Annotation of rpl/lapack/lapack/zgegv.f, revision 1.8

1.8     ! bertrand    1: *> \brief <b> ZGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGEGV + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgegv.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgegv.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgegv.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
        !            22: *                         VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBVL, JOBVR
        !            26: *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   RWORK( * )
        !            30: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
        !            31: *      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
        !            32: *      $                   WORK( * )
        !            33: *       ..
        !            34: *  
        !            35: *
        !            36: *> \par Purpose:
        !            37: *  =============
        !            38: *>
        !            39: *> \verbatim
        !            40: *>
        !            41: *> This routine is deprecated and has been replaced by routine ZGGEV.
        !            42: *>
        !            43: *> ZGEGV computes the eigenvalues and, optionally, the left and/or right
        !            44: *> eigenvectors of a complex matrix pair (A,B).
        !            45: *> Given two square matrices A and B,
        !            46: *> the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
        !            47: *> eigenvalues lambda and corresponding (non-zero) eigenvectors x such
        !            48: *> that
        !            49: *>    A*x = lambda*B*x.
        !            50: *>
        !            51: *> An alternate form is to find the eigenvalues mu and corresponding
        !            52: *> eigenvectors y such that
        !            53: *>    mu*A*y = B*y.
        !            54: *>
        !            55: *> These two forms are equivalent with mu = 1/lambda and x = y if
        !            56: *> neither lambda nor mu is zero.  In order to deal with the case that
        !            57: *> lambda or mu is zero or small, two values alpha and beta are returned
        !            58: *> for each eigenvalue, such that lambda = alpha/beta and
        !            59: *> mu = beta/alpha.
        !            60: *>
        !            61: *> The vectors x and y in the above equations are right eigenvectors of
        !            62: *> the matrix pair (A,B).  Vectors u and v satisfying
        !            63: *>    u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B
        !            64: *> are left eigenvectors of (A,B).
        !            65: *>
        !            66: *> Note: this routine performs "full balancing" on A and B
        !            67: *> \endverbatim
        !            68: *
        !            69: *  Arguments:
        !            70: *  ==========
        !            71: *
        !            72: *> \param[in] JOBVL
        !            73: *> \verbatim
        !            74: *>          JOBVL is CHARACTER*1
        !            75: *>          = 'N':  do not compute the left generalized eigenvectors;
        !            76: *>          = 'V':  compute the left generalized eigenvectors (returned
        !            77: *>                  in VL).
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[in] JOBVR
        !            81: *> \verbatim
        !            82: *>          JOBVR is CHARACTER*1
        !            83: *>          = 'N':  do not compute the right generalized eigenvectors;
        !            84: *>          = 'V':  compute the right generalized eigenvectors (returned
        !            85: *>                  in VR).
        !            86: *> \endverbatim
        !            87: *>
        !            88: *> \param[in] N
        !            89: *> \verbatim
        !            90: *>          N is INTEGER
        !            91: *>          The order of the matrices A, B, VL, and VR.  N >= 0.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[in,out] A
        !            95: *> \verbatim
        !            96: *>          A is COMPLEX*16 array, dimension (LDA, N)
        !            97: *>          On entry, the matrix A.
        !            98: *>          If JOBVL = 'V' or JOBVR = 'V', then on exit A
        !            99: *>          contains the Schur form of A from the generalized Schur
        !           100: *>          factorization of the pair (A,B) after balancing.  If no
        !           101: *>          eigenvectors were computed, then only the diagonal elements
        !           102: *>          of the Schur form will be correct.  See ZGGHRD and ZHGEQZ
        !           103: *>          for details.
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[in] LDA
        !           107: *> \verbatim
        !           108: *>          LDA is INTEGER
        !           109: *>          The leading dimension of A.  LDA >= max(1,N).
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[in,out] B
        !           113: *> \verbatim
        !           114: *>          B is COMPLEX*16 array, dimension (LDB, N)
        !           115: *>          On entry, the matrix B.
