Annotation of rpl/lapack/lapack/zgehd2.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            IHI, ILO, INFO, LDA, N
        !            10: *     ..
        !            11: *     .. Array Arguments ..
        !            12:       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
        !            13: *     ..
        !            14: *
        !            15: *  Purpose
        !            16: *  =======
        !            17: *
        !            18: *  ZGEHD2 reduces a complex general matrix A to upper Hessenberg form H
        !            19: *  by a unitary similarity transformation:  Q' * A * Q = H .
        !            20: *
        !            21: *  Arguments
        !            22: *  =========
        !            23: *
        !            24: *  N       (input) INTEGER
        !            25: *          The order of the matrix A.  N >= 0.
        !            26: *
        !            27: *  ILO     (input) INTEGER
        !            28: *  IHI     (input) INTEGER
        !            29: *          It is assumed that A is already upper triangular in rows
        !            30: *          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
        !            31: *          set by a previous call to ZGEBAL; otherwise they should be
        !            32: *          set to 1 and N respectively. See Further Details.
        !            33: *          1 <= ILO <= IHI <= max(1,N).
        !            34: *
        !            35: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            36: *          On entry, the n by n general matrix to be reduced.
        !            37: *          On exit, the upper triangle and the first subdiagonal of A
        !            38: *          are overwritten with the upper Hessenberg matrix H, and the
        !            39: *          elements below the first subdiagonal, with the array TAU,
        !            40: *          represent the unitary matrix Q as a product of elementary
        !            41: *          reflectors. See Further Details.
        !            42: *
        !            43: *  LDA     (input) INTEGER
        !            44: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            45: *
        !            46: *  TAU     (output) COMPLEX*16 array, dimension (N-1)
        !            47: *          The scalar factors of the elementary reflectors (see Further
        !            48: *          Details).
        !            49: *
        !            50: *  WORK    (workspace) COMPLEX*16 array, dimension (N)
        !            51: *
        !            52: *  INFO    (output) INTEGER
        !            53: *          = 0:  successful exit
        !            54: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !            55: *
        !            56: *  Further Details
        !            57: *  ===============
        !            58: *
        !            59: *  The matrix Q is represented as a product of (ihi-ilo) elementary
        !            60: *  reflectors
        !            61: *
        !            62: *     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
        !            63: *
        !            64: *  Each H(i) has the form
        !            65: *
        !            66: *     H(i) = I - tau * v * v'
        !            67: *
        !            68: *  where tau is a complex scalar, and v is a complex vector with
        !            69: *  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
        !            70: *  exit in A(i+2:ihi,i), and tau in TAU(i).
        !            71: *
        !            72: *  The contents of A are illustrated by the following example, with
        !            73: *  n = 7, ilo = 2 and ihi = 6:
        !            74: *
        !            75: *  on entry,                        on exit,
        !            76: *
        !            77: *  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
        !            78: *  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
        !            79: *  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
        !            80: *  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
        !            81: *  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
        !            82: *  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
        !            83: *  (                         a )    (                          a )
        !            84: *
        !            85: *  where a denotes an element of the original matrix A, h denotes a
        !            86: *  modified element of the upper Hessenberg matrix H, and vi denotes an
        !            87: *  element of the vector defining H(i).
        !            88: *
        !            89: *  =====================================================================
        !            90: *
        !            91: *     .. Parameters ..
        !            92:       COMPLEX*16         ONE
        !            93:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
        !            94: *     ..
        !            95: *     .. Local Scalars ..
        !            96:       INTEGER            I
        !            97:       COMPLEX*16         ALPHA
        !            98: *     ..
        !            99: *     .. External Subroutines ..
        !           100:       EXTERNAL           XERBLA, ZLARF, ZLARFG
        !           101: *     ..
        !           102: *     .. Intrinsic Functions ..
        !           103:       INTRINSIC          DCONJG, MAX, MIN
        !           104: *     ..
        !           105: *     .. Executable Statements ..
        !           106: *
        !           107: *     Test the input parameters
        !           108: *
        !           109:       INFO = 0
        !           110:       IF( N.LT.0 ) THEN
        !           111:          INFO = -1
        !           112:       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
        !           113:          INFO = -2
        !           114:       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
        !           115:          INFO = -3
        !           116:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           117:          INFO = -5
        !           118:       END IF
        !           119:       IF( INFO.NE.0 ) THEN
        !           120:          CALL XERBLA( 'ZGEHD2', -INFO )
        !           121:          RETURN
        !           122:       END IF
        !           123: *
        !           124:       DO 10 I = ILO, IHI - 1
        !           125: *
        !           126: *        Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
        !           127: *
        !           128:          ALPHA = A( I+1, I )
        !           129:          CALL ZLARFG( IHI-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAU( I ) )
        !           130:          A( I+1, I ) = ONE
        !           131: *
        !           132: *        Apply H(i) to A(1:ihi,i+1:ihi) from the right
        !           133: *
        !           134:          CALL ZLARF( 'Right', IHI, IHI-I, A( I+1, I ), 1, TAU( I ),
        !           135:      $               A( 1, I+1 ), LDA, WORK )
        !           136: *
        !           137: *        Apply H(i)' to A(i+1:ihi,i+1:n) from the left
        !           138: *
        !           139:          CALL ZLARF( 'Left', IHI-I, N-I, A( I+1, I ), 1,
        !           140:      $               DCONJG( TAU( I ) ), A( I+1, I+1 ), LDA, WORK )
        !           141: *
        !           142:          A( I+1, I ) = ALPHA
        !           143:    10 CONTINUE
        !           144: *
        !           145:       RETURN
        !           146: *
        !           147: *     End of ZGEHD2
        !           148: *
        !           149:       END

CVSweb interface <joel.bertrand@systella.fr>