Annotation of rpl/lapack/lapack/zgegv.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE ZGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA,
                      2:      $                  VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBVL, JOBVR
                     11:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       DOUBLE PRECISION   RWORK( * )
                     15:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     16:      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ),
                     17:      $                   WORK( * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  This routine is deprecated and has been replaced by routine ZGGEV.
                     24: *
                     25: *  ZGEGV computes the eigenvalues and, optionally, the left and/or right
                     26: *  eigenvectors of a complex matrix pair (A,B).
                     27: *  Given two square matrices A and B,
                     28: *  the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
                     29: *  eigenvalues lambda and corresponding (non-zero) eigenvectors x such
                     30: *  that
                     31: *     A*x = lambda*B*x.
                     32: *
                     33: *  An alternate form is to find the eigenvalues mu and corresponding
                     34: *  eigenvectors y such that
                     35: *     mu*A*y = B*y.
                     36: *
                     37: *  These two forms are equivalent with mu = 1/lambda and x = y if
                     38: *  neither lambda nor mu is zero.  In order to deal with the case that
                     39: *  lambda or mu is zero or small, two values alpha and beta are returned
                     40: *  for each eigenvalue, such that lambda = alpha/beta and
                     41: *  mu = beta/alpha.
                     42: *
                     43: *  The vectors x and y in the above equations are right eigenvectors of
                     44: *  the matrix pair (A,B).  Vectors u and v satisfying
                     45: *     u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B
                     46: *  are left eigenvectors of (A,B).
                     47: *
                     48: *  Note: this routine performs "full balancing" on A and B -- see
                     49: *  "Further Details", below.
                     50: *
                     51: *  Arguments
                     52: *  =========
                     53: *
                     54: *  JOBVL   (input) CHARACTER*1
                     55: *          = 'N':  do not compute the left generalized eigenvectors;
                     56: *          = 'V':  compute the left generalized eigenvectors (returned
                     57: *                  in VL).
                     58: *
                     59: *  JOBVR   (input) CHARACTER*1
                     60: *          = 'N':  do not compute the right generalized eigenvectors;
                     61: *          = 'V':  compute the right generalized eigenvectors (returned
                     62: *                  in VR).
                     63: *
                     64: *  N       (input) INTEGER
                     65: *          The order of the matrices A, B, VL, and VR.  N >= 0.
                     66: *
                     67: *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
                     68: *          On entry, the matrix A.
                     69: *          If JOBVL = 'V' or JOBVR = 'V', then on exit A
                     70: *          contains the Schur form of A from the generalized Schur
                     71: *          factorization of the pair (A,B) after balancing.  If no
                     72: *          eigenvectors were computed, then only the diagonal elements
                     73: *          of the Schur form will be correct.  See ZGGHRD and ZHGEQZ
                     74: *          for details.
                     75: *
                     76: *  LDA     (input) INTEGER
                     77: *          The leading dimension of A.  LDA >= max(1,N).
                     78: *
                     79: *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
                     80: *          On entry, the matrix B.
                     81: *          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
                     82: *          upper triangular matrix obtained from B in the generalized
                     83: *          Schur factorization of the pair (A,B) after balancing.
                     84: *          If no eigenvectors were computed, then only the diagonal
                     85: *          elements of B will be correct.  See ZGGHRD and ZHGEQZ for
                     86: *          details.
                     87: *
                     88: *  LDB     (input) INTEGER
                     89: *          The leading dimension of B.  LDB >= max(1,N).
                     90: *
                     91: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
                     92: *          The complex scalars alpha that define the eigenvalues of
                     93: *          GNEP.
                     94: *
                     95: *  BETA    (output) COMPLEX*16 array, dimension (N)
                     96: *          The complex scalars beta that define the eigenvalues of GNEP.
                     97: *          
                     98: *          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
                     99: *          represent the j-th eigenvalue of the matrix pair (A,B), in
                    100: *          one of the forms lambda = alpha/beta or mu = beta/alpha.
                    101: *          Since either lambda or mu may overflow, they should not,
                    102: *          in general, be computed.
