File:  [local] / rpl / lapack / lapack / zgegv.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:30 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
    2:      $                  VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          JOBVL, JOBVR
   11:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   RWORK( * )
   15:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
   16:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
   17:      $                   WORK( * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  This routine is deprecated and has been replaced by routine ZGGEV.
   24: *
   25: *  ZGEGV computes the eigenvalues and, optionally, the left and/or right
   26: *  eigenvectors of a complex matrix pair (A,B).
   27: *  Given two square matrices A and B,
   28: *  the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
   29: *  eigenvalues lambda and corresponding (non-zero) eigenvectors x such
   30: *  that
   31: *     A*x = lambda*B*x.
   32: *
   33: *  An alternate form is to find the eigenvalues mu and corresponding
   34: *  eigenvectors y such that
   35: *     mu*A*y = B*y.
   36: *
   37: *  These two forms are equivalent with mu = 1/lambda and x = y if
   38: *  neither lambda nor mu is zero.  In order to deal with the case that
   39: *  lambda or mu is zero or small, two values alpha and beta are returned
   40: *  for each eigenvalue, such that lambda = alpha/beta and
   41: *  mu = beta/alpha.
   42: *
   43: *  The vectors x and y in the above equations are right eigenvectors of
   44: *  the matrix pair (A,B).  Vectors u and v satisfying
   45: *     u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B
   46: *  are left eigenvectors of (A,B).
   47: *
   48: *  Note: this routine performs "full balancing" on A and B -- see
   49: *  "Further Details", below.
   50: *
   51: *  Arguments
   52: *  =========
   53: *
   54: *  JOBVL   (input) CHARACTER*1
   55: *          = 'N':  do not compute the left generalized eigenvectors;
   56: *          = 'V':  compute the left generalized eigenvectors (returned
   57: *                  in VL).
   58: *
   59: *  JOBVR   (input) CHARACTER*1
   60: *          = 'N':  do not compute the right generalized eigenvectors;
   61: *          = 'V':  compute the right generalized eigenvectors (returned
   62: *                  in VR).
   63: *
   64: *  N       (input) INTEGER
   65: *          The order of the matrices A, B, VL, and VR.  N >= 0.
   66: *
   67: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
   68: *          On entry, the matrix A.
   69: *          If JOBVL = 'V' or JOBVR = 'V', then on exit A
   70: *          contains the Schur form of A from the generalized Schur
   71: *          factorization of the pair (A,B) after balancing.  If no
   72: *          eigenvectors were computed, then only the diagonal elements
   73: *          of the Schur form will be correct.  See ZGGHRD and ZHGEQZ
   74: *          for details.
   75: *
   76: *  LDA     (input) INTEGER
   77: *          The leading dimension of A.  LDA >= max(1,N).
   78: *
   79: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
   80: *          On entry, the matrix B.
   81: *          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
   82: *          upper triangular matrix obtained from B in the generalized
   83: *          Schur factorization of the pair (A,B) after balancing.
   84: *          If no eigenvectors were computed, then only the diagonal
   85: *          elements of B will be correct.  See ZGGHRD and ZHGEQZ for
   86: *          details.
   87: *
   88: *  LDB     (input) INTEGER
   89: *          The leading dimension of B.  LDB >= max(1,N).
   90: *
   91: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
   92: *          The complex scalars alpha that define the eigenvalues of
   93: *          GNEP.
   94: *
   95: *  BETA    (output) COMPLEX*16 array, dimension (N)
   96: *          The complex scalars beta that define the eigenvalues of GNEP.
   97: *          
   98: *          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
   99: *          represent the j-th eigenvalue of the matrix pair (A,B), in
  100: *          one of the forms lambda = alpha/beta or mu = beta/alpha.
  101: *          Since either lambda or mu may overflow, they should not,
  102: *          in general, be computed.
  103: *
  104: *  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
  105: *          If JOBVL = 'V', the left eigenvectors u(j) are stored
  106: *          in the columns of VL, in the same order as their eigenvalues.
  107: *          Each eigenvector is scaled so that its largest component has
  108: *          abs(real part) + abs(imag. part) = 1, except for eigenvectors
  109: *          corresponding to an eigenvalue with alpha = beta = 0, which
  110: *          are set to zero.
  111: *          Not referenced if JOBVL = 'N'.
  112: *
  113: *  LDVL    (input) INTEGER
  114: *          The leading dimension of the matrix VL. LDVL >= 1, and
  115: *          if JOBVL = 'V', LDVL >= N.
