File:  [local] / rpl / lapack / lapack / zgeevx.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:16 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGEEVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeevx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeevx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeevx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
   22: *                          LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE,
   23: *                          RCONDV, WORK, LWORK, RWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
   27: *       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
   28: *       DOUBLE PRECISION   ABNRM
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   RCONDE( * ), RCONDV( * ), RWORK( * ),
   32: *      $                   SCALE( * )
   33: *       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
   34: *      $                   W( * ), WORK( * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZGEEVX computes for an N-by-N complex nonsymmetric matrix A, the
   44: *> eigenvalues and, optionally, the left and/or right eigenvectors.
   45: *>
   46: *> Optionally also, it computes a balancing transformation to improve
   47: *> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
   48: *> SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
   49: *> (RCONDE), and reciprocal condition numbers for the right
   50: *> eigenvectors (RCONDV).
   51: *>
   52: *> The right eigenvector v(j) of A satisfies
   53: *>                  A * v(j) = lambda(j) * v(j)
   54: *> where lambda(j) is its eigenvalue.
   55: *> The left eigenvector u(j) of A satisfies
   56: *>               u(j)**H * A = lambda(j) * u(j)**H
   57: *> where u(j)**H denotes the conjugate transpose of u(j).
   58: *>
   59: *> The computed eigenvectors are normalized to have Euclidean norm
   60: *> equal to 1 and largest component real.
   61: *>
   62: *> Balancing a matrix means permuting the rows and columns to make it
   63: *> more nearly upper triangular, and applying a diagonal similarity
   64: *> transformation D * A * D**(-1), where D is a diagonal matrix, to
   65: *> make its rows and columns closer in norm and the condition numbers
   66: *> of its eigenvalues and eigenvectors smaller.  The computed
   67: *> reciprocal condition numbers correspond to the balanced matrix.
   68: *> Permuting rows and columns will not change the condition numbers
   69: *> (in exact arithmetic) but diagonal scaling will.  For further
   70: *> explanation of balancing, see section 4.10.2 of the LAPACK
   71: *> Users' Guide.
   72: *> \endverbatim
   73: *
   74: *  Arguments:
   75: *  ==========
   76: *
   77: *> \param[in] BALANC
   78: *> \verbatim
   79: *>          BALANC is CHARACTER*1
   80: *>          Indicates how the input matrix should be diagonally scaled
   81: *>          and/or permuted to improve the conditioning of its
   82: *>          eigenvalues.
   83: *>          = 'N': Do not diagonally scale or permute;
   84: *>          = 'P': Perform permutations to make the matrix more nearly
   85: *>                 upper triangular. Do not diagonally scale;
   86: *>          = 'S': Diagonally scale the matrix, ie. replace A by
   87: *>                 D*A*D**(-1), where D is a diagonal matrix chosen
   88: *>                 to make the rows and columns of A more equal in
   89: *>                 norm. Do not permute;
   90: *>          = 'B': Both diagonally scale and permute A.
   91: *>
   92: *>          Computed reciprocal condition numbers will be for the matrix
   93: *>          after balancing and/or permuting. Permuting does not change
   94: *>          condition numbers (in exact arithmetic), but balancing does.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] JOBVL
   98: *> \verbatim
   99: *>          JOBVL is CHARACTER*1
  100: *>          = 'N': left eigenvectors of A are not computed;
  101: *>          = 'V': left eigenvectors of A are computed.
  102: *>          If SENSE = 'E' or 'B', JOBVL must = 'V'.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] JOBVR
  106: *> \verbatim
  107: *>          JOBVR is CHARACTER*1
  108: *>          = 'N': right eigenvectors of A are not computed;
  109: *>          = 'V': right eigenvectors of A are computed.
  110: *>          If SENSE = 'E' or 'B', JOBVR must = 'V'.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] SENSE
  114: *> \verbatim
  115: *>          SENSE is CHARACTER*1
  116: *>          Determines which reciprocal condition numbers are computed.