                    103: *
                    104: *  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
                    105: *          If JOBVL = 'V', the left eigenvectors u(j) are stored
                    106: *          in the columns of VL, in the same order as their eigenvalues.
                    107: *          Each eigenvector is scaled so that its largest component has
                    108: *          abs(real part) + abs(imag. part) = 1, except for eigenvectors
                    109: *          corresponding to an eigenvalue with alpha = beta = 0, which
                    110: *          are set to zero.
                    111: *          Not referenced if JOBVL = 'N'.
                    112: *
                    113: *  LDVL    (input) INTEGER
                    114: *          The leading dimension of the matrix VL. LDVL >= 1, and
                    115: *          if JOBVL = 'V', LDVL >= N.
                    116: *
                    117: *  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
                    118: *          If JOBVR = 'V', the right eigenvectors x(j) are stored
                    119: *          in the columns of VR, in the same order as their eigenvalues.
                    120: *          Each eigenvector is scaled so that its largest component has
                    121: *          abs(real part) + abs(imag. part) = 1, except for eigenvectors
                    122: *          corresponding to an eigenvalue with alpha = beta = 0, which
                    123: *          are set to zero.
                    124: *          Not referenced if JOBVR = 'N'.
                    125: *
                    126: *  LDVR    (input) INTEGER
                    127: *          The leading dimension of the matrix VR. LDVR >= 1, and
                    128: *          if JOBVR = 'V', LDVR >= N.
                    129: *
                    130: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    131: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    132: *
                    133: *  LWORK   (input) INTEGER
                    134: *          The dimension of the array WORK.  LWORK >= max(1,2*N).
                    135: *          For good performance, LWORK must generally be larger.
                    136: *          To compute the optimal value of LWORK, call ILAENV to get
                    137: *          blocksizes (for ZGEQRF, ZUNMQR, and ZUNGQR.)  Then compute:
                    138: *          NB  -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and ZUNGQR;
                    139: *          The optimal LWORK is  MAX( 2*N, N*(NB+1) ).
                    140: *
                    141: *          If LWORK = -1, then a workspace query is assumed; the routine
                    142: *          only calculates the optimal size of the WORK array, returns
                    143: *          this value as the first entry of the WORK array, and no error
                    144: *          message related to LWORK is issued by XERBLA.
                    145: *
                    146: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (8*N)
                    147: *
                    148: *  INFO    (output) INTEGER
                    149: *          = 0:  successful exit
                    150: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    151: *          =1,...,N:
                    152: *                The QZ iteration failed.  No eigenvectors have been
                    153: *                calculated, but ALPHA(j) and BETA(j) should be
                    154: *                correct for j=INFO+1,...,N.
                    155: *          > N:  errors that usually indicate LAPACK problems:
                    156: *                =N+1: error return from ZGGBAL
                    157: *                =N+2: error return from ZGEQRF
                    158: *                =N+3: error return from ZUNMQR
                    159: *                =N+4: error return from ZUNGQR
                    160: *                =N+5: error return from ZGGHRD
                    161: *                =N+6: error return from ZHGEQZ (other than failed
                    162: *                                               iteration)
                    163: *                =N+7: error return from ZTGEVC
                    164: *                =N+8: error return from ZGGBAK (computing VL)
                    165: *                =N+9: error return from ZGGBAK (computing VR)
                    166: *                =N+10: error return from ZLASCL (various calls)
                    167: *
                    168: *  Further Details
                    169: *  ===============
                    170: *
                    171: *  Balancing
                    172: *  ---------
                    173: *
                    174: *  This driver calls ZGGBAL to both permute and scale rows and columns
                    175: *  of A and B.  The permutations PL and PR are chosen so that PL*A*PR
                    176: *  and PL*B*R will be upper triangular except for the diagonal blocks
                    177: *  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
                    178: *  possible.  The diagonal scaling matrices DL and DR are chosen so
                    179: *  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
                    180: *  one (except for the elements that start out zero.)
                    181: *
                    182: *  After the eigenvalues and eigenvectors of the balanced matrices
                    183: *  have been computed, ZGGBAK transforms the eigenvectors back to what
                    184: *  they would have been (in perfect arithmetic) if they had not been
                    185: *  balanced.