        !           116: *>          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
        !           117: *>          upper triangular matrix obtained from B in the generalized
        !           118: *>          Schur factorization of the pair (A,B) after balancing.
        !           119: *>          If no eigenvectors were computed, then only the diagonal
        !           120: *>          elements of B will be correct.  See ZGGHRD and ZHGEQZ for
        !           121: *>          details.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[in] LDB
        !           125: *> \verbatim
        !           126: *>          LDB is INTEGER
        !           127: *>          The leading dimension of B.  LDB >= max(1,N).
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[out] ALPHA
        !           131: *> \verbatim
        !           132: *>          ALPHA is COMPLEX*16 array, dimension (N)
        !           133: *>          The complex scalars alpha that define the eigenvalues of
        !           134: *>          GNEP.
        !           135: *> \endverbatim
        !           136: *>
        !           137: *> \param[out] BETA
        !           138: *> \verbatim
        !           139: *>          BETA is COMPLEX*16 array, dimension (N)
        !           140: *>          The complex scalars beta that define the eigenvalues of GNEP.
        !           141: *>          
        !           142: *>          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
        !           143: *>          represent the j-th eigenvalue of the matrix pair (A,B), in
        !           144: *>          one of the forms lambda = alpha/beta or mu = beta/alpha.
        !           145: *>          Since either lambda or mu may overflow, they should not,
        !           146: *>          in general, be computed.
        !           147: *> \endverbatim
        !           148: *>
        !           149: *> \param[out] VL
        !           150: *> \verbatim
        !           151: *>          VL is COMPLEX*16 array, dimension (LDVL,N)
        !           152: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored
        !           153: *>          in the columns of VL, in the same order as their eigenvalues.
        !           154: *>          Each eigenvector is scaled so that its largest component has
        !           155: *>          abs(real part) + abs(imag. part) = 1, except for eigenvectors
        !           156: *>          corresponding to an eigenvalue with alpha = beta = 0, which
        !           157: *>          are set to zero.
        !           158: *>          Not referenced if JOBVL = 'N'.
        !           159: *> \endverbatim
        !           160: *>
        !           161: *> \param[in] LDVL
        !           162: *> \verbatim
        !           163: *>          LDVL is INTEGER
        !           164: *>          The leading dimension of the matrix VL. LDVL >= 1, and
        !           165: *>          if JOBVL = 'V', LDVL >= N.
        !           166: *> \endverbatim
        !           167: *>
        !           168: *> \param[out] VR
        !           169: *> \verbatim
        !           170: *>          VR is COMPLEX*16 array, dimension (LDVR,N)
        !           171: *>          If JOBVR = 'V', the right eigenvectors x(j) are stored
        !           172: *>          in the columns of VR, in the same order as their eigenvalues.
        !           173: *>          Each eigenvector is scaled so that its largest component has
        !           174: *>          abs(real part) + abs(imag. part) = 1, except for eigenvectors
        !           175: *>          corresponding to an eigenvalue with alpha = beta = 0, which
        !           176: *>          are set to zero.
        !           177: *>          Not referenced if JOBVR = 'N'.
        !           178: *> \endverbatim
        !           179: *>
        !           180: *> \param[in] LDVR
        !           181: *> \verbatim
        !           182: *>          LDVR is INTEGER
        !           183: *>          The leading dimension of the matrix VR. LDVR >= 1, and
        !           184: *>          if JOBVR = 'V', LDVR >= N.
        !           185: *> \endverbatim
        !           186: *>
        !           187: *> \param[out] WORK
        !           188: *> \verbatim
        !           189: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           190: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           191: *> \endverbatim
        !           192: *>
        !           193: *> \param[in] LWORK
        !           194: *> \verbatim
        !           195: *>          LWORK is INTEGER
        !           196: *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
        !           197: *>          For good performance, LWORK must generally be larger.
        !           198: *>          To compute the optimal value of LWORK, call ILAENV to get
        !           199: *>          blocksizes (for ZGEQRF, ZUNMQR, and ZUNGQR.)  Then compute:
        !           200: *>          NB  -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and ZUNGQR;
        !           201: *>          The optimal LWORK is  MAX( 2*N, N*(NB+1) ).
