procedure explores possibilities to reduce the numerical           AAQQ = SQRT(AAQQ)
 *     rank by inspecting the computed upper triangular factor. If           IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
 *     L2RANK or L2ABER are up, then ZGEJSV will compute the SVD of              SVA(p)  = AAPP * AAQQ
 *     A + dA, where ||dA|| <= f(M,N)*EPSLN.           ELSE
 *              NOSCAL  = .FALSE.
       NR = 1              SVA(p)  = AAPP * ( AAQQ * SCALEM )
       IF ( L2ABER ) THEN              IF ( GOSCAL ) THEN
 *        Standard absolute error bound suffices. All sigma_i with                 GOSCAL = .FALSE.
 *        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an                 CALL DSCAL( p-1, SCALEM, SVA, 1 )
 *        agressive enforcement of lower numerical rank by introducing a              END IF
 *        backward error of the order of N*EPSLN*||A||.           END IF
          TEMP1 = DSQRT(DBLE(N))*EPSLN   1874 CONTINUE
          DO 3001 p = 2, N  *
             IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN        IF ( NOSCAL ) SCALEM = ONE
                NR = NR + 1  *
             ELSE        AAPP = ZERO
                GO TO 3002        AAQQ = BIG
             END IF        DO 4781 p = 1, N
  3001    CONTINUE           AAPP = MAX( AAPP, SVA(p) )
  3002    CONTINUE           IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
       ELSE IF ( L2RANK ) THEN   4781 CONTINUE
 *        .. similarly as above, only slightly more gentle (less agressive).  *
 *        Sudden drop on the diagonal of R1 is used as the criterion for  *     Quick return for zero M x N matrix
 *        close-to-rank-defficient.  * #:)
          TEMP1 = DSQRT(SFMIN)        IF ( AAPP .EQ. ZERO ) THEN
          DO 3401 p = 2, N           IF ( LSVEC ) CALL ZLASET( 'G', M, N1, CZERO, CONE, U, LDU )
             IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.           IF ( RSVEC ) CALL ZLASET( 'G', N, N,  CZERO, CONE, V, LDV )
      $           ( ABS(A(p,p)) .LT. SMALL ) .OR.           RWORK(1) = ONE
      $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402           RWORK(2) = ONE
             NR = NR + 1           IF ( ERREST ) RWORK(3) = ONE
  3401    CONTINUE           IF ( LSVEC .AND. RSVEC ) THEN
  3402    CONTINUE              RWORK(4) = ONE
 *              RWORK(5) = ONE
       ELSE           END IF
 *        The goal is high relative accuracy. However, if the matrix           IF ( L2TRAN ) THEN
 *        has high scaled condition number the relative accuracy is in              RWORK(6) = ZERO
 *        general not feasible. Later on, a condition number estimator              RWORK(7) = ZERO
 *        will be deployed to estimate the scaled condition number.           END IF
 *        Here we just remove the underflowed part of the triangular           IWORK(1) = 0
 *        factor. This prevents the situation in which the code is           IWORK(2) = 0
 *        working hard to get the accuracy not warranted by the data.           IWORK(3) = 0
          TEMP1  = DSQRT(SFMIN)           IWORK(4) = -1
          DO 3301 p = 2, N           RETURN
             IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.        END IF
      $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302  *
             NR = NR + 1  *     Issue warning if denormalized column norms detected. Override the
  3301    CONTINUE  *     high relative accuracy request. Issue licence to kill nonzero columns
  3302    CONTINUE  *     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
 *  * #:(
       END IF        WARNING = 0
 *        IF ( AAQQ .LE. SFMIN ) THEN
       ALMORT = .FALSE.           L2RANK = .TRUE.
       IF ( NR .EQ. N ) THEN           L2KILL = .TRUE.
          MAXPRJ = ONE           WARNING = 1
          DO 3051 p = 2, N        END IF
             TEMP1  = ABS(A(p,p)) / SVA(IWORK(p))  *
             MAXPRJ = DMIN1( MAXPRJ, TEMP1 )  *     Quick return for one-column matrix
  3051    CONTINUE  * #:)
          IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.        IF ( N .EQ. 1 ) THEN
       END IF  *
 *           IF ( LSVEC ) THEN
 *              CALL ZLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
       SCONDA = - ONE              CALL ZLACPY( 'A', M, 1, A, LDA, U, LDU )
       CONDR1 = - ONE  *           computing all M left singular vectors of the M x 1 matrix
       CONDR2 = - ONE              IF ( N1 .NE. N  ) THEN
 *                CALL ZGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,IERR )
       IF ( ERREST ) THEN                CALL ZUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,IERR )
          IF ( N .EQ. NR ) THEN                CALL ZCOPY( M, A(1,1), 1, U(1,1), 1 )
             IF ( RSVEC ) THEN              END IF
 *              .. V is available as workspace           END IF
                CALL ZLACPY( 'U', N, N, A, LDA, V, LDV )           IF ( RSVEC ) THEN
                DO 3053 p = 1, N               V(1,1) = CONE
                   TEMP1 = SVA(IWORK(p))           END IF
                   CALL ZDSCAL( p, ONE/TEMP1, V(1,p), 1 )           IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
  3053          CONTINUE              SVA(1)  = SVA(1) / SCALEM
                CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,              SCALEM  = ONE
      $              CWORK(N+1), RWORK, IERR )           END IF
 *                     RWORK(1) = ONE / SCALEM
             ELSE IF ( LSVEC ) THEN           RWORK(2) = ONE
 *              .. U is available as workspace           IF ( SVA(1) .NE. ZERO ) THEN
                CALL ZLACPY( 'U', N, N, A, LDA, U, LDU )              IWORK(1) = 1
                DO 3054 p = 1, N              IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
                   TEMP1 = SVA(IWORK(p))                 IWORK(2) = 1
                   CALL ZDSCAL( p, ONE/TEMP1, U(1,p), 1 )              ELSE
  3054          CONTINUE                 IWORK(2) = 0
                CALL ZPOCON( 'U', N, U, LDU, ONE, TEMP1,              END IF
      $              CWORK(N+1), RWORK, IERR )           ELSE
             ELSE              IWORK(1) = 0
                CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )              IWORK(2) = 0
                DO 3052 p = 1, N           END IF
                   TEMP1 = SVA(IWORK(p))           IWORK(3) = 0
                   CALL ZDSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 )           IWORK(4) = -1
  3052          CONTINUE           IF ( ERREST ) RWORK(3) = ONE
 *           .. the columns of R are scaled to have unit Euclidean lengths.           IF ( LSVEC .AND. RSVEC ) THEN
                CALL ZPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1,              RWORK(4) = ONE
      $              CWORK(N+N*N+1), RWORK, IERR )              RWORK(5) = ONE
 *                         END IF
             END IF           IF ( L2TRAN ) THEN
             SCONDA = ONE / DSQRT(TEMP1)              RWORK(6) = ZERO
 *           SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).              RWORK(7) = ZERO
 *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA           END IF
          ELSE           RETURN
             SCONDA = - ONE  *
          END IF        END IF
       END IF  *
 *        TRANSP = .FALSE.
       L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) )  *
 *     If there is no violent scaling, artificial perturbation is not needed.        AATMAX = -ONE
 *        AATMIN =  BIG
 *     Phase 3:        IF ( ROWPIV .OR. L2TRAN ) THEN
 *  *
       IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN  *     Compute the row norms, needed to determine row pivoting sequence
 *  *     (in the case of heavily row weighted A, row pivoting is strongly
 *         Singular Values only  *     advised) and to collect information needed to compare the
 *  *     structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.).
 *         .. transpose A(1:NR,1:N)  *
          DO 1946 p = 1, MIN0( N-1, NR )           IF ( L2TRAN ) THEN
             CALL ZCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )              DO 1950 p = 1, M
             CALL ZLACGV( N-p+1, A(p,p), 1 )                 XSC   = ZERO
  1946    CONTINUE                 TEMP1 = ONE
          IF ( NR .EQ. N ) A(N,N) = DCONJG(A(N,N))                         CALL ZLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
 *  *              ZLASSQ gets both the ell_2 and the ell_infinity norm
 *        The following two DO-loops introduce small relative perturbation  *              in one pass through the vector
 *        into the strict upper triangle of the lower triangular matrix.                 RWORK(M+p)  = XSC * SCALEM
 *        Small entries below the main diagonal are also changed.                 RWORK(p)    = XSC * (SCALEM*SQRT(TEMP1))
 *        This modification is useful if the computing environment does not                 AATMAX = MAX( AATMAX, RWORK(p) )
 *        provide/allow FLUSH TO ZERO underflow, for it prevents many                 IF (RWORK(p) .NE. ZERO)
 *        annoying denormalized numbers in case of strongly scaled matrices.       $            AATMIN = MIN(AATMIN,RWORK(p))
 *        The perturbation is structured so that it does not introduce any   1950       CONTINUE
 *        new perturbation of the singular values, and it does not destroy           ELSE
 *        the job done by the preconditioner.              DO 1904 p = 1, M
 *        The licence for this perturbation is in the variable L2PERT, which                 RWORK(M+p) = SCALEM*ABS( A(p,IZAMAX(N,A(p,1),LDA)) )
 *        should be .FALSE. if FLUSH TO ZERO underflow is active.                 AATMAX = MAX( AATMAX, RWORK(M+p) )
 *                 AATMIN = MIN( AATMIN, RWORK(M+p) )
          IF ( .NOT. ALMORT ) THEN   1904       CONTINUE
 *           END IF
             IF ( L2PERT ) THEN  *
 *              XSC = SQRT(SMALL)        END IF
                XSC = EPSLN / DBLE(N)  *
                DO 4947 q = 1, NR  *     For square matrix A try to determine whether A^*  would be better
                   CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)  *     input for the preconditioned Jacobi SVD, with faster convergence.