                    186: *
                    187: *  Contents of A and B on Exit
                    188: *  -------- -- - --- - -- ----
                    189: *
                    190: *  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
                    191: *  both), then on exit the arrays A and B will contain the complex Schur
                    192: *  form[*] of the "balanced" versions of A and B.  If no eigenvectors
                    193: *  are computed, then only the diagonal blocks will be correct.
                    194: *
                    195: *  [*] In other words, upper triangular form.
                    196: *
                    197: *  =====================================================================
                    198: *
                    199: *     .. Parameters ..
                    200:       DOUBLE PRECISION   ZERO, ONE
                    201:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    202:       COMPLEX*16         CZERO, CONE
                    203:       PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
                    204:      $                   CONE = ( 1.0D0, 0.0D0 ) )
                    205: *     ..
                    206: *     .. Local Scalars ..
                    207:       LOGICAL            ILIMIT, ILV, ILVL, ILVR, LQUERY
                    208:       CHARACTER          CHTEMP
                    209:       INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
                    210:      $                   IN, IRIGHT, IROWS, IRWORK, ITAU, IWORK, JC, JR,
                    211:      $                   LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3
                    212:       DOUBLE PRECISION   ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
                    213:      $                   BNRM1, BNRM2, EPS, SAFMAX, SAFMIN, SALFAI,
                    214:      $                   SALFAR, SBETA, SCALE, TEMP
                    215:       COMPLEX*16         X
                    216: *     ..
                    217: *     .. Local Arrays ..
                    218:       LOGICAL            LDUMMA( 1 )
                    219: *     ..
                    220: *     .. External Subroutines ..
                    221:       EXTERNAL           XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD, ZHGEQZ,
                    222:      $                   ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR, ZUNMQR
                    223: *     ..
                    224: *     .. External Functions ..
                    225:       LOGICAL            LSAME
                    226:       INTEGER            ILAENV
                    227:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    228:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    229: *     ..
                    230: *     .. Intrinsic Functions ..
                    231:       INTRINSIC          ABS, DBLE, DCMPLX, DIMAG, INT, MAX
                    232: *     ..
                    233: *     .. Statement Functions ..
                    234:       DOUBLE PRECISION   ABS1
                    235: *     ..
                    236: *     .. Statement Function definitions ..
                    237:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
                    238: *     ..
                    239: *     .. Executable Statements ..
                    240: *
                    241: *     Decode the input arguments
                    242: *
                    243:       IF( LSAME( JOBVL, 'N' ) ) THEN
                    244:          IJOBVL = 1
                    245:          ILVL = .FALSE.
                    246:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
                    247:          IJOBVL = 2
                    248:          ILVL = .TRUE.
                    249:       ELSE
                    250:          IJOBVL = -1
                    251:          ILVL = .FALSE.
                    252:       END IF
                    253: *
                    254:       IF( LSAME( JOBVR, 'N' ) ) THEN
                    255:          IJOBVR = 1
                    256:          ILVR = .FALSE.
                    257:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
                    258:          IJOBVR = 2
                    259:          ILVR = .TRUE.
                    260:       ELSE
                    261:          IJOBVR = -1
                    262:          ILVR = .FALSE.