        !           202: *>
        !           203: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           204: *>          only calculates the optimal size of the WORK array, returns
        !           205: *>          this value as the first entry of the WORK array, and no error
        !           206: *>          message related to LWORK is issued by XERBLA.
        !           207: *> \endverbatim
        !           208: *>
        !           209: *> \param[out] RWORK
        !           210: *> \verbatim
        !           211: *>          RWORK is DOUBLE PRECISION array, dimension (8*N)
        !           212: *> \endverbatim
        !           213: *>
        !           214: *> \param[out] INFO
        !           215: *> \verbatim
        !           216: *>          INFO is INTEGER
        !           217: *>          = 0:  successful exit
        !           218: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           219: *>          =1,...,N:
        !           220: *>                The QZ iteration failed.  No eigenvectors have been
        !           221: *>                calculated, but ALPHA(j) and BETA(j) should be
        !           222: *>                correct for j=INFO+1,...,N.
        !           223: *>          > N:  errors that usually indicate LAPACK problems:
        !           224: *>                =N+1: error return from ZGGBAL
        !           225: *>                =N+2: error return from ZGEQRF
        !           226: *>                =N+3: error return from ZUNMQR
        !           227: *>                =N+4: error return from ZUNGQR
        !           228: *>                =N+5: error return from ZGGHRD
        !           229: *>                =N+6: error return from ZHGEQZ (other than failed
        !           230: *>                                               iteration)
        !           231: *>                =N+7: error return from ZTGEVC
        !           232: *>                =N+8: error return from ZGGBAK (computing VL)
        !           233: *>                =N+9: error return from ZGGBAK (computing VR)
        !           234: *>                =N+10: error return from ZLASCL (various calls)
        !           235: *> \endverbatim
        !           236: *
        !           237: *  Authors:
        !           238: *  ========
        !           239: *
        !           240: *> \author Univ. of Tennessee 
        !           241: *> \author Univ. of California Berkeley 
        !           242: *> \author Univ. of Colorado Denver 
        !           243: *> \author NAG Ltd. 
        !           244: *
        !           245: *> \date November 2011
        !           246: *
        !           247: *> \ingroup complex16GEeigen
        !           248: *
        !           249: *> \par Further Details:
        !           250: *  =====================
        !           251: *>
        !           252: *> \verbatim
        !           253: *>
        !           254: *>  Balancing
        !           255: *>  ---------
        !           256: *>
        !           257: *>  This driver calls ZGGBAL to both permute and scale rows and columns
        !           258: *>  of A and B.  The permutations PL and PR are chosen so that PL*A*PR
        !           259: *>  and PL*B*R will be upper triangular except for the diagonal blocks
        !           260: *>  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
        !           261: *>  possible.  The diagonal scaling matrices DL and DR are chosen so
        !           262: *>  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
        !           263: *>  one (except for the elements that start out zero.)
        !           264: *>
        !           265: *>  After the eigenvalues and eigenvectors of the balanced matrices
        !           266: *>  have been computed, ZGGBAK transforms the eigenvectors back to what
        !           267: *>  they would have been (in perfect arithmetic) if they had not been
        !           268: *>  balanced.
        !           269: *>
        !           270: *>  Contents of A and B on Exit
        !           271: *>  -------- -- - --- - -- ----
        !           272: *>
        !           273: *>  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
        !           274: *>  both), then on exit the arrays A and B will contain the complex Schur
        !           275: *>  form[*] of the "balanced" versions of A and B.  If no eigenvectors
        !           276: *>  are computed, then only the diagonal blocks will be correct.
        !           277: *>
        !           278: *>  [*] In other words, upper triangular form.
        !           279: *> \endverbatim
        !           280: *>
        !           281: *  =====================================================================
1.1       bertrand  282:       SUBROUTINE ZGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
                    283:      $                  VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
                    284: *
1.8     ! bertrand  285: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  286: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    287: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  288: *     November 2011
1.1       bertrand  289: *
                    290: *     .. Scalar Arguments ..