  116: *
  117: *  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
  118: *          If JOBVR = 'V', the right eigenvectors x(j) are stored
  119: *          in the columns of VR, in the same order as their eigenvalues.
  120: *          Each eigenvector is scaled so that its largest component has
  121: *          abs(real part) + abs(imag. part) = 1, except for eigenvectors
  122: *          corresponding to an eigenvalue with alpha = beta = 0, which
  123: *          are set to zero.
  124: *          Not referenced if JOBVR = 'N'.
  125: *
  126: *  LDVR    (input) INTEGER
  127: *          The leading dimension of the matrix VR. LDVR >= 1, and
  128: *          if JOBVR = 'V', LDVR >= N.
  129: *
  130: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
  131: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  132: *
  133: *  LWORK   (input) INTEGER
  134: *          The dimension of the array WORK.  LWORK >= max(1,2*N).
  135: *          For good performance, LWORK must generally be larger.
  136: *          To compute the optimal value of LWORK, call ILAENV to get
  137: *          blocksizes (for ZGEQRF, ZUNMQR, and ZUNGQR.)  Then compute:
  138: *          NB  -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and ZUNGQR;
  139: *          The optimal LWORK is  MAX( 2*N, N*(NB+1) ).
  140: *
  141: *          If LWORK = -1, then a workspace query is assumed; the routine
  142: *          only calculates the optimal size of the WORK array, returns
  143: *          this value as the first entry of the WORK array, and no error
  144: *          message related to LWORK is issued by XERBLA.
  145: *
  146: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (8*N)
  147: *
  148: *  INFO    (output) INTEGER
  149: *          = 0:  successful exit
  150: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  151: *          =1,...,N:
  152: *                The QZ iteration failed.  No eigenvectors have been
  153: *                calculated, but ALPHA(j) and BETA(j) should be
  154: *                correct for j=INFO+1,...,N.
  155: *          > N:  errors that usually indicate LAPACK problems:
  156: *                =N+1: error return from ZGGBAL
  157: *                =N+2: error return from ZGEQRF
  158: *                =N+3: error return from ZUNMQR
  159: *                =N+4: error return from ZUNGQR
  160: *                =N+5: error return from ZGGHRD
  161: *                =N+6: error return from ZHGEQZ (other than failed
  162: *                                               iteration)
  163: *                =N+7: error return from ZTGEVC
  164: *                =N+8: error return from ZGGBAK (computing VL)
  165: *                =N+9: error return from ZGGBAK (computing VR)
  166: *                =N+10: error return from ZLASCL (various calls)
  167: *
  168: *  Further Details
  169: *  ===============
  170: *
  171: *  Balancing
  172: *  ---------
  173: *
  174: *  This driver calls ZGGBAL to both permute and scale rows and columns
  175: *  of A and B.  The permutations PL and PR are chosen so that PL*A*PR
  176: *  and PL*B*R will be upper triangular except for the diagonal blocks
  177: *  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
  178: *  possible.  The diagonal scaling matrices DL and DR are chosen so
  179: *  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
  180: *  one (except for the elements that start out zero.)
  181: *
  182: *  After the eigenvalues and eigenvectors of the balanced matrices
  183: *  have been computed, ZGGBAK transforms the eigenvectors back to what
  184: *  they would have been (in perfect arithmetic) if they had not been
  185: *  balanced.
  186: *
  187: *  Contents of A and B on Exit
  188: *  -------- -- - --- - -- ----
  189: *
  190: *  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
  191: *  both), then on exit the arrays A and B will contain the complex Schur
  192: *  form[*] of the "balanced" versions of A and B.  If no eigenvectors
  193: *  are computed, then only the diagonal blocks will be correct.
  194: *
  195: *  [*] In other words, upper triangular form.
  196: *
  197: *  =====================================================================
  198: *
  199: *     .. Parameters ..
  200:       DOUBLE PRECISION   ZERO, ONE
  201:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  202:       COMPLEX*16         CZERO, CONE
  203:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
  204:      $                   CONE = ( 1.0D0, 0.0D0 ) )
  205: *     ..
  206: *     .. Local Scalars ..
  207:       LOGICAL            ILIMIT, ILV, ILVL, ILVR, LQUERY
  208:       CHARACTER          CHTEMP
  209:       INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
  210:      $                   IN, IRIGHT, IROWS, IRWORK, ITAU, IWORK, JC, JR,
  211:      $                   LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3
  212:       DOUBLE PRECISION   ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
  213:      $                   BNRM1, BNRM2, EPS, SAFMAX, SAFMIN, SALFAI,
  214:      $                   SALFAR, SBETA, SCALE, TEMP
  215:       COMPLEX*16         X
  216: *     ..