                    263:       END IF
                    264:       ILV = ILVL .OR. ILVR
                    265: *
                    266: *     Test the input arguments
                    267: *
                    268:       LWKMIN = MAX( 2*N, 1 )
                    269:       LWKOPT = LWKMIN
                    270:       WORK( 1 ) = LWKOPT
                    271:       LQUERY = ( LWORK.EQ.-1 )
                    272:       INFO = 0
                    273:       IF( IJOBVL.LE.0 ) THEN
                    274:          INFO = -1
                    275:       ELSE IF( IJOBVR.LE.0 ) THEN
                    276:          INFO = -2
                    277:       ELSE IF( N.LT.0 ) THEN
                    278:          INFO = -3
                    279:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    280:          INFO = -5
                    281:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    282:          INFO = -7
                    283:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
                    284:          INFO = -11
                    285:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
                    286:          INFO = -13
                    287:       ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    288:          INFO = -15
                    289:       END IF
                    290: *
                    291:       IF( INFO.EQ.0 ) THEN
                    292:          NB1 = ILAENV( 1, 'ZGEQRF', ' ', N, N, -1, -1 )
                    293:          NB2 = ILAENV( 1, 'ZUNMQR', ' ', N, N, N, -1 )
                    294:          NB3 = ILAENV( 1, 'ZUNGQR', ' ', N, N, N, -1 )
                    295:          NB = MAX( NB1, NB2, NB3 )
                    296:          LOPT = MAX( 2*N, N*( NB+1 ) )
                    297:          WORK( 1 ) = LOPT
                    298:       END IF
                    299: *
                    300:       IF( INFO.NE.0 ) THEN
                    301:          CALL XERBLA( 'ZGEGV ', -INFO )
                    302:          RETURN
                    303:       ELSE IF( LQUERY ) THEN
                    304:          RETURN
                    305:       END IF
                    306: *
                    307: *     Quick return if possible
                    308: *
                    309:       IF( N.EQ.0 )
                    310:      $   RETURN
                    311: *
                    312: *     Get machine constants
                    313: *
                    314:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
                    315:       SAFMIN = DLAMCH( 'S' )
                    316:       SAFMIN = SAFMIN + SAFMIN
                    317:       SAFMAX = ONE / SAFMIN
                    318: *
                    319: *     Scale A
                    320: *
                    321:       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
                    322:       ANRM1 = ANRM
                    323:       ANRM2 = ONE
                    324:       IF( ANRM.LT.ONE ) THEN
                    325:          IF( SAFMAX*ANRM.LT.ONE ) THEN
                    326:             ANRM1 = SAFMIN
                    327:             ANRM2 = SAFMAX*ANRM
                    328:          END IF
                    329:       END IF
                    330: *
                    331:       IF( ANRM.GT.ZERO ) THEN
                    332:          CALL ZLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
                    333:          IF( IINFO.NE.0 ) THEN
                    334:             INFO = N + 10
                    335:             RETURN
                    336:          END IF
                    337:       END IF
                    338: *
                    339: *     Scale B
                    340: *
                    341:       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
                    342:       BNRM1 = BNRM
                    343:       BNRM2 = ONE
                    344:       IF( BNRM.LT.ONE ) THEN
                    345:          IF( SAFMAX*BNRM.LT.ONE ) THEN
                    346:             BNRM1 = SAFMIN
                    347:             BNRM2 = SAFMAX*BNRM
                    348:          END IF
                    349:       END IF
                    350: *
                    351:       IF( BNRM.GT.ZERO ) THEN
                    352:          CALL ZLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
                    353:          IF( IINFO.NE.0 ) THEN
                    354:             INFO = N + 10
                    355:             RETURN
                    356:          END IF
                    357:       END IF
                    358: *
                    359: *     Permute the matrix to make it more nearly triangular
                    360: *     Also "balance" the matrix.
                    361: *
                    362:       ILEFT = 1
                    363:       IRIGHT = N + 1
                    364:       IRWORK = IRIGHT + N
                    365:       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
                    366:      $             RWORK( IRIGHT ), RWORK( IRWORK ), IINFO )
                    367:       IF( IINFO.NE.0 ) THEN
                    368:          INFO = N + 1
                    369:          GO TO 80
                    370:       END IF
                    371: *
                    372: *     Reduce B to triangular form, and initialize VL and/or VR
                    373: *
                    374:       IROWS = IHI + 1 - ILO
                    375:       IF( ILV ) THEN
                    376:          ICOLS = N + 1 - ILO
                    377:       ELSE
                    378:          ICOLS = IROWS
                    379:       END IF
                    380:       ITAU = 1
                    381:       IWORK = ITAU + IROWS
                    382:       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    383:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
                    384:       IF( IINFO.GE.0 )
                    385:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    386:       IF( IINFO.NE.0 ) THEN
                    387:          INFO = N + 2
                    388:          GO TO 80
                    389:       END IF
                    390: *
                    391:       CALL ZUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    392:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
                    393:      $             LWORK+1-IWORK, IINFO )
                    394:       IF( IINFO.GE.0 )
                    395:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    396:       IF( IINFO.NE.0 ) THEN
                    397:          INFO = N + 3
                    398:          GO TO 80
                    399:       END IF
                    400: *
                    401:       IF( ILVL ) THEN
                    402:          CALL ZLASET( 'Full', N, N, CZERO, CONE, VL, LDVL )
                    403:          CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    404:      $                VL( ILO+1, ILO ), LDVL )
                    405:          CALL ZUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
                    406:      $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
                    407:      $                IINFO )
                    408:          IF( IINFO.GE.0 )
                    409:      $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    410:          IF( IINFO.NE.0 ) THEN
                    411:             INFO = N + 4
                    412:             GO TO 80
                    413:          END IF
                    414:       END IF
                    415: *
                    416:       IF( ILVR )
                    417:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VR, LDVR )
                    418: *
                    419: *     Reduce to generalized Hessenberg form
                    420: *
                    421:       IF( ILV ) THEN
                    422: *
                    423: *        Eigenvectors requested -- work on whole matrix.