                    291:       CHARACTER          JOBVL, JOBVR
                    292:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                    293: *     ..
                    294: *     .. Array Arguments ..
                    295:       DOUBLE PRECISION   RWORK( * )
                    296:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                    297:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
                    298:      $                   WORK( * )
                    299: *     ..
                    300: *
                    301: *  =====================================================================
                    302: *
                    303: *     .. Parameters ..
                    304:       DOUBLE PRECISION   ZERO, ONE
                    305:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    306:       COMPLEX*16         CZERO, CONE
                    307:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
                    308:      $                   CONE = ( 1.0D0, 0.0D0 ) )
                    309: *     ..
                    310: *     .. Local Scalars ..
                    311:       LOGICAL            ILIMIT, ILV, ILVL, ILVR, LQUERY
                    312:       CHARACTER          CHTEMP
                    313:       INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
                    314:      $                   IN, IRIGHT, IROWS, IRWORK, ITAU, IWORK, JC, JR,
                    315:      $                   LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3
                    316:       DOUBLE PRECISION   ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
                    317:      $                   BNRM1, BNRM2, EPS, SAFMAX, SAFMIN, SALFAI,
                    318:      $                   SALFAR, SBETA, SCALE, TEMP
                    319:       COMPLEX*16         X
                    320: *     ..
                    321: *     .. Local Arrays ..
                    322:       LOGICAL            LDUMMA( 1 )
                    323: *     ..
                    324: *     .. External Subroutines ..
                    325:       EXTERNAL           XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD, ZHGEQZ,
                    326:      $                   ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR, ZUNMQR
                    327: *     ..
                    328: *     .. External Functions ..
                    329:       LOGICAL            LSAME
                    330:       INTEGER            ILAENV
                    331:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    332:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    333: *     ..
                    334: *     .. Intrinsic Functions ..
                    335:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, INT, MAX
                    336: *     ..
                    337: *     .. Statement Functions ..
                    338:       DOUBLE PRECISION   ABS1
                    339: *     ..
                    340: *     .. Statement Function definitions ..
                    341:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
                    342: *     ..
                    343: *     .. Executable Statements ..
                    344: *
                    345: *     Decode the input arguments
                    346: *
                    347:       IF( LSAME( JOBVL, 'N' ) ) THEN
                    348:          IJOBVL = 1
                    349:          ILVL = .FALSE.
                    350:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
                    351:          IJOBVL = 2
                    352:          ILVL = .TRUE.
                    353:       ELSE
                    354:          IJOBVL = -1
                    355:          ILVL = .FALSE.
                    356:       END IF
                    357: *
                    358:       IF( LSAME( JOBVR, 'N' ) ) THEN
                    359:          IJOBVR = 1
                    360:          ILVR = .FALSE.
                    361:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
                    362:          IJOBVR = 2
                    363:          ILVR = .TRUE.
                    364:       ELSE
                    365:          IJOBVR = -1
                    366:          ILVR = .FALSE.
