Annotation of rpl/lapack/lapack/zgehrd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2.1)                                  --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *  -- April 2009                                                      --
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            IHI, ILO, INFO, LDA, LWORK, N
        !            10: *     ..
        !            11: *     .. Array Arguments ..
        !            12:       COMPLEX*16        A( LDA, * ), TAU( * ), WORK( * )
        !            13: *     ..
        !            14: *
        !            15: *  Purpose
        !            16: *  =======
        !            17: *
        !            18: *  ZGEHRD reduces a complex general matrix A to upper Hessenberg form H by
        !            19: *  an unitary similarity transformation:  Q' * A * Q = H .
        !            20: *
        !            21: *  Arguments
        !            22: *  =========
        !            23: *
        !            24: *  N       (input) INTEGER
        !            25: *          The order of the matrix A.  N >= 0.
        !            26: *
        !            27: *  ILO     (input) INTEGER
        !            28: *  IHI     (input) INTEGER
        !            29: *          It is assumed that A is already upper triangular in rows
        !            30: *          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
        !            31: *          set by a previous call to ZGEBAL; otherwise they should be
        !            32: *          set to 1 and N respectively. See Further Details.
        !            33: *          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
        !            34: *
        !            35: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            36: *          On entry, the N-by-N general matrix to be reduced.
        !            37: *          On exit, the upper triangle and the first subdiagonal of A
        !            38: *          are overwritten with the upper Hessenberg matrix H, and the
        !            39: *          elements below the first subdiagonal, with the array TAU,
        !            40: *          represent the unitary matrix Q as a product of elementary
        !            41: *          reflectors. See Further Details.
        !            42: *
        !            43: *  LDA     (input) INTEGER
        !            44: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            45: *
        !            46: *  TAU     (output) COMPLEX*16 array, dimension (N-1)
        !            47: *          The scalar factors of the elementary reflectors (see Further
        !            48: *          Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
        !            49: *          zero.
        !            50: *
        !            51: *  WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)
        !            52: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            53: *
        !            54: *  LWORK   (input) INTEGER
        !            55: *          The length of the array WORK.  LWORK >= max(1,N).
        !            56: *          For optimum performance LWORK >= N*NB, where NB is the
        !            57: *          optimal blocksize.
        !            58: *
        !            59: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            60: *          only calculates the optimal size of the WORK array, returns
        !            61: *          this value as the first entry of the WORK array, and no error
        !            62: *          message related to LWORK is issued by XERBLA.
        !            63: *
        !            64: *  INFO    (output) INTEGER
        !            65: *          = 0:  successful exit
        !            66: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !            67: *
        !            68: *  Further Details
        !            69: *  ===============
        !            70: *
        !            71: *  The matrix Q is represented as a product of (ihi-ilo) elementary
        !            72: *  reflectors
        !            73: *
        !            74: *     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
        !            75: *
        !            76: *  Each H(i) has the form
        !            77: *
        !            78: *     H(i) = I - tau * v * v'
        !            79: *
        !            80: *  where tau is a complex scalar, and v is a complex vector with
        !            81: *  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
        !            82: *  exit in A(i+2:ihi,i), and tau in TAU(i).
        !            83: *
        !            84: *  The contents of A are illustrated by the following example, with
        !            85: *  n = 7, ilo = 2 and ihi = 6:
        !            86: *
        !            87: *  on entry,                        on exit,
        !            88: *
        !            89: *  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
        !            90: *  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
        !            91: *  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
        !            92: *  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
        !            93: *  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
        !            94: *  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
        !            95: *  (                         a )    (                          a )
        !            96: *
        !            97: *  where a denotes an element of the original matrix A, h denotes a
        !            98: *  modified element of the upper Hessenberg matrix H, and vi denotes an
        !            99: *  element of the vector defining H(i).
        !           100: *
        !           101: *  This file is a slight modification of LAPACK-3.0's DGEHRD
        !           102: *  subroutine incorporating improvements proposed by Quintana-Orti and
        !           103: *  Van de Geijn (2006). (See DLAHR2.)
        !           104: *
        !           105: *  =====================================================================
        !           106: *
        !           107: *     .. Parameters ..
        !           108:       INTEGER            NBMAX, LDT
        !           109:       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1 )
        !           110:       COMPLEX*16        ZERO, ONE
        !           111:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ), 
        !           112:      $                     ONE = ( 1.0D+0, 0.0D+0 ) )
        !           113: *     ..
        !           114: *     .. Local Scalars ..
        !           115:       LOGICAL            LQUERY
        !           116:       INTEGER            I, IB, IINFO, IWS, J, LDWORK, LWKOPT, NB,
        !           117:      $                   NBMIN, NH, NX
        !           118:       COMPLEX*16        EI
        !           119: *     ..
        !           120: *     .. Local Arrays ..
        !           121:       COMPLEX*16        T( LDT, NBMAX )
        !           122: *     ..
        !           123: *     .. External Subroutines ..
        !           124:       EXTERNAL           ZAXPY, ZGEHD2, ZGEMM, ZLAHR2, ZLARFB, ZTRMM,
        !           125:      $                   XERBLA
        !           126: *     ..
        !           127: *     .. Intrinsic Functions ..
        !           128:       INTRINSIC          MAX, MIN
        !           129: *     ..
        !           130: *     .. External Functions ..
        !           131:       INTEGER            ILAENV
        !           132:       EXTERNAL           ILAENV
        !           133: *     ..
        !           134: *     .. Executable Statements ..