  217: *     .. Local Arrays ..
  218:       LOGICAL            LDUMMA( 1 )
  219: *     ..
  220: *     .. External Subroutines ..
  221:       EXTERNAL           XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD, ZHGEQZ,
  222:      $                   ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR, ZUNMQR
  223: *     ..
  224: *     .. External Functions ..
  225:       LOGICAL            LSAME
  226:       INTEGER            ILAENV
  227:       DOUBLE PRECISION   DLAMCH, ZLANGE
  228:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
  229: *     ..
  230: *     .. Intrinsic Functions ..
  231:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, INT, MAX
  232: *     ..
  233: *     .. Statement Functions ..
  234:       DOUBLE PRECISION   ABS1
  235: *     ..
  236: *     .. Statement Function definitions ..
  237:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
  238: *     ..
  239: *     .. Executable Statements ..
  240: *
  241: *     Decode the input arguments
  242: *
  243:       IF( LSAME( JOBVL, 'N' ) ) THEN
  244:          IJOBVL = 1
  245:          ILVL = .FALSE.
  246:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  247:          IJOBVL = 2
  248:          ILVL = .TRUE.
  249:       ELSE
  250:          IJOBVL = -1
  251:          ILVL = .FALSE.
  252:       END IF
  253: *
  254:       IF( LSAME( JOBVR, 'N' ) ) THEN
  255:          IJOBVR = 1
  256:          ILVR = .FALSE.
  257:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  258:          IJOBVR = 2
  259:          ILVR = .TRUE.
  260:       ELSE
  261:          IJOBVR = -1
  262:          ILVR = .FALSE.
  263:       END IF
  264:       ILV = ILVL .OR. ILVR
  265: *
  266: *     Test the input arguments
  267: *
  268:       LWKMIN = MAX( 2*N, 1 )
  269:       LWKOPT = LWKMIN
  270:       WORK( 1 ) = LWKOPT
  271:       LQUERY = ( LWORK.EQ.-1 )
  272:       INFO = 0
  273:       IF( IJOBVL.LE.0 ) THEN
  274:          INFO = -1
  275:       ELSE IF( IJOBVR.LE.0 ) THEN
  276:          INFO = -2
  277:       ELSE IF( N.LT.0 ) THEN
  278:          INFO = -3
  279:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  280:          INFO = -5
  281:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  282:          INFO = -7
  283:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  284:          INFO = -11
  285:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  286:          INFO = -13
  287:       ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  288:          INFO = -15
  289:       END IF
  290: *
  291:       IF( INFO.EQ.0 ) THEN
  292:          NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, N, -1, -1 )
  293:          NB2 = ILAENV( 1, 'ZUNMQR', ' ', N, N, N, -1 )
  294:          NB3 = ILAENV( 1, 'ZUNGQR', ' ', N, N, N, -1 )
  295:          NB = MAX( NB1, NB2, NB3 )
  296:          LOPT = MAX( 2*N, N*( NB+1 ) )
  297:          WORK( 1 ) = LOPT
  298:       END IF
  299: *
  300:       IF( INFO.NE.0 ) THEN
  301:          CALL XERBLA( 'ZGEGV ', -INFO )
  302:          RETURN
  303:       ELSE IF( LQUERY ) THEN
  304:          RETURN
  305:       END IF
  306: *
  307: *     Quick return if possible
  308: *
  309:       IF( N.EQ.0 )
  310:      $   RETURN
  311: *
  312: *     Get machine constants
  313: *
  314:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
  315:       SAFMIN = DLAMCH( 'S' )
  316:       SAFMIN = SAFMIN + SAFMIN
  317:       SAFMAX = ONE / SAFMIN
  318: *
  319: *     Scale A
  320: *
  321:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
  322:       ANRM1 = ANRM
  323:       ANRM2 = ONE
  324:       IF( ANRM.LT.ONE ) THEN
  325:          IF( SAFMAX*ANRM.LT.ONE ) THEN
  326:             ANRM1 = SAFMIN
  327:             ANRM2 = SAFMAX*ANRM
  328:          END IF
  329:       END IF
  330: *
  331:       IF( ANRM.GT.ZERO ) THEN
  332:          CALL ZLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
  333:          IF( IINFO.NE.0 ) THEN
  334:             INFO = N + 10
  335:             RETURN
  336:          END IF
  337:       END IF
  338: *
  339: *     Scale B
  340: *
  341:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
  342:       BNRM1 = BNRM
  343:       BNRM2 = ONE
  344:       IF( BNRM.LT.ONE ) THEN
  345:          IF( SAFMAX*BNRM.LT.ONE ) THEN
  346:             BNRM1 = SAFMIN
  347:             BNRM2 = SAFMAX*BNRM
  348:          END IF
  349:       END IF
  350: *
  351:       IF( BNRM.GT.ZERO ) THEN
  352:          CALL ZLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
  353:          IF( IINFO.NE.0 ) THEN
  354:             INFO = N + 10
  355:             RETURN
  356:          END IF
  357:       END IF
  358: *
  359: *     Permute the matrix to make it more nearly triangular
  360: *     Also "balance" the matrix.
