Annotation of rpl/lapack/lapack/zgehd2.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZGEHD2
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGEHD2 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgehd2.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgehd2.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgehd2.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       INTEGER            IHI, ILO, INFO, LDA, N
        !            25: *       ..
        !            26: *       .. Array Arguments ..
        !            27: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
        !            28: *       ..
        !            29: *  
        !            30: *
        !            31: *> \par Purpose:
        !            32: *  =============
        !            33: *>
        !            34: *> \verbatim
        !            35: *>
        !            36: *> ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H
        !            37: *> by a unitary similarity transformation:  Q**H * A * Q = H .
        !            38: *> \endverbatim
        !            39: *
        !            40: *  Arguments:
        !            41: *  ==========
        !            42: *
        !            43: *> \param[in] N
        !            44: *> \verbatim
        !            45: *>          N is INTEGER
        !            46: *>          The order of the matrix A.  N >= 0.
        !            47: *> \endverbatim
        !            48: *>
        !            49: *> \param[in] ILO
        !            50: *> \verbatim
        !            51: *>          ILO is INTEGER
        !            52: *> \endverbatim
        !            53: *>
        !            54: *> \param[in] IHI
        !            55: *> \verbatim
        !            56: *>          IHI is INTEGER
        !            57: *>
        !            58: *>          It is assumed that A is already upper triangular in rows
        !            59: *>          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
        !            60: *>          set by a previous call to ZGEBAL; otherwise they should be
        !            61: *>          set to 1 and N respectively. See Further Details.
        !            62: *>          1 <= ILO <= IHI <= max(1,N).
        !            63: *> \endverbatim
        !            64: *>
        !            65: *> \param[in,out] A
        !            66: *> \verbatim
        !            67: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            68: *>          On entry, the n by n general matrix to be reduced.
        !            69: *>          On exit, the upper triangle and the first subdiagonal of A
        !            70: *>          are overwritten with the upper Hessenberg matrix H, and the
        !            71: *>          elements below the first subdiagonal, with the array TAU,
        !            72: *>          represent the unitary matrix Q as a product of elementary
        !            73: *>          reflectors. See Further Details.
        !            74: *> \endverbatim
        !            75: *>
        !            76: *> \param[in] LDA
        !            77: *> \verbatim
        !            78: *>          LDA is INTEGER
        !            79: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            80: *> \endverbatim
        !            81: *>
        !            82: *> \param[out] TAU
        !            83: *> \verbatim
        !            84: *>          TAU is COMPLEX*16 array, dimension (N-1)
        !            85: *>          The scalar factors of the elementary reflectors (see Further
        !            86: *>          Details).
        !            87: *> \endverbatim
        !            88: *>
        !            89: *> \param[out] WORK
        !            90: *> \verbatim
        !            91: *>          WORK is COMPLEX*16 array, dimension (N)
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[out] INFO
        !            95: *> \verbatim
        !            96: *>          INFO is INTEGER
        !            97: *>          = 0:  successful exit
        !            98: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !            99: *> \endverbatim
        !           100: *
        !           101: *  Authors:
        !           102: *  ========
        !           103: *
        !           104: *> \author Univ. of Tennessee 
        !           105: *> \author Univ. of California Berkeley 
        !           106: *> \author Univ. of Colorado Denver 
        !           107: *> \author NAG Ltd. 
        !           108: *
        !           109: *> \date November 2011
        !           110: *
        !           111: *> \ingroup complex16GEcomputational
        !           112: *
        !           113: *> \par Further Details:
        !           114: *  =====================
        !           115: *>
        !           116: *> \verbatim
        !           117: *>
        !           118: *>  The matrix Q is represented as a product of (ihi-ilo) elementary
        !           119: *>  reflectors
        !           120: *>
        !           121: *>     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
        !           122: *>
        !           123: *>  Each H(i) has the form
        !           124: *>
        !           125: *>     H(i) = I - tau * v * v**H
        !           126: *>
        !           127: *>  where tau is a complex scalar, and v is a complex vector with
        !           128: *>  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
        !           129: *>  exit in A(i+2:ihi,i), and tau in TAU(i).
        !           130: *>
        !           131: *>  The contents of A are illustrated by the following example, with
        !           132: *>  n = 7, ilo = 2 and ihi = 6:
        !           133: *>
        !           134: *>  on entry,                        on exit,
        !           135: *>
        !           136: *>  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
        !           137: *>  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
        !           138: *>  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
        !           139: *>  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
        !           140: *>  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
        !           141: *>  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
        !           142: *>  (                         a )    (                          a )
        !           143: *>
        !           144: *>  where a denotes an element of the original matrix A, h denotes a
        !           145: *>  modified element of the upper Hessenberg matrix H, and vi denotes an
        !           146: *>  element of the vector defining H(i).
        !           147: *> \endverbatim
        !           148: *>
        !           149: *  =====================================================================
1.1       bertrand  150:       SUBROUTINE ZGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
                    151: *
1.9     ! bertrand  152: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  153: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    154: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  155: *     November 2011
1.1       bertrand  156: *
                    157: *     .. Scalar Arguments ..
                    158:       INTEGER            IHI, ILO, INFO, LDA, N
                    159: *     ..
                    160: *     .. Array Arguments ..
                    161:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                    162: *     ..
                    163: *
                    164: *  =====================================================================
                    165: *
                    166: *     .. Parameters ..
                    167:       COMPLEX*16         ONE
                    168:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    169: *     ..
                    170: *     .. Local Scalars ..
                    171:       INTEGER            I
                    172:       COMPLEX*16         ALPHA
                    173: *     ..
                    174: *     .. External Subroutines ..
                    175:       EXTERNAL           XERBLA, ZLARF, ZLARFG
                    176: *     ..
                    177: *     .. Intrinsic Functions ..
                    178:       INTRINSIC          DCONJG, MAX, MIN
                    179: *     ..
                    180: *     .. Executable Statements ..
                    181: *
                    182: *     Test the input parameters
                    183: *
                    184:       INFO = 0
                    185:       IF( N.LT.0 ) THEN
                    186:          INFO = -1
                    187:       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
                    188:          INFO = -2
                    189:       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
                    190:          INFO = -3
                    191:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    192:          INFO = -5
                    193:       END IF
                    194:       IF( INFO.NE.0 ) THEN
                    195:          CALL XERBLA( 'ZGEHD2', -INFO )
                    196:          RETURN
                    197:       END IF
                    198: *
                    199:       DO 10 I = ILO, IHI - 1
                    200: *
                    201: *        Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
                    202: *
                    203:          ALPHA = A( I+1, I )
                    204:          CALL ZLARFG( IHI-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAU( I ) )
                    205:          A( I+1, I ) = ONE
                    206: *
                    207: *        Apply H(i) to A(1:ihi,i+1:ihi) from the right
                    208: *
                    209:          CALL ZLARF( 'Right', IHI, IHI-I, A( I+1, I ), 1, TAU( I ),
                    210:      $               A( 1, I+1 ), LDA, WORK )
                    211: *
1.8       bertrand  212: *        Apply H(i)**H to A(i+1:ihi,i+1:n) from the left
1.1       bertrand  213: *
                    214:          CALL ZLARF( 'Left', IHI-I, N-I, A( I+1, I ), 1,
                    215:      $               DCONJG( TAU( I ) ), A( I+1, I+1 ), LDA, WORK )
                    216: *
                    217:          A( I+1, I ) = ALPHA
                    218:    10 CONTINUE
                    219: *
                    220:       RETURN
                    221: *
                    222: *     End of ZGEHD2
                    223: *
                    224:       END

CVSweb interface <joel.bertrand@systella.fr>