        !           135: *
        !           136: *     Test the input parameters
        !           137: *
        !           138:       INFO = 0
        !           139:       NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
        !           140:       LWKOPT = N*NB
        !           141:       WORK( 1 ) = LWKOPT
        !           142:       LQUERY = ( LWORK.EQ.-1 )
        !           143:       IF( N.LT.0 ) THEN
        !           144:          INFO = -1
        !           145:       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
        !           146:          INFO = -2
        !           147:       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
        !           148:          INFO = -3
        !           149:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           150:          INFO = -5
        !           151:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
        !           152:          INFO = -8
        !           153:       END IF
        !           154:       IF( INFO.NE.0 ) THEN
        !           155:          CALL XERBLA( 'ZGEHRD', -INFO )
        !           156:          RETURN
        !           157:       ELSE IF( LQUERY ) THEN
        !           158:          RETURN
        !           159:       END IF
        !           160: *
        !           161: *     Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
        !           162: *
        !           163:       DO 10 I = 1, ILO - 1
        !           164:          TAU( I ) = ZERO
        !           165:    10 CONTINUE
        !           166:       DO 20 I = MAX( 1, IHI ), N - 1
        !           167:          TAU( I ) = ZERO
        !           168:    20 CONTINUE
        !           169: *
        !           170: *     Quick return if possible
        !           171: *
        !           172:       NH = IHI - ILO + 1
        !           173:       IF( NH.LE.1 ) THEN
        !           174:          WORK( 1 ) = 1
        !           175:          RETURN
        !           176:       END IF
        !           177: *
        !           178: *     Determine the block size
        !           179: *
        !           180:       NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
        !           181:       NBMIN = 2
        !           182:       IWS = 1
        !           183:       IF( NB.GT.1 .AND. NB.LT.NH ) THEN
        !           184: *
        !           185: *        Determine when to cross over from blocked to unblocked code
        !           186: *        (last block is always handled by unblocked code)
        !           187: *
        !           188:          NX = MAX( NB, ILAENV( 3, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) )
        !           189:          IF( NX.LT.NH ) THEN
        !           190: *
        !           191: *           Determine if workspace is large enough for blocked code
        !           192: *
        !           193:             IWS = N*NB
        !           194:             IF( LWORK.LT.IWS ) THEN
        !           195: *
        !           196: *              Not enough workspace to use optimal NB:  determine the
        !           197: *              minimum value of NB, and reduce NB or force use of
        !           198: *              unblocked code
        !           199: *
        !           200:                NBMIN = MAX( 2, ILAENV( 2, 'ZGEHRD', ' ', N, ILO, IHI,
        !           201:      $                 -1 ) )
        !           202:                IF( LWORK.GE.N*NBMIN ) THEN
        !           203:                   NB = LWORK / N
        !           204:                ELSE
        !           205:                   NB = 1
        !           206:                END IF
        !           207:             END IF
        !           208:          END IF
        !           209:       END IF
        !           210:       LDWORK = N
        !           211: *
        !           212:       IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
        !           213: *
        !           214: *        Use unblocked code below
        !           215: *
        !           216:          I = ILO
        !           217: *
        !           218:       ELSE
        !           219: *
        !           220: *        Use blocked code
        !           221: *
        !           222:          DO 40 I = ILO, IHI - 1 - NX, NB
        !           223:             IB = MIN( NB, IHI-I )
        !           224: *
        !           225: *           Reduce columns i:i+ib-1 to Hessenberg form, returning the
        !           226: *           matrices V and T of the block reflector H = I - V*T*V'
        !           227: *           which performs the reduction, and also the matrix Y = A*V*T
        !           228: *
        !           229:             CALL ZLAHR2( IHI, I, IB, A( 1, I ), LDA, TAU( I ), T, LDT,
        !           230:      $                   WORK, LDWORK )
        !           231: *
        !           232: *           Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
        !           233: *           right, computing  A := A - Y * V'. V(i+ib,ib-1) must be set
        !           234: *           to 1
        !           235: *
        !           236:             EI = A( I+IB, I+IB-1 )
        !           237:             A( I+IB, I+IB-1 ) = ONE
        !           238:             CALL ZGEMM( 'No transpose', 'Conjugate transpose', 
        !           239:      $                  IHI, IHI-I-IB+1,
        !           240:      $                  IB, -ONE, WORK, LDWORK, A( I+IB, I ), LDA, ONE,
        !           241:      $                  A( 1, I+IB ), LDA )
        !           242:             A( I+IB, I+IB-1 ) = EI
        !           243: *
        !           244: *           Apply the block reflector H to A(1:i,i+1:i+ib-1) from the
        !           245: *           right
        !           246: *
        !           247:             CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
        !           248:      $                  'Unit', I, IB-1,
        !           249:      $                  ONE, A( I+1, I ), LDA, WORK, LDWORK )
        !           250:             DO 30 J = 0, IB-2
        !           251:                CALL ZAXPY( I, -ONE, WORK( LDWORK*J+1 ), 1,
        !           252:      $                     A( 1, I+J+1 ), 1 )
        !           253:    30       CONTINUE
        !           254: *
        !           255: *           Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
        !           256: *           left
        !           257: *
        !           258:             CALL ZLARFB( 'Left', 'Conjugate transpose', 'Forward',
        !           259:      $                   'Columnwise',
        !           260:      $                   IHI-I, N-I-IB+1, IB, A( I+1, I ), LDA, T, LDT,
        !           261:      $                   A( I+1, I+IB ), LDA, WORK, LDWORK )
        !           262:    40    CONTINUE
        !           263:       END IF
        !           264: *
        !           265: *     Use unblocked code to reduce the rest of the matrix
        !           266: *
        !           267:       CALL ZGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO )
        !           268:       WORK( 1 ) = IWS
        !           269: *
        !           270:       RETURN
        !           271: *
        !           272: *     End of ZGEHRD
        !           273: *
        !           274:       END

CVSweb interface <joel.bertrand@systella.fr>