                    367:       END IF
                    368:       ILV = ILVL .OR. ILVR
                    369: *
                    370: *     Test the input arguments
                    371: *
                    372:       LWKMIN = MAX( 2*N, 1 )
                    373:       LWKOPT = LWKMIN
                    374:       WORK( 1 ) = LWKOPT
                    375:       LQUERY = ( LWORK.EQ.-1 )
                    376:       INFO = 0
                    377:       IF( IJOBVL.LE.0 ) THEN
                    378:          INFO = -1
                    379:       ELSE IF( IJOBVR.LE.0 ) THEN
                    380:          INFO = -2
                    381:       ELSE IF( N.LT.0 ) THEN
                    382:          INFO = -3
                    383:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    384:          INFO = -5
                    385:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    386:          INFO = -7
                    387:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
                    388:          INFO = -11
                    389:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
                    390:          INFO = -13
                    391:       ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    392:          INFO = -15
                    393:       END IF
                    394: *
                    395:       IF( INFO.EQ.0 ) THEN
                    396:          NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, N, -1, -1 )
                    397:          NB2 = ILAENV( 1, 'ZUNMQR', ' ', N, N, N, -1 )
                    398:          NB3 = ILAENV( 1, 'ZUNGQR', ' ', N, N, N, -1 )
                    399:          NB = MAX( NB1, NB2, NB3 )
                    400:          LOPT = MAX( 2*N, N*( NB+1 ) )
                    401:          WORK( 1 ) = LOPT
                    402:       END IF
                    403: *
                    404:       IF( INFO.NE.0 ) THEN
                    405:          CALL XERBLA( 'ZGEGV ', -INFO )
                    406:          RETURN
                    407:       ELSE IF( LQUERY ) THEN
                    408:          RETURN
                    409:       END IF
                    410: *
                    411: *     Quick return if possible
                    412: *
                    413:       IF( N.EQ.0 )
                    414:      $   RETURN
                    415: *
                    416: *     Get machine constants
                    417: *
                    418:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
                    419:       SAFMIN = DLAMCH( 'S' )
                    420:       SAFMIN = SAFMIN + SAFMIN
                    421:       SAFMAX = ONE / SAFMIN
                    422: *
                    423: *     Scale A
                    424: *
                    425:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
                    426:       ANRM1 = ANRM
                    427:       ANRM2 = ONE
                    428:       IF( ANRM.LT.ONE ) THEN
                    429:          IF( SAFMAX*ANRM.LT.ONE ) THEN
                    430:             ANRM1 = SAFMIN
                    431:             ANRM2 = SAFMAX*ANRM
                    432:          END IF
                    433:       END IF
                    434: *
                    435:       IF( ANRM.GT.ZERO ) THEN
                    436:          CALL ZLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
                    437:          IF( IINFO.NE.0 ) THEN
                    438:             INFO = N + 10
                    439:             RETURN
                    440:          END IF
                    441:       END IF
                    442: *
                    443: *     Scale B
                    444: *
                    445:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
                    446:       BNRM1 = BNRM
                    447:       BNRM2 = ONE
                    448:       IF( BNRM.LT.ONE ) THEN
                    449:          IF( SAFMAX*BNRM.LT.ONE ) THEN
                    450:             BNRM1 = SAFMIN
                    451:             BNRM2 = SAFMAX*BNRM
                    452:          END IF
                    453:       END IF
                    454: *
                    455:       IF( BNRM.GT.ZERO ) THEN
                    456:          CALL ZLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
                    457:          IF( IINFO.NE.0 ) THEN
                    458:             INFO = N + 10
                    459:             RETURN
                    460:          END IF
                    461:       END IF
                    462: *
                    463: *     Permute the matrix to make it more nearly triangular
                    464: *     Also "balance" the matrix.
                    465: *
                    466:       ILEFT = 1
                    467:       IRIGHT = N + 1
                    468:       IRWORK = IRIGHT + N
                    469:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
                    470:      $             RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
                    471:       IF( IINFO.NE.0 ) THEN
                    472:          INFO = N + 1
                    473:          GO TO 80
                    474:       END IF
                    475: *
                    476: *     Reduce B to triangular form, and initialize VL and/or VR
                    477: *
                    478:       IROWS = IHI + 1 - ILO
                    479:       IF( ILV ) THEN
                    480:          ICOLS = N + 1 - ILO
                    481:       ELSE
                    482:          ICOLS = IROWS
                    483:       END IF
                    484:       ITAU = 1
                    485:       IWORK = ITAU + IROWS
                    486:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    487:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
                    488:       IF( IINFO.GE.0 )
                    489:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    490:       IF( IINFO.NE.0 ) THEN
                    491:          INFO = N + 2
                    492:          GO TO 80
                    493:       END IF
                    494: *
                    495:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    496:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
                    497:      $             LWORK+1-IWORK, IINFO )
                    498:       IF( IINFO.GE.0 )
                    499:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    500:       IF( IINFO.NE.0 ) THEN
                    501:          INFO = N + 3
                    502:          GO TO 80
                    503:       END IF
                    504: *
                    505:       IF( ILVL ) THEN
                    506:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
                    507:          CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    508:      $                VL( ILO+1, ILO ), LDVL )
                    509:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
                    510:      $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
                    511:      $                IINFO )
                    512:          IF( IINFO.GE.0 )
                    513:      $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    514:          IF( IINFO.NE.0 ) THEN
                    515:             INFO = N + 4
                    516:             GO TO 80
                    517:          END IF
                    518:       END IF
                    519: *
                    520:       IF( ILVR )
                    521:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
                    522: *
                    523: *     Reduce to generalized Hessenberg form
                    524: *
                    525:       IF( ILV ) THEN
                    526: *
                    527: *        Eigenvectors requested -- work on whole matrix.