                   DO 4949 p = 1, N  *     The decision is based on an O(N) function of the vector of column
                      IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )  *     and row norms of A, based on the Shannon entropy. This should give
      $                    .OR. ( p .LT. q ) )  *     the right choice in most cases when the difference actually matters.
 *     $                     A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )  *     It may fail and pick the slower converging side.
      $                     A(p,q) = CTEMP  *
  4949             CONTINUE        ENTRA  = ZERO
  4947          CONTINUE        ENTRAT = ZERO
             ELSE        IF ( L2TRAN ) THEN
                CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA )  *
             END IF           XSC   = ZERO
 *           TEMP1 = ONE
 *            .. second preconditioning using the QR factorization           CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
 *           TEMP1 = ONE / TEMP1
             CALL ZGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N, IERR )  *
 *           ENTRA = ZERO
 *           .. and transpose upper to lower triangular           DO 1113 p = 1, N
             DO 1948 p = 1, NR - 1              BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
                CALL ZCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )              IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
                CALL ZLACGV( NR-p+1, A(p,p), 1 )   1113    CONTINUE
  1948       CONTINUE           ENTRA = - ENTRA / DLOG(DBLE(N))
 *  *
       END IF  *        Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex.
 *  *        It is derived from the diagonal of  A^* * A.  Do the same with the
 *           Row-cyclic Jacobi SVD algorithm with column pivoting  *        diagonal of A * A^*, compute the entropy of the corresponding
 *  *        probability distribution. Note that A * A^* and A^* * A have the
 *           .. again some perturbation (a "background noise") is added  *        same trace.
 *           to drown denormals  *
             IF ( L2PERT ) THEN           ENTRAT = ZERO
 *              XSC = SQRT(SMALL)           DO 1114 p = 1, M
                XSC = EPSLN / DBLE(N)              BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1
                DO 1947 q = 1, NR              IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
                   CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)   1114    CONTINUE
                   DO 1949 p = 1, NR           ENTRAT = - ENTRAT / DLOG(DBLE(M))
                      IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )  *
      $                       .OR. ( p .LT. q ) )  *        Analyze the entropies and decide A or A^*. Smaller entropy
 *     $                   A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )  *        usually means better input for the algorithm.
      $                   A(p,q) = CTEMP   *
  1949             CONTINUE           TRANSP = ( ENTRAT .LT. ENTRA )
  1947          CONTINUE  *
             ELSE  *        If A^* is better than A, take the adjoint of A. This is allowed
                CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2), LDA )  *        only for square matrices, M=N.
             END IF           IF ( TRANSP ) THEN
 *  *           In an optimal implementation, this trivial transpose
 *           .. and one-sided Jacobi rotations are started on a lower  *           should be replaced with faster transpose.
 *           triangular matrix (plus perturbation which is ignored in              DO 1115 p = 1, N - 1
 *           the part which destroys triangular form (confusing?!))                 A(p,p) = CONJG(A(p,p))
 *                 DO 1116 q = p + 1, N
             CALL ZGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,                     CTEMP = CONJG(A(q,p))
      $                N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO )                    A(q,p) = CONJG(A(p,q))
 *                    A(p,q) = CTEMP
             SCALEM  = RWORK(1)   1116          CONTINUE
             NUMRANK = NINT(RWORK(2))   1115       CONTINUE
 *              A(N,N) = CONJG(A(N,N))
 *              DO 1117 p = 1, N
       ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN                 RWORK(M+p) = SVA(p)
 *                 SVA(p)     = RWORK(p)
 *        -> Singular Values and Right Singular Vectors <-  *              previously computed row 2-norms are now column 2-norms
 *  *              of the transposed matrix
          IF ( ALMORT ) THEN   1117       CONTINUE
 *              TEMP1  = AAPP
 *           .. in this case NR equals N              AAPP   = AATMAX
             DO 1998 p = 1, NR              AATMAX = TEMP1
                CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )              TEMP1  = AAQQ
                CALL ZLACGV( N-p+1, V(p,p), 1 )              AAQQ   = AATMIN
  1998       CONTINUE              AATMIN = TEMP1
             CALL ZLASET( 'Upper', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )              KILL   = LSVEC
 *              LSVEC  = RSVEC
             CALL ZGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,              RSVEC  = KILL
      $                  CWORK, LWORK, RWORK, LRWORK, INFO )              IF ( LSVEC ) N1 = N
             SCALEM  = RWORK(1)  *
             NUMRANK = NINT(RWORK(2))              ROWPIV = .TRUE.
            END IF
          ELSE  *
 *        END IF
 *        .. two more QR factorizations ( one QRF is not enough, two require  *     END IF L2TRAN
 *        accumulated product of Jacobi rotations, three are perfect )  *
 *  *     Scale the matrix so that its maximal singular value remains less
             CALL ZLASET( 'Lower', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA )  *     than SQRT(BIG) -- the matrix is scaled so that its maximal column
             CALL ZGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N, IERR)  *     has Euclidean norm equal to SQRT(BIG/N). The only reason to keep
             CALL ZLACPY( 'Lower', NR, NR, A, LDA, V, LDV )  *     SQRT(BIG) instead of BIG is the fact that ZGEJSV uses LAPACK and
             CALL ZLASET( 'Upper', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )  *     BLAS routines that, in some implementations, are not capable of
             CALL ZGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),  *     working in the full interval [SFMIN,BIG] and that they may provoke
      $                   LWORK-2*N, IERR )  *     overflows in the intermediate results. If the singular values spread
             DO 8998 p = 1, NR  *     from SFMIN to BIG, then ZGESVJ will compute them. So, in that case,
                CALL ZCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )  *     one should use ZGESVJ instead of ZGEJSV.
                CALL ZLACGV( NR-p+1, V(p,p), 1 )   *     >> change in the April 2016 update: allow bigger range, i.e. the
  8998       CONTINUE  *     largest column is allowed up to BIG/N and ZGESVJ will do the rest.
             CALL ZLASET('Upper', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV)        BIG1   = SQRT( BIG )
 *        TEMP1  = SQRT( BIG / DBLE(N) )
             CALL ZGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,  *      TEMP1  = BIG/DBLE(N)
      $                  LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )  *
             SCALEM  = RWORK(1)        CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
             NUMRANK = NINT(RWORK(2))        IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
             IF ( NR .LT. N ) THEN            AAQQ = ( AAQQ / AAPP ) * TEMP1
                CALL ZLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1),  LDV )        ELSE
                CALL ZLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1),  LDV )            AAQQ = ( AAQQ * TEMP1 ) / AAPP
                CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),LDV )        END IF
             END IF        TEMP1 = TEMP1 * SCALEM
 *        CALL ZLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
          CALL ZUNMLQ( 'Left', 'C', N, N, NR, A, LDA, CWORK,  *
      $               V, LDV, CWORK(N+1), LWORK-N, IERR )  *     To undo scaling at the end of this procedure, multiply the
 *  *     computed singular values with USCAL2 / USCAL1.
          END IF  *
 *        USCAL1 = TEMP1
          DO 8991 p = 1, N        USCAL2 = AAPP
             CALL ZCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )  *
  8991    CONTINUE        IF ( L2KILL ) THEN
          CALL ZLACPY( 'All', N, N, A, LDA, V, LDV )  *        L2KILL enforces computation of nonzero singular values in
 *  *        the restricted range of condition number of the initial A,
          IF ( TRANSP ) THEN  *        sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).
             CALL ZLACPY( 'All', N, N, V, LDV, U, LDU )           XSC = SQRT( SFMIN )
          END IF        ELSE
 *           XSC = SMALL
       ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN  *
 *  *        Now, if the condition number of A is too big,
 *        .. Singular Values and Left Singular Vectors                 ..  *        sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,
 *  *        as a precaution measure, the full SVD is computed using ZGESVJ
 *        .. second preconditioning step to avoid need to accumulate  *        with accumulated Jacobi rotations. This provides numerically
 *        Jacobi rotations in the Jacobi iterations.  *        more robust computation, at the cost of slightly increased run
          DO 1965 p = 1, NR  *        time. Depending on the concrete implementation of BLAS and LAPACK
             CALL ZCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )  *        (i.e. how they behave in presence of extreme ill-conditioning) the
             CALL ZLACGV( N-p+1, U(p,p), 1 )  *        implementor may decide to remove this switch.
  1965    CONTINUE           IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
          CALL ZLASET( 'Upper', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )              JRACC = .TRUE.