  361: *
  362:       ILEFT = 1
  363:       IRIGHT = N + 1
  364:       IRWORK = IRIGHT + N
  365:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
  366:      $             RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
  367:       IF( IINFO.NE.0 ) THEN
  368:          INFO = N + 1
  369:          GO TO 80
  370:       END IF
  371: *
  372: *     Reduce B to triangular form, and initialize VL and/or VR
  373: *
  374:       IROWS = IHI + 1 - ILO
  375:       IF( ILV ) THEN
  376:          ICOLS = N + 1 - ILO
  377:       ELSE
  378:          ICOLS = IROWS
  379:       END IF
  380:       ITAU = 1
  381:       IWORK = ITAU + IROWS
  382:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  383:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
  384:       IF( IINFO.GE.0 )
  385:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  386:       IF( IINFO.NE.0 ) THEN
  387:          INFO = N + 2
  388:          GO TO 80
  389:       END IF
  390: *
  391:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  392:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
  393:      $             LWORK+1-IWORK, IINFO )
  394:       IF( IINFO.GE.0 )
  395:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  396:       IF( IINFO.NE.0 ) THEN
  397:          INFO = N + 3
  398:          GO TO 80
  399:       END IF
  400: *
  401:       IF( ILVL ) THEN
  402:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
  403:          CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  404:      $                VL( ILO+1, ILO ), LDVL )
  405:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  406:      $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
  407:      $                IINFO )
  408:          IF( IINFO.GE.0 )
  409:      $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  410:          IF( IINFO.NE.0 ) THEN
  411:             INFO = N + 4
  412:             GO TO 80
  413:          END IF
  414:       END IF
  415: *
  416:       IF( ILVR )
  417:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
  418: *
  419: *     Reduce to generalized Hessenberg form
  420: *
  421:       IF( ILV ) THEN
  422: *
  423: *        Eigenvectors requested -- work on whole matrix.
  424: *
  425:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  426:      $                LDVL, VR, LDVR, IINFO )
  427:       ELSE
  428:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  429:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
  430:       END IF
  431:       IF( IINFO.NE.0 ) THEN
  432:          INFO = N + 5
  433:          GO TO 80
  434:       END IF
  435: *
  436: *     Perform QZ algorithm
  437: *
  438:       IWORK = ITAU
  439:       IF( ILV ) THEN
  440:          CHTEMP = 'S'
  441:       ELSE
  442:          CHTEMP = 'E'
  443:       END IF
  444:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  445:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWORK ),
  446:      $             LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
  447:       IF( IINFO.GE.0 )
  448:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  449:       IF( IINFO.NE.0 ) THEN
  450:          IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
  451:             INFO = IINFO
  452:          ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
  453:             INFO = IINFO - N
  454:          ELSE
  455:             INFO = N + 6
  456:          END IF
  457:          GO TO 80
  458:       END IF
  459: *
  460:       IF( ILV ) THEN
  461: *
  462: *        Compute Eigenvectors
  463: *
  464:          IF( ILVL ) THEN
  465:             IF( ILVR ) THEN
  466:                CHTEMP = 'B'
  467:             ELSE
  468:                CHTEMP = 'L'
  469:             END IF
  470:          ELSE
  471:             CHTEMP = 'R'
  472:          END IF
  473: *
  474:          CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
  475:      $                VR, LDVR, N, IN, WORK( IWORK ), RWORK( IRWORK ),
  476:      $                IINFO )
  477:          IF( IINFO.NE.0 ) THEN
  478:             INFO = N + 7
  479:             GO TO 80
  480:          END IF
  481: *
  482: *        Undo balancing on VL and VR, rescale
  483: *
  484:          IF( ILVL ) THEN
  485:             CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
  486:      $                   RWORK( IRIGHT ), N, VL, LDVL, IINFO )