                    528: *
                    529:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
                    530:      $                LDVL, VR, LDVR, IINFO )
                    531:       ELSE
                    532:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
                    533:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
                    534:       END IF
                    535:       IF( IINFO.NE.0 ) THEN
                    536:          INFO = N + 5
                    537:          GO TO 80
                    538:       END IF
                    539: *
                    540: *     Perform QZ algorithm
                    541: *
                    542:       IWORK = ITAU
                    543:       IF( ILV ) THEN
                    544:          CHTEMP = 'S'
                    545:       ELSE
                    546:          CHTEMP = 'E'
                    547:       END IF
                    548:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
                    549:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWORK ),
                    550:      $             LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
                    551:       IF( IINFO.GE.0 )
                    552:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    553:       IF( IINFO.NE.0 ) THEN
                    554:          IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
                    555:             INFO = IINFO
                    556:          ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
                    557:             INFO = IINFO - N
                    558:          ELSE
                    559:             INFO = N + 6
                    560:          END IF
                    561:          GO TO 80
                    562:       END IF
                    563: *
                    564:       IF( ILV ) THEN
                    565: *
                    566: *        Compute Eigenvectors
                    567: *
                    568:          IF( ILVL ) THEN
                    569:             IF( ILVR ) THEN
                    570:                CHTEMP = 'B'
                    571:             ELSE
                    572:                CHTEMP = 'L'
                    573:             END IF
                    574:          ELSE
                    575:             CHTEMP = 'R'
                    576:          END IF
                    577: *
                    578:          CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
                    579:      $                VR, LDVR, N, IN, WORK( IWORK ), RWORK( IRWORK ),
                    580:      $                IINFO )
                    581:          IF( IINFO.NE.0 ) THEN
                    582:             INFO = N + 7
                    583:             GO TO 80
                    584:          END IF
                    585: *
                    586: *        Undo balancing on VL and VR, rescale
                    587: *
                    588:          IF( ILVL ) THEN
                    589:             CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
                    590:      $                   RWORK( IRIGHT ), N, VL, LDVL, IINFO )
                    591:             IF( IINFO.NE.0 ) THEN
                    592:                INFO = N + 8
                    593:                GO TO 80
                    594:             END IF
                    595:             DO 30 JC = 1, N
                    596:                TEMP = ZERO
                    597:                DO 10 JR = 1, N
                    598:                   TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
                    599:    10          CONTINUE
                    600:                IF( TEMP.LT.SAFMIN )
                    601:      $            GO TO 30
                    602:                TEMP = ONE / TEMP
                    603:                DO 20 JR = 1, N
                    604:                   VL( JR, JC ) = VL( JR, JC )*TEMP
                    605:    20          CONTINUE
                    606:    30       CONTINUE
                    607:          END IF
                    608:          IF( ILVR ) THEN
                    609:             CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
                    610:      $                   RWORK( IRIGHT ), N, VR, LDVR, IINFO )
                    611:             IF( IINFO.NE.0 ) THEN
                    612:                INFO = N + 9
                    613:                GO TO 80
                    614:             END IF
                    615:             DO 60 JC = 1, N
                    616:                TEMP = ZERO
                    617:                DO 40 JR = 1, N
                    618:                   TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
                    619:    40          CONTINUE
                    620:                IF( TEMP.LT.SAFMIN )
                    621:      $            GO TO 60
                    622:                TEMP = ONE / TEMP
                    623:                DO 50 JR = 1, N
                    624:                   VR( JR, JC ) = VR( JR, JC )*TEMP
                    625:    50          CONTINUE
                    626:    60       CONTINUE
                    627:          END IF
                    628: *
                    629: *        End of eigenvector calculation
                    630: *
                    631:       END IF
                    632: *
                    633: *     Undo scaling in alpha, beta
                    634: *
                    635: *     Note: this does not give the alpha and beta for the unscaled
                    636: *     problem.