 *           END IF
          CALL ZGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1),  *
      $              LWORK-2*N, IERR )        END IF
 *        IF ( AAQQ .LT. XSC ) THEN
          DO 1967 p = 1, NR - 1           DO 700 p = 1, N
             CALL ZCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )              IF ( SVA(p) .LT. XSC ) THEN
             CALL ZLACGV( N-p+1, U(p,p), 1 )                             CALL ZLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA )
  1967    CONTINUE                 SVA(p) = ZERO
          CALL ZLASET( 'Upper', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )              END IF
 *   700     CONTINUE
          CALL ZGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,        END IF
      $        LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )  *
          SCALEM  = RWORK(1)  *     Preconditioning using QR factorization with pivoting
          NUMRANK = NINT(RWORK(2))  *
 *        IF ( ROWPIV ) THEN
          IF ( NR .LT. M ) THEN  *        Optional row permutation (Bjoerck row pivoting):
             CALL ZLASET( 'A',  M-NR, NR,CZERO, CZERO, U(NR+1,1), LDU )  *        A result by Cox and Higham shows that the Bjoerck's
             IF ( NR .LT. N1 ) THEN  *        row pivoting combined with standard column pivoting
                CALL ZLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU )  *        has similar effect as Powell-Reid complete pivoting.
                CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),LDU )  *        The ell-infinity norms of A are made nonincreasing.
             END IF           IF ( ( LSVEC .AND. RSVEC ) .AND. .NOT.( JRACC ) ) THEN
          END IF                IWOFF = 2*N
 *           ELSE
          CALL ZUNMQR( 'Left', 'No Tr', M, N1, N, A, LDA, CWORK, U,                IWOFF = N
      $               LDU, CWORK(N+1), LWORK-N, IERR )           END IF
 *           DO 1952 p = 1, M - 1
          IF ( ROWPIV )              q = IDAMAX( M-p+1, RWORK(M+p), 1 ) + p - 1
      $       CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )              IWORK(IWOFF+p) = q
 *              IF ( p .NE. q ) THEN
          DO 1974 p = 1, N1                 TEMP1      = RWORK(M+p)
             XSC = ONE / DZNRM2( M, U(1,p), 1 )                 RWORK(M+p) = RWORK(M+q)
             CALL ZDSCAL( M, XSC, U(1,p), 1 )                 RWORK(M+q) = TEMP1
  1974    CONTINUE              END IF
 *   1952    CONTINUE
          IF ( TRANSP ) THEN           CALL ZLASWP( N, A, LDA, 1, M-1, IWORK(IWOFF+1), 1 )
             CALL ZLACPY( 'All', N, N, U, LDU, V, LDV )        END IF
          END IF  *
 *  *     End of the preparation phase (scaling, optional sorting and
       ELSE  *     transposing, optional flushing of small columns).
 *  *
 *        .. Full SVD ..  *     Preconditioning
 *  *
          IF ( .NOT. JRACC ) THEN  *     If the full SVD is needed, the right singular vectors are computed
 *  *     from a matrix equation, and for that we need theoretical analysis
          IF ( .NOT. ALMORT ) THEN  *     of the Businger-Golub pivoting. So we use ZGEQP3 as the first RR QRF.
 *  *     In all other cases the first RR QRF can be chosen by other criteria
 *           Second Preconditioning Step (QRF [with pivoting])  *     (eg speed by replacing global with restricted window pivoting, such
 *           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is  *     as in xGEQPX from TOMS # 782). Good results will be obtained using
 *           equivalent to an LQF CALL. Since in many libraries the QRF  *     xGEQPX with properly (!) chosen numerical parameters.
 *           seems to be better optimized than the LQF, we do explicit  *     Any improvement of ZGEQP3 improves overal performance of ZGEJSV.
 *           transpose and use the QRF. This is subject to changes in an  *
 *           optimized implementation of ZGEJSV.  *     A * P1 = Q1 * [ R1^* 0]^*:
 *        DO 1963 p = 1, N
             DO 1968 p = 1, NR  *        .. all columns are free columns
                CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )           IWORK(p) = 0
                CALL ZLACGV( N-p+1, V(p,p), 1 )   1963 CONTINUE
  1968       CONTINUE        CALL ZGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N,
 *       $             RWORK, IERR )
 *           .. the following two loops perturb small entries to avoid  *
 *           denormals in the second QR factorization, where they are  *     The upper triangular matrix R1 from the first QRF is inspected for
 *           as good as zeros. This is done to avoid painfully slow  *     rank deficiency and possibilities for deflation, or possible
 *           computation with denormals. The relative size of the perturbation  *     ill-conditioning. Depending on the user specified flag L2RANK,
 *           is a parameter that can be changed by the implementer.  *     the procedure explores possibilities to reduce the numerical
 *           This perturbation device will be obsolete on machines with  *     rank by inspecting the computed upper triangular factor. If
 *           properly implemented arithmetic.  *     L2RANK or L2ABER are up, then ZGEJSV will compute the SVD of
 *           To switch it off, set L2PERT=.FALSE. To remove it from  the  *     A + dA, where ||dA|| <= f(M,N)*EPSLN.
 *           code, remove the action under L2PERT=.TRUE., leave the ELSE part.  *
 *           The following two loops should be blocked and fused with the        NR = 1
 *           transposed copy above.        IF ( L2ABER ) THEN
 *  *        Standard absolute error bound suffices. All sigma_i with
             IF ( L2PERT ) THEN  *        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
                XSC = DSQRT(SMALL)  *        agressive enforcement of lower numerical rank by introducing a
                DO 2969 q = 1, NR  *        backward error of the order of N*EPSLN*||A||.
                   CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)           TEMP1 = SQRT(DBLE(N))*EPSLN
                   DO 2968 p = 1, N           DO 3001 p = 2, N
                      IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )              IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN
      $                   .OR. ( p .LT. q ) )                 NR = NR + 1
 *     $                   V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )              ELSE
      $                   V(p,q) = CTEMP                       GO TO 3002
                      IF ( p .LT. q ) V(p,q) = - V(p,q)              END IF
  2968             CONTINUE   3001    CONTINUE
  2969          CONTINUE   3002    CONTINUE
             ELSE        ELSE IF ( L2RANK ) THEN
                CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )  *        .. similarly as above, only slightly more gentle (less agressive).
             END IF  *        Sudden drop on the diagonal of R1 is used as the criterion for
 *  *        close-to-rank-deficient.
 *           Estimate the row scaled condition number of R1           TEMP1 = SQRT(SFMIN)
 *           (If R1 is rectangular, N > NR, then the condition number           DO 3401 p = 2, N
 *           of the leading NR x NR submatrix is estimated.)              IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
 *       $           ( ABS(A(p,p)) .LT. SMALL ) .OR.
             CALL ZLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR )       $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
             DO 3950 p = 1, NR              NR = NR + 1
                TEMP1 = DZNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1)   3401    CONTINUE
                CALL ZDSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1)   3402    CONTINUE
  3950       CONTINUE  *
             CALL ZPOCON('Lower',NR,CWORK(2*N+1),NR,ONE,TEMP1,        ELSE
      $                   CWORK(2*N+NR*NR+1),RWORK,IERR)  *        The goal is high relative accuracy. However, if the matrix
             CONDR1 = ONE / DSQRT(TEMP1)  *        has high scaled condition number the relative accuracy is in
 *           .. here need a second oppinion on the condition number  *        general not feasible. Later on, a condition number estimator
 *           .. then assume worst case scenario  *        will be deployed to estimate the scaled condition number.
 *           R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)  *        Here we just remove the underflowed part of the triangular
 *           more conservative    <=> CONDR1 .LT. SQRT(DBLE(N))  *        factor. This prevents the situation in which the code is
 *  *        working hard to get the accuracy not warranted by the data.
             COND_OK = DSQRT(DSQRT(DBLE(NR)))           TEMP1  = SQRT(SFMIN)
 *[TP]       COND_OK is a tuning parameter.           DO 3301 p = 2, N
 *              IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.
             IF ( CONDR1 .LT. COND_OK ) THEN       $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
 *              .. the second QRF without pivoting. Note: in an optimized              NR = NR + 1
 *              implementation, this QRF should be implemented as the QRF   3301    CONTINUE
 *              of a lower triangular matrix.   3302    CONTINUE
 *              R1^* = Q2 * R2  *
                CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),        END IF
      $              LWORK-2*N, IERR )  *
 *        ALMORT = .FALSE.