  487:             IF( IINFO.NE.0 ) THEN
  488:                INFO = N + 8
  489:                GO TO 80
  490:             END IF
  491:             DO 30 JC = 1, N
  492:                TEMP = ZERO
  493:                DO 10 JR = 1, N
  494:                   TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
  495:    10          CONTINUE
  496:                IF( TEMP.LT.SAFMIN )
  497:      $            GO TO 30
  498:                TEMP = ONE / TEMP
  499:                DO 20 JR = 1, N
  500:                   VL( JR, JC ) = VL( JR, JC )*TEMP
  501:    20          CONTINUE
  502:    30       CONTINUE
  503:          END IF
  504:          IF( ILVR ) THEN
  505:             CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
  506:      $                   RWORK( IRIGHT ), N, VR, LDVR, IINFO )
  507:             IF( IINFO.NE.0 ) THEN
  508:                INFO = N + 9
  509:                GO TO 80
  510:             END IF
  511:             DO 60 JC = 1, N
  512:                TEMP = ZERO
  513:                DO 40 JR = 1, N
  514:                   TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
  515:    40          CONTINUE
  516:                IF( TEMP.LT.SAFMIN )
  517:      $            GO TO 60
  518:                TEMP = ONE / TEMP
  519:                DO 50 JR = 1, N
  520:                   VR( JR, JC ) = VR( JR, JC )*TEMP
  521:    50          CONTINUE
  522:    60       CONTINUE
  523:          END IF
  524: *
  525: *        End of eigenvector calculation
  526: *
  527:       END IF
  528: *
  529: *     Undo scaling in alpha, beta
  530: *
  531: *     Note: this does not give the alpha and beta for the unscaled
  532: *     problem.
  533: *
  534: *     Un-scaling is limited to avoid underflow in alpha and beta
  535: *     if they are significant.
  536: *
  537:       DO 70 JC = 1, N
  538:          ABSAR = ABS( DBLE( ALPHA( JC ) ) )
  539:          ABSAI = ABS( DIMAG( ALPHA( JC ) ) )
  540:          ABSB = ABS( DBLE( BETA( JC ) ) )
  541:          SALFAR = ANRM*DBLE( ALPHA( JC ) )
  542:          SALFAI = ANRM*DIMAG( ALPHA( JC ) )
  543:          SBETA = BNRM*DBLE( BETA( JC ) )
  544:          ILIMIT = .FALSE.
  545:          SCALE = ONE
  546: *
  547: *        Check for significant underflow in imaginary part of ALPHA
  548: *
  549:          IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
  550:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
  551:             ILIMIT = .TRUE.
  552:             SCALE = ( SAFMIN / ANRM1 ) / MAX( SAFMIN, ANRM2*ABSAI )
  553:          END IF
  554: *
  555: *        Check for significant underflow in real part of ALPHA
  556: *
  557:          IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
  558:      $       MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
  559:             ILIMIT = .TRUE.
  560:             SCALE = MAX( SCALE, ( SAFMIN / ANRM1 ) /
  561:      $              MAX( SAFMIN, ANRM2*ABSAR ) )
  562:          END IF
  563: *
  564: *        Check for significant underflow in BETA
  565: *
  566:          IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
  567:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
  568:             ILIMIT = .TRUE.
  569:             SCALE = MAX( SCALE, ( SAFMIN / BNRM1 ) /
  570:      $              MAX( SAFMIN, BNRM2*ABSB ) )
  571:          END IF
  572: *
  573: *        Check for possible overflow when limiting scaling
  574: *
  575:          IF( ILIMIT ) THEN
  576:             TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
  577:      $             ABS( SBETA ) )
  578:             IF( TEMP.GT.ONE )
  579:      $         SCALE = SCALE / TEMP
  580:             IF( SCALE.LT.ONE )
  581:      $         ILIMIT = .FALSE.
  582:          END IF
  583: *
  584: *        Recompute un-scaled ALPHA, BETA if necessary.
  585: *
  586:          IF( ILIMIT ) THEN
  587:             SALFAR = ( SCALE*DBLE( ALPHA( JC ) ) )*ANRM
  588:             SALFAI = ( SCALE*DIMAG( ALPHA( JC ) ) )*ANRM
  589:             SBETA = ( SCALE*BETA( JC ) )*BNRM
  590:          END IF
  591:          ALPHA( JC ) = DCMPLX( SALFAR, SALFAI )
  592:          BETA( JC ) = SBETA
  593:    70 CONTINUE
  594: *
  595:    80 CONTINUE
  596:       WORK( 1 ) = LWKOPT
  597: *
  598:       RETURN
  599: *
  600: *     End of ZGEGV
  601: *
  602:       END

CVSweb interface <joel.bertrand@systella.fr>