Annotation of rpl/lapack/lapack/zgehd2.f, revision 1.19

1.12      bertrand    1: *> \brief \b ZGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZGEHD2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgehd2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgehd2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgehd2.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
1.16      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            IHI, ILO, INFO, LDA, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
1.16      bertrand   29: *
1.9       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H
                     37: *> by a unitary similarity transformation:  Q**H * A * Q = H .
                     38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] N
                     44: *> \verbatim
                     45: *>          N is INTEGER
                     46: *>          The order of the matrix A.  N >= 0.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] ILO
                     50: *> \verbatim
                     51: *>          ILO is INTEGER
                     52: *> \endverbatim
                     53: *>
                     54: *> \param[in] IHI
                     55: *> \verbatim
                     56: *>          IHI is INTEGER
                     57: *>
                     58: *>          It is assumed that A is already upper triangular in rows
                     59: *>          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
                     60: *>          set by a previous call to ZGEBAL; otherwise they should be
                     61: *>          set to 1 and N respectively. See Further Details.
                     62: *>          1 <= ILO <= IHI <= max(1,N).
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in,out] A
                     66: *> \verbatim
                     67: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     68: *>          On entry, the n by n general matrix to be reduced.
                     69: *>          On exit, the upper triangle and the first subdiagonal of A
                     70: *>          are overwritten with the upper Hessenberg matrix H, and the
                     71: *>          elements below the first subdiagonal, with the array TAU,
                     72: *>          represent the unitary matrix Q as a product of elementary
                     73: *>          reflectors. See Further Details.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] LDA
                     77: *> \verbatim
                     78: *>          LDA is INTEGER
                     79: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[out] TAU
                     83: *> \verbatim
                     84: *>          TAU is COMPLEX*16 array, dimension (N-1)
                     85: *>          The scalar factors of the elementary reflectors (see Further
                     86: *>          Details).
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[out] WORK
                     90: *> \verbatim
                     91: *>          WORK is COMPLEX*16 array, dimension (N)
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[out] INFO
                     95: *> \verbatim
                     96: *>          INFO is INTEGER
                     97: *>          = 0:  successful exit
                     98: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                     99: *> \endverbatim
                    100: *
                    101: *  Authors:
                    102: *  ========
                    103: *
1.16      bertrand  104: *> \author Univ. of Tennessee
                    105: *> \author Univ. of California Berkeley
                    106: *> \author Univ. of Colorado Denver
                    107: *> \author NAG Ltd.
1.9       bertrand  108: *
                    109: *> \ingroup complex16GEcomputational
                    110: *
                    111: *> \par Further Details:
                    112: *  =====================
                    113: *>
                    114: *> \verbatim
                    115: *>
                    116: *>  The matrix Q is represented as a product of (ihi-ilo) elementary
                    117: *>  reflectors
                    118: *>
                    119: *>     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
                    120: *>
                    121: *>  Each H(i) has the form
                    122: *>
                    123: *>     H(i) = I - tau * v * v**H
                    124: *>
                    125: *>  where tau is a complex scalar, and v is a complex vector with
                    126: *>  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
                    127: *>  exit in A(i+2:ihi,i), and tau in TAU(i).
                    128: *>
                    129: *>  The contents of A are illustrated by the following example, with
                    130: *>  n = 7, ilo = 2 and ihi = 6:
                    131: *>
                    132: *>  on entry,                        on exit,
                    133: *>
                    134: *>  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
                    135: *>  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
                    136: *>  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
                    137: *>  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
                    138: *>  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
                    139: *>  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
                    140: *>  (                         a )    (                          a )
                    141: *>
                    142: *>  where a denotes an element of the original matrix A, h denotes a
                    143: *>  modified element of the upper Hessenberg matrix H, and vi denotes an
                    144: *>  element of the vector defining H(i).
                    145: *> \endverbatim
                    146: *>
                    147: *  =====================================================================
1.1       bertrand  148:       SUBROUTINE ZGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
                    149: *
1.19    ! bertrand  150: *  -- LAPACK computational routine --
1.1       bertrand  151: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    152: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    153: *
                    154: *     .. Scalar Arguments ..
                    155:       INTEGER            IHI, ILO, INFO, LDA, N
                    156: *     ..
                    157: *     .. Array Arguments ..
                    158:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
                    159: *     ..
                    160: *
                    161: *  =====================================================================
                    162: *
                    163: *     .. Parameters ..
                    164:       COMPLEX*16         ONE
                    165:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
                    166: *     ..
                    167: *     .. Local Scalars ..
                    168:       INTEGER            I
                    169:       COMPLEX*16         ALPHA
                    170: *     ..
                    171: *     .. External Subroutines ..
                    172:       EXTERNAL           XERBLA, ZLARF, ZLARFG
                    173: *     ..
                    174: *     .. Intrinsic Functions ..
                    175:       INTRINSIC          DCONJG, MAX, MIN
                    176: *     ..
                    177: *     .. Executable Statements ..
                    178: *
                    179: *     Test the input parameters
                    180: *
                    181:       INFO = 0
                    182:       IF( N.LT.0 ) THEN
                    183:          INFO = -1
                    184:       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
                    185:          INFO = -2
                    186:       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
                    187:          INFO = -3
                    188:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    189:          INFO = -5
                    190:       END IF
                    191:       IF( INFO.NE.0 ) THEN
                    192:          CALL XERBLA( 'ZGEHD2', -INFO )
                    193:          RETURN
                    194:       END IF
                    195: *
                    196:       DO 10 I = ILO, IHI - 1
                    197: *
                    198: *        Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
                    199: *
                    200:          ALPHA = A( I+1, I )
                    201:          CALL ZLARFG( IHI-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAU( I ) )
                    202:          A( I+1, I ) = ONE
                    203: *
                    204: *        Apply H(i) to A(1:ihi,i+1:ihi) from the right
                    205: *
                    206:          CALL ZLARF( 'Right', IHI, IHI-I, A( I+1, I ), 1, TAU( I ),
                    207:      $               A( 1, I+1 ), LDA, WORK )
                    208: *
1.8       bertrand  209: *        Apply H(i)**H to A(i+1:ihi,i+1:n) from the left
1.1       bertrand  210: *
                    211:          CALL ZLARF( 'Left', IHI-I, N-I, A( I+1, I ), 1,
                    212:      $               DCONJG( TAU( I ) ), A( I+1, I+1 ), LDA, WORK )
                    213: *
                    214:          A( I+1, I ) = ALPHA
                    215:    10 CONTINUE
                    216: *
                    217:       RETURN
                    218: *
                    219: *     End of ZGEHD2
                    220: *
                    221:       END

CVSweb interface <joel.bertrand@systella.fr>