                IF ( L2PERT ) THEN        IF ( NR .EQ. N ) THEN
                   XSC = DSQRT(SMALL)/EPSLN           MAXPRJ = ONE
                   DO 3959 p = 2, NR           DO 3051 p = 2, N
                      DO 3958 q = 1, p - 1              TEMP1  = ABS(A(p,p)) / SVA(IWORK(p))
                         CTEMP=DCMPLX(XSC*DMIN1(ABS(V(p,p)),ABS(V(q,q))),              MAXPRJ = MIN( MAXPRJ, TEMP1 )
      $                              ZERO)   3051    CONTINUE
                         IF ( ABS(V(q,p)) .LE. TEMP1 )           IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
 *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )        END IF
      $                     V(q,p) = CTEMP      *
  3958                CONTINUE  *
  3959             CONTINUE        SCONDA = - ONE
                END IF        CONDR1 = - ONE
 *        CONDR2 = - ONE
                IF ( NR .NE. N )  *
      $         CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )        IF ( ERREST ) THEN
 *              .. save ...           IF ( N .EQ. NR ) THEN
 *              IF ( RSVEC ) THEN
 *           .. this transposed copy should be better than naive  *              .. V is available as workspace
                DO 1969 p = 1, NR - 1                 CALL ZLACPY( 'U', N, N, A, LDA, V, LDV )
                   CALL ZCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )                 DO 3053 p = 1, N
                   CALL ZLACGV(NR-p+1, V(p,p), 1 )                    TEMP1 = SVA(IWORK(p))
  1969          CONTINUE                    CALL ZDSCAL( p, ONE/TEMP1, V(1,p), 1 )
                V(NR,NR)=DCONJG(V(NR,NR))      3053          CONTINUE
 *                 IF ( LSVEC )THEN
                CONDR2 = CONDR1                     CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
 *       $                  CWORK(N+1), RWORK, IERR )
             ELSE                 ELSE
 *                     CALL ZPOCON( 'U', N, V, LDV, ONE, TEMP1,
 *              .. ill-conditioned case: second QRF with pivoting       $                  CWORK, RWORK, IERR )
 *              Note that windowed pivoting would be equaly good                 END IF              
 *              numerically, and more run-time efficient. So, in  *          
 *              an optimal implementation, the next call to ZGEQP3              ELSE IF ( LSVEC ) THEN
 *              should be replaced with eg. CALL ZGEQPX (ACM TOMS #782)  *              .. U is available as workspace
 *              with properly (carefully) chosen parameters.                 CALL ZLACPY( 'U', N, N, A, LDA, U, LDU )
 *                 DO 3054 p = 1, N
 *              R1^* * P2 = Q2 * R2                    TEMP1 = SVA(IWORK(p))
                DO 3003 p = 1, NR                    CALL ZDSCAL( p, ONE/TEMP1, U(1,p), 1 )
                   IWORK(N+p) = 0   3054          CONTINUE
  3003          CONTINUE                 CALL ZPOCON( 'U', N, U, LDU, ONE, TEMP1,
                CALL ZGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1),       $              CWORK(N+1), RWORK, IERR )
      $                  CWORK(2*N+1), LWORK-2*N, RWORK, IERR )              ELSE
 **               CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),                 CALL ZLACPY( 'U', N, N, A, LDA, CWORK, N )
 **     $              LWORK-2*N, IERR )  *[]            CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
                IF ( L2PERT ) THEN  *              Change: here index shifted by N to the left, CWORK(1:N)
                   XSC = DSQRT(SMALL)  *              not needed for SIGMA only computation
                   DO 3969 p = 2, NR                 DO 3052 p = 1, N
                      DO 3968 q = 1, p - 1                    TEMP1 = SVA(IWORK(p))
                         CTEMP=DCMPLX(XSC*DMIN1(ABS(V(p,p)),ABS(V(q,q))),  *[]               CALL ZDSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 )
      $                                ZERO)                    CALL ZDSCAL( p, ONE/TEMP1, CWORK((p-1)*N+1), 1 )
                         IF ( ABS(V(q,p)) .LE. TEMP1 )   3052          CONTINUE
 *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )  *           .. the columns of R are scaled to have unit Euclidean lengths.
      $                     V(q,p) = CTEMP                       *[]               CALL ZPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1,
  3968                CONTINUE  *[]     $              CWORK(N+N*N+1), RWORK, IERR )
  3969             CONTINUE                 CALL ZPOCON( 'U', N, CWORK, N, ONE, TEMP1,
                END IF       $              CWORK(N*N+1), RWORK, IERR )              
 *  *              
                CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )              END IF
 *              IF ( TEMP1 .NE. ZERO ) THEN
                IF ( L2PERT ) THEN                 SCONDA = ONE / SQRT(TEMP1)
                   XSC = DSQRT(SMALL)              ELSE
                   DO 8970 p = 2, NR                 SCONDA = - ONE
                      DO 8971 q = 1, p - 1              END IF
                         CTEMP=DCMPLX(XSC*DMIN1(ABS(V(p,p)),ABS(V(q,q))),  *           SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
      $                               ZERO)  *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
 *                        V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) )           ELSE
                         V(p,q) = - CTEMP                    SCONDA = - ONE
  8971                CONTINUE           END IF
  8970             CONTINUE        END IF
                ELSE  *
                   CALL ZLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV )        L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) )
                END IF  *     If there is no violent scaling, artificial perturbation is not needed.
 *              Now, compute R2 = L3 * Q3, the LQ factorization.  *
                CALL ZGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1),  *     Phase 3:
      $               CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )  *
 *              .. and estimate the condition number        IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
                CALL ZLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR )  *
                DO 4950 p = 1, NR  *         Singular Values only
                   TEMP1 = DZNRM2( p, CWORK(2*N+N*NR+NR+p), NR )  *
                   CALL ZDSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p), NR )  *         .. transpose A(1:NR,1:N)
  4950          CONTINUE           DO 1946 p = 1, MIN( N-1, NR )
                CALL ZPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,              CALL ZCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
      $              CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR )               CALL ZLACGV( N-p+1, A(p,p), 1 )
                CONDR2 = ONE / DSQRT(TEMP1)   1946    CONTINUE
 *           IF ( NR .EQ. N ) A(N,N) = CONJG(A(N,N))
 *  *
                IF ( CONDR2 .GE. COND_OK ) THEN  *        The following two DO-loops introduce small relative perturbation
 *                 .. save the Householder vectors used for Q3  *        into the strict upper triangle of the lower triangular matrix.
 *                 (this overwrittes the copy of R2, as it will not be  *        Small entries below the main diagonal are also changed.
 *                 needed in this branch, but it does not overwritte the  *        This modification is useful if the computing environment does not
 *                 Huseholder vectors of Q2.).  *        provide/allow FLUSH TO ZERO underflow, for it prevents many
                   CALL ZLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N )  *        annoying denormalized numbers in case of strongly scaled matrices.
 *                 .. and the rest of the information on Q3 is in  *        The perturbation is structured so that it does not introduce any
 *                 WORK(2*N+N*NR+1:2*N+N*NR+N)  *        new perturbation of the singular values, and it does not destroy
                END IF  *        the job done by the preconditioner.
 *  *        The licence for this perturbation is in the variable L2PERT, which
             END IF  *        should be .FALSE. if FLUSH TO ZERO underflow is active.
 *  *
             IF ( L2PERT ) THEN           IF ( .NOT. ALMORT ) THEN
                XSC = DSQRT(SMALL)  *
                DO 4968 q = 2, NR              IF ( L2PERT ) THEN
                   CTEMP = XSC * V(q,q)  *              XSC = SQRT(SMALL)
                   DO 4969 p = 1, q - 1                 XSC = EPSLN / DBLE(N)
 *                     V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) )                 DO 4947 q = 1, NR
                      V(p,q) = - CTEMP                    CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
  4969             CONTINUE                    DO 4949 p = 1, N
  4968          CONTINUE                       IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
             ELSE       $                    .OR. ( p .LT. q ) )
                CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )  *     $                     A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
             END IF       $                     A(p,q) = CTEMP
 *   4949             CONTINUE
 *        Second preconditioning finished; continue with Jacobi SVD   4947          CONTINUE
 *        The input matrix is lower trinagular.              ELSE
 *                 CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA )
 *        Recover the right singular vectors as solution of a well              END IF
 *        conditioned triangular matrix equation.  *
 *  *            .. second preconditioning using the QR factorization
             IF ( CONDR1 .LT. COND_OK ) THEN  *
 *              CALL ZGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N, IERR )
                CALL ZGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU,  *
      $              CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK,  *           .. and transpose upper to lower triangular
      $              LRWORK, INFO )              DO 1948 p = 1, NR - 1
                SCALEM  = RWORK(1)                 CALL ZCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
                NUMRANK = NINT(RWORK(2))                 CALL ZLACGV( NR-p+1, A(p,p), 1 )
                DO 3970 p = 1, NR   1948       CONTINUE
                   CALL ZCOPY(  NR, V(1,p), 1, U(1,p), 1 )  *
                   CALL ZDSCAL( NR, SVA(p),    V(1,p), 1 )        END IF
  3970          CONTINUE  *
   *           Row-cyclic Jacobi SVD algorithm with column pivoting
 *        .. pick the right matrix equation and solve it  *
 *  *           .. again some perturbation (a "background noise") is added
                IF ( NR .EQ. N ) THEN  *           to drown denormals
 * :))             .. best case, R1 is inverted. The solution of this matrix              IF ( L2PERT ) THEN
 *                 equation is Q2*V2 = the product of the Jacobi rotations  *              XSC = SQRT(SMALL)
 *                 used in ZGESVJ, premultiplied with the orthogonal matrix                 XSC = EPSLN / DBLE(N)
 *                 from the second QR factorization.                 DO 1947 q = 1, NR
                   CALL ZTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,LDV)                    CTEMP = DCMPLX(XSC*ABS(A(q,q)),ZERO)
                ELSE                    DO 1949 p = 1, NR
 *                 .. R1 is well conditioned, but non-square. Adjoint of R2                       IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
 *                 is inverted to get the product of the Jacobi rotations       $                       .OR. ( p .LT. q ) )
 *                 used in ZGESVJ. The Q-factor from the second QR  *     $                   A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
 *                 factorization is then built in explicitly.       $                   A(p,q) = CTEMP
                   CALL ZTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1),   1949             CONTINUE
      $                 N,V,LDV)   1947          CONTINUE
                   IF ( NR .LT. N ) THEN              ELSE
                   CALL ZLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)                 CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2), LDA )
                   CALL ZLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)              END IF
                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)  *
                   END IF  *           .. and one-sided Jacobi rotations are started on a lower
                   CALL ZUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),  *           triangular matrix (plus perturbation which is ignored in
      $                V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)  *           the part which destroys triangular form (confusing?!))