                    424: *
                    425:          CALL ZGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
                    426:      $                LDVL, VR, LDVR, IINFO )
                    427:       ELSE
                    428:          CALL ZGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
                    429:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
                    430:       END IF
                    431:       IF( IINFO.NE.0 ) THEN
                    432:          INFO = N + 5
                    433:          GO TO 80
                    434:       END IF
                    435: *
                    436: *     Perform QZ algorithm
                    437: *
                    438:       IWORK = ITAU
                    439:       IF( ILV ) THEN
                    440:          CHTEMP = 'S'
                    441:       ELSE
                    442:          CHTEMP = 'E'
                    443:       END IF
                    444:       CALL ZHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
                    445:      $             ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWORK ),
                    446:      $             LWORK+1-IWORK, RWORK( IRWORK ), IINFO )
                    447:       IF( IINFO.GE.0 )
                    448:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    449:       IF( IINFO.NE.0 ) THEN
                    450:          IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
                    451:             INFO = IINFO
                    452:          ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
                    453:             INFO = IINFO - N
                    454:          ELSE
                    455:             INFO = N + 6
                    456:          END IF
                    457:          GO TO 80
                    458:       END IF
                    459: *
                    460:       IF( ILV ) THEN
                    461: *
                    462: *        Compute Eigenvectors
                    463: *
                    464:          IF( ILVL ) THEN
                    465:             IF( ILVR ) THEN
                    466:                CHTEMP = 'B'
                    467:             ELSE
                    468:                CHTEMP = 'L'
                    469:             END IF
                    470:          ELSE
                    471:             CHTEMP = 'R'
                    472:          END IF
                    473: *
                    474:          CALL ZTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
                    475:      $                VR, LDVR, N, IN, WORK( IWORK ), RWORK( IRWORK ),
                    476:      $                IINFO )
                    477:          IF( IINFO.NE.0 ) THEN
                    478:             INFO = N + 7
                    479:             GO TO 80
                    480:          END IF
                    481: *
                    482: *        Undo balancing on VL and VR, rescale
                    483: *
                    484:          IF( ILVL ) THEN
                    485:             CALL ZGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ),
                    486:      $                   RWORK( IRIGHT ), N, VL, LDVL, IINFO )
                    487:             IF( IINFO.NE.0 ) THEN
                    488:                INFO = N + 8
                    489:                GO TO 80
                    490:             END IF
                    491:             DO 30 JC = 1, N
                    492:                TEMP = ZERO
                    493:                DO 10 JR = 1, N
                    494:                   TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) )
                    495:    10          CONTINUE
                    496:                IF( TEMP.LT.SAFMIN )
                    497:      $            GO TO 30
                    498:                TEMP = ONE / TEMP
                    499:                DO 20 JR = 1, N
                    500:                   VL( JR, JC ) = VL( JR, JC )*TEMP
                    501:    20          CONTINUE
                    502:    30       CONTINUE
                    503:          END IF
                    504:          IF( ILVR ) THEN
                    505:             CALL ZGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ),
                    506:      $                   RWORK( IRIGHT ), N, VR, LDVR, IINFO )
                    507:             IF( IINFO.NE.0 ) THEN
                    508:                INFO = N + 9
                    509:                GO TO 80
                    510:             END IF
                    511:             DO 60 JC = 1, N
                    512:                TEMP = ZERO
                    513:                DO 40 JR = 1, N
                    514:                   TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) )
                    515:    40          CONTINUE
                    516:                IF( TEMP.LT.SAFMIN )
                    517:      $            GO TO 60
                    518:                TEMP = ONE / TEMP
                    519:                DO 50 JR = 1, N
                    520:                   VR( JR, JC ) = VR( JR, JC )*TEMP
                    521:    50          CONTINUE
                    522:    60       CONTINUE
                    523:          END IF
                    524: *
                    525: *        End of eigenvector calculation
                    526: *
                    527:       END IF
                    528: *
                    529: *     Undo scaling in alpha, beta
                    530: *
                    531: *     Note: this does not give the alpha and beta for the unscaled
                    532: *     problem.