                    637: *
                    638: *     Un-scaling is limited to avoid underflow in alpha and beta
                    639: *     if they are significant.
                    640: *
                    641:       DO 70 JC = 1, N
                    642:          ABSAR = ABS( DBLE( ALPHA( JC ) ) )
                    643:          ABSAI = ABS( DIMAG( ALPHA( JC ) ) )
                    644:          ABSB = ABS( DBLE( BETA( JC ) ) )
                    645:          SALFAR = ANRM*DBLE( ALPHA( JC ) )
                    646:          SALFAI = ANRM*DIMAG( ALPHA( JC ) )
                    647:          SBETA = BNRM*DBLE( BETA( JC ) )
                    648:          ILIMIT = .FALSE.
                    649:          SCALE = ONE
                    650: *
                    651: *        Check for significant underflow in imaginary part of ALPHA
                    652: *
                    653:          IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
                    654:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
                    655:             ILIMIT = .TRUE.
                    656:             SCALE = ( SAFMIN / ANRM1 ) / MAX( SAFMIN, ANRM2*ABSAI )
                    657:          END IF
                    658: *
                    659: *        Check for significant underflow in real part of ALPHA
                    660: *
                    661:          IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
                    662:      $       MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
                    663:             ILIMIT = .TRUE.
                    664:             SCALE = MAX( SCALE, ( SAFMIN / ANRM1 ) /
                    665:      $              MAX( SAFMIN, ANRM2*ABSAR ) )
                    666:          END IF
                    667: *
                    668: *        Check for significant underflow in BETA
                    669: *
                    670:          IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
                    671:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
                    672:             ILIMIT = .TRUE.
                    673:             SCALE = MAX( SCALE, ( SAFMIN / BNRM1 ) /
                    674:      $              MAX( SAFMIN, BNRM2*ABSB ) )
                    675:          END IF
                    676: *
                    677: *        Check for possible overflow when limiting scaling
                    678: *
                    679:          IF( ILIMIT ) THEN
                    680:             TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
                    681:      $             ABS( SBETA ) )
                    682:             IF( TEMP.GT.ONE )
                    683:      $         SCALE = SCALE / TEMP
                    684:             IF( SCALE.LT.ONE )
                    685:      $         ILIMIT = .FALSE.
                    686:          END IF
                    687: *
                    688: *        Recompute un-scaled ALPHA, BETA if necessary.
                    689: *
                    690:          IF( ILIMIT ) THEN
                    691:             SALFAR = ( SCALE*DBLE( ALPHA( JC ) ) )*ANRM
                    692:             SALFAI = ( SCALE*DIMAG( ALPHA( JC ) ) )*ANRM
                    693:             SBETA = ( SCALE*BETA( JC ) )*BNRM
                    694:          END IF
                    695:          ALPHA( JC ) = DCMPLX( SALFAR, SALFAI )
                    696:          BETA( JC ) = SBETA
                    697:    70 CONTINUE
                    698: *
                    699:    80 CONTINUE
                    700:       WORK( 1 ) = LWKOPT
                    701: *
                    702:       RETURN
                    703: *
                    704: *     End of ZGEGV
                    705: *
                    706:       END

CVSweb interface <joel.bertrand@systella.fr>