                END IF  *
 *              CALL ZGESVJ( 'L', 'N', 'N', NR, NR, A, LDA, SVA,
             ELSE IF ( CONDR2 .LT. COND_OK ) THEN       $                N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
 *  *
 *              The matrix R2 is inverted. The solution of the matrix equation              SCALEM  = RWORK(1)
 *              is Q3^* * V3 = the product of the Jacobi rotations (appplied to              NUMRANK = NINT(RWORK(2))
 *              the lower triangular L3 from the LQ factorization of  *
 *              R2=L3*Q3), pre-multiplied with the transposed Q3.  *
                CALL ZGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,        ELSE IF ( ( RSVEC .AND. ( .NOT. LSVEC ) .AND. ( .NOT. JRACC ) )
      $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,        $       .OR.
      $          RWORK, LRWORK, INFO )       $   ( JRACC .AND. ( .NOT. LSVEC ) .AND. ( NR .NE. N ) ) ) THEN
                SCALEM  = RWORK(1)  *
                NUMRANK = NINT(RWORK(2))  *        -> Singular Values and Right Singular Vectors <-
                DO 3870 p = 1, NR  *
                   CALL ZCOPY( NR, V(1,p), 1, U(1,p), 1 )           IF ( ALMORT ) THEN
                   CALL ZDSCAL( NR, SVA(p),    U(1,p), 1 )  *
  3870          CONTINUE  *           .. in this case NR equals N
                CALL ZTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N,              DO 1998 p = 1, NR
      $                    U,LDU)                 CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 *              .. apply the permutation from the second QR factorization                 CALL ZLACGV( N-p+1, V(p,p), 1 )
                DO 873 q = 1, NR   1998       CONTINUE
                   DO 872 p = 1, NR              CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
                      CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)  *
  872              CONTINUE              CALL ZGESVJ( 'L','U','N', N, NR, V, LDV, SVA, NR, A, LDA,
                   DO 874 p = 1, NR       $                  CWORK, LWORK, RWORK, LRWORK, INFO )
                      U(p,q) = CWORK(2*N+N*NR+NR+p)              SCALEM  = RWORK(1)
  874              CONTINUE              NUMRANK = NINT(RWORK(2))
  873           CONTINUE  
                IF ( NR .LT. N ) THEN           ELSE
                   CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )  *
                   CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )  *        .. two more QR factorizations ( one QRF is not enough, two require
                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)  *        accumulated product of Jacobi rotations, three are perfect )
                END IF  *
                CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),              CALL ZLASET( 'L', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA )
      $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )              CALL ZGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N, IERR)
             ELSE              CALL ZLACPY( 'L', NR, NR, A, LDA, V, LDV )
 *              Last line of defense.              CALL ZLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
 * #:(          This is a rather pathological case: no scaled condition              CALL ZGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 *              improvement after two pivoted QR factorizations. Other       $                   LWORK-2*N, IERR )
 *              possibility is that the rank revealing QR factorization              DO 8998 p = 1, NR
 *              or the condition estimator has failed, or the COND_OK                 CALL ZCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
 *              is set very close to ONE (which is unnecessary). Normally,                 CALL ZLACGV( NR-p+1, V(p,p), 1 )
 *              this branch should never be executed, but in rare cases of   8998       CONTINUE
 *              failure of the RRQR or condition estimator, the last line of              CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV)
 *              defense ensures that ZGEJSV completes the task.  *
 *              Compute the full SVD of L3 using ZGESVJ with explicit              CALL ZGESVJ( 'L', 'U','N', NR, NR, V,LDV, SVA, NR, U,
 *              accumulation of Jacobi rotations.       $                  LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
                CALL ZGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,              SCALEM  = RWORK(1)
      $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,               NUMRANK = NINT(RWORK(2))
      $                         RWORK, LRWORK, INFO )              IF ( NR .LT. N ) THEN
                SCALEM  = RWORK(1)                 CALL ZLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1),  LDV )
                NUMRANK = NINT(RWORK(2))                 CALL ZLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1),  LDV )
                IF ( NR .LT. N ) THEN                 CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),LDV )
                   CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )              END IF
                   CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )  *
                   CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)           CALL ZUNMLQ( 'L', 'C', N, N, NR, A, LDA, CWORK,
                END IF       $               V, LDV, CWORK(N+1), LWORK-N, IERR )
                CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),  *
      $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )           END IF
 *  *         .. permute the rows of V
                CALL ZUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N,  *         DO 8991 p = 1, N
      $              CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1),  *            CALL ZCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
      $              LWORK-2*N-N*NR-NR, IERR )  * 8991    CONTINUE
                DO 773 q = 1, NR  *         CALL ZLACPY( 'All', N, N, A, LDA, V, LDV )
                   DO 772 p = 1, NR           CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK )
                      CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)  *
  772              CONTINUE            IF ( TRANSP ) THEN
                   DO 774 p = 1, NR              CALL ZLACPY( 'A', N, N, V, LDV, U, LDU )
                      U(p,q) = CWORK(2*N+N*NR+NR+p)            END IF
  774              CONTINUE  *
  773           CONTINUE        ELSE IF ( JRACC .AND. (.NOT. LSVEC) .AND. ( NR.EQ. N ) ) THEN
 *  *          
             END IF           CALL ZLASET( 'L', N-1,N-1, CZERO, CZERO, A(2,1), LDA )
 *  *
 *           Permute the rows of V using the (column) permutation from the           CALL ZGESVJ( 'U','N','V', N, N, A, LDA, SVA, N, V, LDV,
 *           first QRF. Also, scale the columns to make them unit in       $               CWORK, LWORK, RWORK, LRWORK, INFO )
 *           Euclidean norm. This applies to all cases.            SCALEM  = RWORK(1)
 *            NUMRANK = NINT(RWORK(2))
             TEMP1 = DSQRT(DBLE(N)) * EPSLN            CALL ZLAPMR( .FALSE., N, N, V, LDV, IWORK )
             DO 1972 q = 1, N  *
                DO 972 p = 1, N        ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
                   CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)  *
   972          CONTINUE  *        .. Singular Values and Left Singular Vectors                 ..
                DO 973 p = 1, N  *
                   V(p,q) = CWORK(2*N+N*NR+NR+p)  *        .. second preconditioning step to avoid need to accumulate
   973          CONTINUE  *        Jacobi rotations in the Jacobi iterations.
                XSC = ONE / DZNRM2( N, V(1,q), 1 )           DO 1965 p = 1, NR
                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )              CALL ZCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
      $           CALL ZDSCAL( N, XSC, V(1,q), 1 )              CALL ZLACGV( N-p+1, U(p,p), 1 )
  1972       CONTINUE   1965    CONTINUE
 *           At this moment, V contains the right singular vectors of A.           CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
 *           Next, assemble the left singular vector matrix U (M x N).  *
             IF ( NR .LT. M ) THEN           CALL ZGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1),
                CALL ZLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)       $              LWORK-2*N, IERR )
                IF ( NR .LT. N1 ) THEN  *
                   CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)           DO 1967 p = 1, NR - 1
                   CALL ZLASET('A',M-NR,N1-NR,CZERO,CONE,              CALL ZCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
      $                        U(NR+1,NR+1),LDU)              CALL ZLACGV( N-p+1, U(p,p), 1 )
                END IF   1967    CONTINUE
             END IF           CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
 *  *
 *           The Q matrix from the first QRF is built into the left singular           CALL ZGESVJ( 'L', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
 *           matrix U. This applies to all cases.       $        LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
 *           SCALEM  = RWORK(1)
             CALL ZUNMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, CWORK, U,           NUMRANK = NINT(RWORK(2))
      $           LDU, CWORK(N+1), LWORK-N, IERR )  *
            IF ( NR .LT. M ) THEN
 *           The columns of U are normalized. The cost is O(M*N) flops.              CALL ZLASET( 'A',  M-NR, NR,CZERO, CZERO, U(NR+1,1), LDU )
             TEMP1 = DSQRT(DBLE(M)) * EPSLN              IF ( NR .LT. N1 ) THEN
             DO 1973 p = 1, NR                 CALL ZLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU )
                XSC = ONE / DZNRM2( M, U(1,p), 1 )                 CALL ZLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),LDU )
                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )              END IF
      $          CALL ZDSCAL( M, XSC, U(1,p), 1 )           END IF
  1973       CONTINUE  *
 *           CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 *           If the initial QRF is computed with row pivoting, the left       $               LDU, CWORK(N+1), LWORK-N, IERR )
 *           singular vectors must be adjusted.  *
 *           IF ( ROWPIV )
             IF ( ROWPIV )       $       CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
      $          CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )  *
 *           DO 1974 p = 1, N1
          ELSE              XSC = ONE / DZNRM2( M, U(1,p), 1 )
 *              CALL ZDSCAL( M, XSC, U(1,p), 1 )
 *        .. the initial matrix A has almost orthogonal columns and   1974    CONTINUE
 *        the second QRF is not needed  *
 *           IF ( TRANSP ) THEN
             CALL ZLACPY( 'Upper', N, N, A, LDA, CWORK(N+1), N )              CALL ZLACPY( 'A', N, N, U, LDU, V, LDV )
             IF ( L2PERT ) THEN           END IF
                XSC = DSQRT(SMALL)  *
                DO 5970 p = 2, N        ELSE
                   CTEMP = XSC * CWORK( N + (p-1)*N + p )  *
                   DO 5971 q = 1, p - 1  *        .. Full SVD ..