                    533: *
                    534: *     Un-scaling is limited to avoid underflow in alpha and beta
                    535: *     if they are significant.
                    536: *
                    537:       DO 70 JC = 1, N
                    538:          ABSAR = ABS( DBLE( ALPHA( JC ) ) )
                    539:          ABSAI = ABS( DIMAG( ALPHA( JC ) ) )
                    540:          ABSB = ABS( DBLE( BETA( JC ) ) )
                    541:          SALFAR = ANRM*DBLE( ALPHA( JC ) )
                    542:          SALFAI = ANRM*DIMAG( ALPHA( JC ) )
                    543:          SBETA = BNRM*DBLE( BETA( JC ) )
                    544:          ILIMIT = .FALSE.
                    545:          SCALE = ONE
                    546: *
                    547: *        Check for significant underflow in imaginary part of ALPHA
                    548: *
                    549:          IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
                    550:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
                    551:             ILIMIT = .TRUE.
                    552:             SCALE = ( SAFMIN / ANRM1 ) / MAX( SAFMIN, ANRM2*ABSAI )
                    553:          END IF
                    554: *
                    555: *        Check for significant underflow in real part of ALPHA
                    556: *
                    557:          IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
                    558:      $       MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
                    559:             ILIMIT = .TRUE.
                    560:             SCALE = MAX( SCALE, ( SAFMIN / ANRM1 ) /
                    561:      $              MAX( SAFMIN, ANRM2*ABSAR ) )
                    562:          END IF
                    563: *
                    564: *        Check for significant underflow in BETA
                    565: *
                    566:          IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
                    567:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
                    568:             ILIMIT = .TRUE.
                    569:             SCALE = MAX( SCALE, ( SAFMIN / BNRM1 ) /
                    570:      $              MAX( SAFMIN, BNRM2*ABSB ) )
                    571:          END IF
                    572: *
                    573: *        Check for possible overflow when limiting scaling
                    574: *
                    575:          IF( ILIMIT ) THEN
                    576:             TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
                    577:      $             ABS( SBETA ) )
                    578:             IF( TEMP.GT.ONE )
                    579:      $         SCALE = SCALE / TEMP
                    580:             IF( SCALE.LT.ONE )
                    581:      $         ILIMIT = .FALSE.
                    582:          END IF
                    583: *
                    584: *        Recompute un-scaled ALPHA, BETA if necessary.
                    585: *
                    586:          IF( ILIMIT ) THEN
                    587:             SALFAR = ( SCALE*DBLE( ALPHA( JC ) ) )*ANRM
                    588:             SALFAI = ( SCALE*DIMAG( ALPHA( JC ) ) )*ANRM
                    589:             SBETA = ( SCALE*BETA( JC ) )*BNRM
                    590:          END IF
                    591:          ALPHA( JC ) = DCMPLX( SALFAR, SALFAI )
                    592:          BETA( JC ) = SBETA
                    593:    70 CONTINUE
                    594: *
                    595:    80 CONTINUE
                    596:       WORK( 1 ) = LWKOPT
                    597: *
                    598:       RETURN
                    599: *
                    600: *     End of ZGEGV
                    601: *
                    602:       END

CVSweb interface <joel.bertrand@systella.fr>