 *                     CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) /  *
 *     $                                        ABS(CWORK(N+(p-1)*N+q)) )           IF ( .NOT. JRACC ) THEN
                      CWORK(N+(q-1)*N+p)=-CTEMP             *
  5971             CONTINUE           IF ( .NOT. ALMORT ) THEN
  5970          CONTINUE  *
             ELSE  *           Second Preconditioning Step (QRF [with pivoting])
                CALL ZLASET( 'Lower',N-1,N-1,CZERO,CZERO,CWORK(N+2),N )  *           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
             END IF  *           equivalent to an LQF CALL. Since in many libraries the QRF
 *  *           seems to be better optimized than the LQF, we do explicit
             CALL ZGESVJ( 'Upper', 'U', 'N', N, N, CWORK(N+1), N, SVA,  *           transpose and use the QRF. This is subject to changes in an
      $           N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK,   *           optimized implementation of ZGEJSV.
      $       INFO )  *
 *              DO 1968 p = 1, NR
             SCALEM  = RWORK(1)                 CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
             NUMRANK = NINT(RWORK(2))                 CALL ZLACGV( N-p+1, V(p,p), 1 )
             DO 6970 p = 1, N   1968       CONTINUE
                CALL ZCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 )  *
                CALL ZDSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 )  *           .. the following two loops perturb small entries to avoid
  6970       CONTINUE  *           denormals in the second QR factorization, where they are
 *  *           as good as zeros. This is done to avoid painfully slow
             CALL ZTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,  *           computation with denormals. The relative size of the perturbation
      $           CONE, A, LDA, CWORK(N+1), N )  *           is a parameter that can be changed by the implementer.
             DO 6972 p = 1, N  *           This perturbation device will be obsolete on machines with
                CALL ZCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV )  *           properly implemented arithmetic.
  6972       CONTINUE  *           To switch it off, set L2PERT=.FALSE. To remove it from  the
             TEMP1 = DSQRT(DBLE(N))*EPSLN  *           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
             DO 6971 p = 1, N  *           The following two loops should be blocked and fused with the
                XSC = ONE / DZNRM2( N, V(1,p), 1 )  *           transposed copy above.
                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )  *
      $            CALL ZDSCAL( N, XSC, V(1,p), 1 )              IF ( L2PERT ) THEN
  6971       CONTINUE                 XSC = SQRT(SMALL)
 *                 DO 2969 q = 1, NR
 *           Assemble the left singular vector matrix U (M x N).                    CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
 *                    DO 2968 p = 1, N
             IF ( N .LT. M ) THEN                       IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
                CALL ZLASET( 'A',  M-N, N, CZERO, CZERO, U(N+1,1), LDU )       $                   .OR. ( p .LT. q ) )
                IF ( N .LT. N1 ) THEN  *     $                   V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
                   CALL ZLASET('A',N,  N1-N, CZERO, CZERO,  U(1,N+1),LDU)       $                   V(p,q) = CTEMP
                   CALL ZLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),LDU)                       IF ( p .LT. q ) V(p,q) = - V(p,q)
                END IF   2968             CONTINUE
             END IF   2969          CONTINUE
             CALL ZUNMQR( 'Left', 'No Tr', M, N1, N, A, LDA, CWORK, U,              ELSE
      $           LDU, CWORK(N+1), LWORK-N, IERR )                 CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
             TEMP1 = DSQRT(DBLE(M))*EPSLN              END IF
             DO 6973 p = 1, N1  *
                XSC = ONE / DZNRM2( M, U(1,p), 1 )  *           Estimate the row scaled condition number of R1
                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )  *           (If R1 is rectangular, N > NR, then the condition number
      $            CALL ZDSCAL( M, XSC, U(1,p), 1 )  *           of the leading NR x NR submatrix is estimated.)
  6973       CONTINUE  *
 *              CALL ZLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR )
             IF ( ROWPIV )              DO 3950 p = 1, NR
      $         CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )                 TEMP1 = DZNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1)
 *                 CALL ZDSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1)
          END IF   3950       CONTINUE
 *              CALL ZPOCON('L',NR,CWORK(2*N+1),NR,ONE,TEMP1,
 *        end of the  >> almost orthogonal case <<  in the full SVD       $                   CWORK(2*N+NR*NR+1),RWORK,IERR)
 *              CONDR1 = ONE / SQRT(TEMP1)
          ELSE  *           .. here need a second oppinion on the condition number
 *  *           .. then assume worst case scenario
 *        This branch deploys a preconditioned Jacobi SVD with explicitly  *           R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
 *        accumulated rotations. It is included as optional, mainly for  *           more conservative    <=> CONDR1 .LT. SQRT(DBLE(N))
 *        experimental purposes. It does perfom well, and can also be used.  *
 *        In this implementation, this branch will be automatically activated              COND_OK = SQRT(SQRT(DBLE(NR)))
 *        if the  condition number sigma_max(A) / sigma_min(A) is predicted  *[TP]       COND_OK is a tuning parameter.
 *        to be greater than the overflow threshold. This is because the  *
 *        a posteriori computation of the singular vectors assumes robust              IF ( CONDR1 .LT. COND_OK ) THEN
 *        implementation of BLAS and some LAPACK procedures, capable of working  *              .. the second QRF without pivoting. Note: in an optimized
 *        in presence of extreme values. Since that is not always the case, ...  *              implementation, this QRF should be implemented as the QRF
 *  *              of a lower triangular matrix.
          DO 7968 p = 1, NR  *              R1^* = Q2 * R2
             CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )                 CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
             CALL ZLACGV( N-p+1, V(p,p), 1 )       $              LWORK-2*N, IERR )
  7968    CONTINUE  *
 *                 IF ( L2PERT ) THEN
          IF ( L2PERT ) THEN                    XSC = SQRT(SMALL)/EPSLN
             XSC = DSQRT(SMALL/EPSLN)                    DO 3959 p = 2, NR
             DO 5969 q = 1, NR                       DO 3958 q = 1, p - 1
                CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)                          CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
                DO 5968 p = 1, N       $                              ZERO)
                   IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )                          IF ( ABS(V(q,p)) .LE. TEMP1 )
      $                .OR. ( p .LT. q ) )  *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
 *     $                V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )       $                     V(q,p) = CTEMP
      $                V(p,q) = CTEMP           3958                CONTINUE
                   IF ( p .LT. q ) V(p,q) = - V(p,q)   3959             CONTINUE
  5968          CONTINUE                 END IF
  5969       CONTINUE  *
          ELSE                 IF ( NR .NE. N )
             CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )       $         CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
          END IF  *              .. save ...
   *
          CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),  *           .. this transposed copy should be better than naive
      $        LWORK-2*N, IERR )                 DO 1969 p = 1, NR - 1
          CALL ZLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N )                    CALL ZCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
 *                    CALL ZLACGV(NR-p+1, V(p,p), 1 )
          DO 7969 p = 1, NR   1969          CONTINUE
             CALL ZCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )                 V(NR,NR)=CONJG(V(NR,NR))
             CALL ZLACGV( NR-p+1, U(p,p), 1 )  *
  7969    CONTINUE                 CONDR2 = CONDR1
   *
          IF ( L2PERT ) THEN              ELSE
             XSC = DSQRT(SMALL/EPSLN)  *
             DO 9970 q = 2, NR  *              .. ill-conditioned case: second QRF with pivoting
                DO 9971 p = 1, q - 1  *              Note that windowed pivoting would be equaly good
                   CTEMP = DCMPLX(XSC * DMIN1(ABS(U(p,p)),ABS(U(q,q))),  *              numerically, and more run-time efficient. So, in
      $                            ZERO)  *              an optimal implementation, the next call to ZGEQP3
 *                  U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) )  *              should be replaced with eg. CALL ZGEQPX (ACM TOMS #782)
                   U(p,q) = - CTEMP       *              with properly (carefully) chosen parameters.
  9971          CONTINUE  *
  9970       CONTINUE  *              R1^* * P2 = Q2 * R2
          ELSE                 DO 3003 p = 1, NR
             CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )                    IWORK(N+p) = 0
          END IF   3003          CONTINUE
                  CALL ZGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1),
          CALL ZGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,       $                  CWORK(2*N+1), LWORK-2*N, RWORK, IERR )
      $        N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR,   **               CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
      $         RWORK, LRWORK, INFO )  **     $              LWORK-2*N, IERR )
          SCALEM  = RWORK(1)                 IF ( L2PERT ) THEN
          NUMRANK = NINT(RWORK(2))                    XSC = SQRT(SMALL)
                     DO 3969 p = 2, NR
          IF ( NR .LT. N ) THEN                       DO 3968 q = 1, p - 1
             CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )                          CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
             CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )       $                                ZERO)
             CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV )                          IF ( ABS(V(q,p)) .LE. TEMP1 )
          END IF  *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
        $                     V(q,p) = CTEMP
          CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),   3968                CONTINUE
      $        V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )   3969             CONTINUE
 *                 END IF
 *           Permute the rows of V using the (column) permutation from the  *
 *           first QRF. Also, scale the columns to make them unit in                 CALL ZLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
 *           Euclidean norm. This applies to all cases.  *
 *                 IF ( L2PERT ) THEN
             TEMP1 = DSQRT(DBLE(N)) * EPSLN                    XSC = SQRT(SMALL)
             DO 7972 q = 1, N                    DO 8970 p = 2, NR
                DO 8972 p = 1, N                       DO 8971 q = 1, p - 1
                   CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)                          CTEMP=DCMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
  8972          CONTINUE       $                               ZERO)
                DO 8973 p = 1, N  *                        V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) )
                   V(p,q) = CWORK(2*N+N*NR+NR+p)                          V(p,q) = - CTEMP
  8973          CONTINUE   8971                CONTINUE
                XSC = ONE / DZNRM2( N, V(1,q), 1 )   8970             CONTINUE
                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )                 ELSE
      $           CALL ZDSCAL( N, XSC, V(1,q), 1 )                    CALL ZLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV )
  7972       CONTINUE                 END IF
 *  *              Now, compute R2 = L3 * Q3, the LQ factorization.
 *           At this moment, V contains the right singular vectors of A.                 CALL ZGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1),
 *           Next, assemble the left singular vector matrix U (M x N).       $               CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
 *  *              .. and estimate the condition number
          IF ( NR .LT. M ) THEN                 CALL ZLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR )
             CALL ZLASET( 'A',  M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU )                 DO 4950 p = 1, NR
             IF ( NR .LT. N1 ) THEN                    TEMP1 = DZNRM2( p, CWORK(2*N+N*NR+NR+p), NR )
                CALL ZLASET('A',NR,  N1-NR, CZERO, CZERO,  U(1,NR+1),LDU)                    CALL ZDSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p), NR )
                CALL ZLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),LDU)   4950          CONTINUE
             END IF                 CALL ZPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
          END IF       $              CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR )
 *                 CONDR2 = ONE / SQRT(TEMP1)
          CALL ZUNMQR( 'Left', 'No Tr', M, N1, N, A, LDA, CWORK, U,  *
      $        LDU, CWORK(N+1), LWORK-N, IERR )  *
 *                 IF ( CONDR2 .GE. COND_OK ) THEN
             IF ( ROWPIV )  *                 .. save the Householder vectors used for Q3
      $         CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )  *                 (this overwrittes the copy of R2, as it will not be
 *  *                 needed in this branch, but it does not overwritte the
 *  *                 Huseholder vectors of Q2.).
          END IF                    CALL ZLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N )
          IF ( TRANSP ) THEN  *                 .. and the rest of the information on Q3 is in
 *           .. swap U and V because the procedure worked on A^*  *                 WORK(2*N+N*NR+1:2*N+N*NR+N)
             DO 6974 p = 1, N                 END IF
                CALL ZSWAP( N, U(1,p), 1, V(1,p), 1 )  *
  6974       CONTINUE              END IF
          END IF  *
 *              IF ( L2PERT ) THEN
       END IF                 XSC = SQRT(SMALL)
 *     end of the full SVD                 DO 4968 q = 2, NR
 *                    CTEMP = XSC * V(q,q)
 *     Undo scaling, if necessary (and possible)                    DO 4969 p = 1, q - 1
 *  *                     V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) )
       IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN                       V(p,q) = - CTEMP
          CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )   4969             CONTINUE
          USCAL1 = ONE   4968          CONTINUE
          USCAL2 = ONE              ELSE
       END IF                 CALL ZLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
 *              END IF
       IF ( NR .LT. N ) THEN  *
          DO 3004 p = NR+1, N  *        Second preconditioning finished; continue with Jacobi SVD
             SVA(p) = ZERO  *        The input matrix is lower trinagular.
  3004    CONTINUE  *
       END IF  *        Recover the right singular vectors as solution of a well
 *  *        conditioned triangular matrix equation.
       RWORK(1) = USCAL2 * SCALEM  *
       RWORK(2) = USCAL1              IF ( CONDR1 .LT. COND_OK ) THEN
       IF ( ERREST ) RWORK(3) = SCONDA  *
       IF ( LSVEC .AND. RSVEC ) THEN                 CALL ZGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU,
          RWORK(4) = CONDR1       $              CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK,
          RWORK(5) = CONDR2       $              LRWORK, INFO )
       END IF                 SCALEM  = RWORK(1)
       IF ( L2TRAN ) THEN                 NUMRANK = NINT(RWORK(2))
          RWORK(6) = ENTRA                 DO 3970 p = 1, NR
          RWORK(7) = ENTRAT                    CALL ZCOPY(  NR, V(1,p), 1, U(1,p), 1 )
       END IF                    CALL ZDSCAL( NR, SVA(p),    V(1,p), 1 )
 *   3970          CONTINUE
       IWORK(1) = NR  
       IWORK(2) = NUMRANK  *        .. pick the right matrix equation and solve it
       IWORK(3) = WARNING  *
 *                 IF ( NR .EQ. N ) THEN
       RETURN  * :))             .. best case, R1 is inverted. The solution of this matrix
 *     ..  *                 equation is Q2*V2 = the product of the Jacobi rotations
 *     .. END OF ZGEJSV  *                 used in ZGESVJ, premultiplied with the orthogonal matrix
 *     ..  *                 from the second QR factorization.
       END                    CALL ZTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,LDV)
 *                 ELSE
   *                 .. R1 is well conditioned, but non-square. Adjoint of R2
   *                 is inverted to get the product of the Jacobi rotations
   *                 used in ZGESVJ. The Q-factor from the second QR
   *                 factorization is then built in explicitly.
                     CALL ZTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1),
        $                 N,V,LDV)
                     IF ( NR .LT. N ) THEN
                     CALL ZLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
                     CALL ZLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
                     CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
                     END IF
                     CALL ZUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
        $                V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
                  END IF
   *
               ELSE IF ( CONDR2 .LT. COND_OK ) THEN
   *
   *              The matrix R2 is inverted. The solution of the matrix equation
   *              is Q3^* * V3 = the product of the Jacobi rotations (appplied to
   *              the lower triangular L3 from the LQ factorization of
   *              R2=L3*Q3), pre-multiplied with the transposed Q3.
                  CALL ZGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
        $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
        $              RWORK, LRWORK, INFO )
                  SCALEM  = RWORK(1)
                  NUMRANK = NINT(RWORK(2))
                  DO 3870 p = 1, NR
                     CALL ZCOPY( NR, V(1,p), 1, U(1,p), 1 )
                     CALL ZDSCAL( NR, SVA(p),    U(1,p), 1 )
    3870          CONTINUE
                  CALL ZTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N,
        $                    U,LDU)
   *              .. apply the permutation from the second QR factorization
                  DO 873 q = 1, NR
                     DO 872 p = 1, NR
                        CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
    872              CONTINUE
                     DO 874 p = 1, NR
                        U(p,q) = CWORK(2*N+N*NR+NR+p)
    874              CONTINUE
    873           CONTINUE
                  IF ( NR .LT. N ) THEN
                     CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
                     CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
                     CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
                  END IF
                  CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
        $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
               ELSE
   *              Last line of defense.
   * #:(          This is a rather pathological case: no scaled condition
   *              improvement after two pivoted QR factorizations. Other
   *              possibility is that the rank revealing QR factorization
   *              or the condition estimator has failed, or the COND_OK
   *              is set very close to ONE (which is unnecessary). Normally,
   *              this branch should never be executed, but in rare cases of
   *              failure of the RRQR or condition estimator, the last line of
   *              defense ensures that ZGEJSV completes the task.
   *              Compute the full SVD of L3 using ZGESVJ with explicit
   *              accumulation of Jacobi rotations.
                  CALL ZGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
        $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
        $                         RWORK, LRWORK, INFO )
                  SCALEM  = RWORK(1)
                  NUMRANK = NINT(RWORK(2))
                  IF ( NR .LT. N ) THEN
                     CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
                     CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
                     CALL ZLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
                  END IF
                  CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
        $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
   *
                  CALL ZUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N,
        $              CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1),
        $              LWORK-2*N-N*NR-NR, IERR )
                  DO 773 q = 1, NR
                     DO 772 p = 1, NR
                        CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
    772              CONTINUE
                     DO 774 p = 1, NR
                        U(p,q) = CWORK(2*N+N*NR+NR+p)
    774              CONTINUE
    773           CONTINUE
   *
               END IF
   *
   *           Permute the rows of V using the (column) permutation from the
   *           first QRF. Also, scale the columns to make them unit in
   *           Euclidean norm. This applies to all cases.
   *
               TEMP1 = SQRT(DBLE(N)) * EPSLN
               DO 1972 q = 1, N
                  DO 972 p = 1, N
                     CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
     972          CONTINUE
                  DO 973 p = 1, N
                     V(p,q) = CWORK(2*N+N*NR+NR+p)
     973          CONTINUE
                  XSC = ONE / DZNRM2( N, V(1,q), 1 )
                  IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        $           CALL ZDSCAL( N, XSC, V(1,q), 1 )
    1972       CONTINUE
   *           At this moment, V contains the right singular vectors of A.
   *           Next, assemble the left singular vector matrix U (M x N).
               IF ( NR .LT. M ) THEN
                  CALL ZLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)
                  IF ( NR .LT. N1 ) THEN
                     CALL ZLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
                     CALL ZLASET('A',M-NR,N1-NR,CZERO,CONE,
        $                        U(NR+1,NR+1),LDU)
                  END IF
               END IF
   *
   *           The Q matrix from the first QRF is built into the left singular
   *           matrix U. This applies to all cases.
   *
               CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
        $           LDU, CWORK(N+1), LWORK-N, IERR )
   
   *           The columns of U are normalized. The cost is O(M*N) flops.
               TEMP1 = SQRT(DBLE(M)) * EPSLN
               DO 1973 p = 1, NR
                  XSC = ONE / DZNRM2( M, U(1,p), 1 )
                  IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        $          CALL ZDSCAL( M, XSC, U(1,p), 1 )
    1973       CONTINUE
   *
   *           If the initial QRF is computed with row pivoting, the left
   *           singular vectors must be adjusted.
   *
               IF ( ROWPIV )
        $          CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
   *
            ELSE
   *
   *        .. the initial matrix A has almost orthogonal columns and
   *        the second QRF is not needed
   *
               CALL ZLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
               IF ( L2PERT ) THEN
                  XSC = SQRT(SMALL)
                  DO 5970 p = 2, N
                     CTEMP = XSC * CWORK( N + (p-1)*N + p )
                     DO 5971 q = 1, p - 1
   *                     CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) /
   *     $                                        ABS(CWORK(N+(p-1)*N+q)) )
                        CWORK(N+(q-1)*N+p)=-CTEMP
    5971             CONTINUE
    5970          CONTINUE
               ELSE
                  CALL ZLASET( 'L',N-1,N-1,CZERO,CZERO,CWORK(N+2),N )
               END IF
   *
               CALL ZGESVJ( 'U', 'U', 'N', N, N, CWORK(N+1), N, SVA,
        $           N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK,
        $       INFO )
   *
               SCALEM  = RWORK(1)
               NUMRANK = NINT(RWORK(2))
               DO 6970 p = 1, N
                  CALL ZCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 )
                  CALL ZDSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 )
    6970       CONTINUE
   *
               CALL ZTRSM( 'L', 'U', 'N', 'N', N, N,
        $           CONE, A, LDA, CWORK(N+1), N )
               DO 6972 p = 1, N
                  CALL ZCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV )
    6972       CONTINUE
               TEMP1 = SQRT(DBLE(N))*EPSLN
               DO 6971 p = 1, N
                  XSC = ONE / DZNRM2( N, V(1,p), 1 )
                  IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        $            CALL ZDSCAL( N, XSC, V(1,p), 1 )
    6971       CONTINUE
   *
   *           Assemble the left singular vector matrix U (M x N).
   *
               IF ( N .LT. M ) THEN
                  CALL ZLASET( 'A',  M-N, N, CZERO, CZERO, U(N+1,1), LDU )
                  IF ( N .LT. N1 ) THEN
                     CALL ZLASET('A',N,  N1-N, CZERO, CZERO,  U(1,N+1),LDU)
                     CALL ZLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),LDU)
                  END IF
               END IF
               CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
        $           LDU, CWORK(N+1), LWORK-N, IERR )
               TEMP1 = SQRT(DBLE(M))*EPSLN
               DO 6973 p = 1, N1
                  XSC = ONE / DZNRM2( M, U(1,p), 1 )
                  IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        $            CALL ZDSCAL( M, XSC, U(1,p), 1 )
    6973       CONTINUE
   *
               IF ( ROWPIV )
        $         CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
   *
            END IF
   *
   *        end of the  >> almost orthogonal case <<  in the full SVD
   *
            ELSE
   *
   *        This branch deploys a preconditioned Jacobi SVD with explicitly
   *        accumulated rotations. It is included as optional, mainly for
   *        experimental purposes. It does perfom well, and can also be used.
   *        In this implementation, this branch will be automatically activated
   *        if the  condition number sigma_max(A) / sigma_min(A) is predicted
   *        to be greater than the overflow threshold. This is because the
   *        a posteriori computation of the singular vectors assumes robust
   *        implementation of BLAS and some LAPACK procedures, capable of working
   *        in presence of extreme values, e.g. when the singular values spread from
   *        the underflow to the overflow threshold.
   *
            DO 7968 p = 1, NR
               CALL ZCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
               CALL ZLACGV( N-p+1, V(p,p), 1 )
    7968    CONTINUE
   *
            IF ( L2PERT ) THEN
               XSC = SQRT(SMALL/EPSLN)
               DO 5969 q = 1, NR
                  CTEMP = DCMPLX(XSC*ABS( V(q,q) ),ZERO)
                  DO 5968 p = 1, N
                     IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
        $                .OR. ( p .LT. q ) )
   *     $                V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
        $                V(p,q) = CTEMP
                     IF ( p .LT. q ) V(p,q) = - V(p,q)
    5968          CONTINUE
    5969       CONTINUE
            ELSE
               CALL ZLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
            END IF
   
            CALL ZGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
        $        LWORK-2*N, IERR )
            CALL ZLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N )
   *
            DO 7969 p = 1, NR
               CALL ZCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
               CALL ZLACGV( NR-p+1, U(p,p), 1 )
    7969    CONTINUE
   
            IF ( L2PERT ) THEN
               XSC = SQRT(SMALL/EPSLN)
               DO 9970 q = 2, NR
                  DO 9971 p = 1, q - 1
                     CTEMP = DCMPLX(XSC * MIN(ABS(U(p,p)),ABS(U(q,q))),
        $                            ZERO)
   *                  U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) )
                     U(p,q) = - CTEMP
    9971          CONTINUE
    9970       CONTINUE
            ELSE
               CALL ZLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
            END IF
   
            CALL ZGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,
        $        N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR,
        $         RWORK, LRWORK, INFO )
            SCALEM  = RWORK(1)
            NUMRANK = NINT(RWORK(2))
   
            IF ( NR .LT. N ) THEN
               CALL ZLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
               CALL ZLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
               CALL ZLASET( 'A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV )
            END IF
   
            CALL ZUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
        $        V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
   *
   *           Permute the rows of V using the (column) permutation from the
   *           first QRF. Also, scale the columns to make them unit in
   *           Euclidean norm. This applies to all cases.
   *
               TEMP1 = SQRT(DBLE(N)) * EPSLN
               DO 7972 q = 1, N
                  DO 8972 p = 1, N
                     CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
    8972          CONTINUE
                  DO 8973 p = 1, N
                     V(p,q) = CWORK(2*N+N*NR+NR+p)
    8973          CONTINUE
                  XSC = ONE / DZNRM2( N, V(1,q), 1 )
                  IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
        $           CALL ZDSCAL( N, XSC, V(1,q), 1 )
    7972       CONTINUE
   *
   *           At this moment, V contains the right singular vectors of A.
   *           Next, assemble the left singular vector matrix U (M x N).
   *
            IF ( NR .LT. M ) THEN
               CALL ZLASET( 'A',  M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU )
               IF ( NR .LT. N1 ) THEN
                  CALL ZLASET('A',NR,  N1-NR, CZERO, CZERO,  U(1,NR+1),LDU)
                  CALL ZLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),LDU)
               END IF
            END IF
   *
            CALL ZUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
        $        LDU, CWORK(N+1), LWORK-N, IERR )
   *
               IF ( ROWPIV )
        $         CALL ZLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
   *
   *
            END IF
            IF ( TRANSP ) THEN
   *           .. swap U and V because the procedure worked on A^*
               DO 6974 p = 1, N
                  CALL ZSWAP( N, U(1,p), 1, V(1,p), 1 )
    6974       CONTINUE
            END IF
   *
         END IF
   *     end of the full SVD
   *
   *     Undo scaling, if necessary (and possible)
   *
         IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
            CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
            USCAL1 = ONE
            USCAL2 = ONE
         END IF
   *
         IF ( NR .LT. N ) THEN
            DO 3004 p = NR+1, N
               SVA(p) = ZERO
    3004    CONTINUE
         END IF
   *
         RWORK(1) = USCAL2 * SCALEM
         RWORK(2) = USCAL1
         IF ( ERREST ) RWORK(3) = SCONDA
         IF ( LSVEC .AND. RSVEC ) THEN
            RWORK(4) = CONDR1
            RWORK(5) = CONDR2
         END IF
         IF ( L2TRAN ) THEN
            RWORK(6) = ENTRA
            RWORK(7) = ENTRAT
         END IF
   *
         IWORK(1) = NR
         IWORK(2) = NUMRANK
         IWORK(3) = WARNING
         IF ( TRANSP ) THEN
             IWORK(4) =  1
         ELSE
             IWORK(4) = -1
         END IF
        
   *
         RETURN
   *     ..
   *     .. END OF ZGEJSV
   *     ..
         END
   *

Removed from v.1.3  
changed lines
  Added in v.1.4


CVSweb interface <joel.bertrand@systella.fr>