  117: *>          = 'N': None are computed;
  118: *>          = 'E': Computed for eigenvalues only;
  119: *>          = 'V': Computed for right eigenvectors only;
  120: *>          = 'B': Computed for eigenvalues and right eigenvectors.
  121: *>
  122: *>          If SENSE = 'E' or 'B', both left and right eigenvectors
  123: *>          must also be computed (JOBVL = 'V' and JOBVR = 'V').
  124: *> \endverbatim
  125: *>
  126: *> \param[in] N
  127: *> \verbatim
  128: *>          N is INTEGER
  129: *>          The order of the matrix A. N >= 0.
  130: *> \endverbatim
  131: *>
  132: *> \param[in,out] A
  133: *> \verbatim
  134: *>          A is COMPLEX*16 array, dimension (LDA,N)
  135: *>          On entry, the N-by-N matrix A.
  136: *>          On exit, A has been overwritten.  If JOBVL = 'V' or
  137: *>          JOBVR = 'V', A contains the Schur form of the balanced
  138: *>          version of the matrix A.
  139: *> \endverbatim
  140: *>
  141: *> \param[in] LDA
  142: *> \verbatim
  143: *>          LDA is INTEGER
  144: *>          The leading dimension of the array A.  LDA >= max(1,N).
  145: *> \endverbatim
  146: *>
  147: *> \param[out] W
  148: *> \verbatim
  149: *>          W is COMPLEX*16 array, dimension (N)
  150: *>          W contains the computed eigenvalues.
  151: *> \endverbatim
  152: *>
  153: *> \param[out] VL
  154: *> \verbatim
  155: *>          VL is COMPLEX*16 array, dimension (LDVL,N)
  156: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
  157: *>          after another in the columns of VL, in the same order
  158: *>          as their eigenvalues.
  159: *>          If JOBVL = 'N', VL is not referenced.
  160: *>          u(j) = VL(:,j), the j-th column of VL.
  161: *> \endverbatim
  162: *>
  163: *> \param[in] LDVL
  164: *> \verbatim
  165: *>          LDVL is INTEGER
  166: *>          The leading dimension of the array VL.  LDVL >= 1; if
  167: *>          JOBVL = 'V', LDVL >= N.
  168: *> \endverbatim
  169: *>
  170: *> \param[out] VR
  171: *> \verbatim
  172: *>          VR is COMPLEX*16 array, dimension (LDVR,N)
  173: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
  174: *>          after another in the columns of VR, in the same order
  175: *>          as their eigenvalues.
  176: *>          If JOBVR = 'N', VR is not referenced.
  177: *>          v(j) = VR(:,j), the j-th column of VR.
  178: *> \endverbatim
  179: *>
  180: *> \param[in] LDVR
  181: *> \verbatim
  182: *>          LDVR is INTEGER
  183: *>          The leading dimension of the array VR.  LDVR >= 1; if
  184: *>          JOBVR = 'V', LDVR >= N.
  185: *> \endverbatim
  186: *>
  187: *> \param[out] ILO
  188: *> \verbatim
  189: *>          ILO is INTEGER
  190: *> \endverbatim
  191: *>
  192: *> \param[out] IHI
  193: *> \verbatim
  194: *>          IHI is INTEGER
  195: *>          ILO and IHI are integer values determined when A was
  196: *>          balanced.  The balanced A(i,j) = 0 if I > J and
  197: *>          J = 1,...,ILO-1 or I = IHI+1,...,N.
  198: *> \endverbatim
  199: *>
  200: *> \param[out] SCALE
  201: *> \verbatim
  202: *>          SCALE is DOUBLE PRECISION array, dimension (N)
  203: *>          Details of the permutations and scaling factors applied
  204: *>          when balancing A.  If P(j) is the index of the row and column
  205: *>          interchanged with row and column j, and D(j) is the scaling
  206: *>          factor applied to row and column j, then
  207: *>          SCALE(J) = P(J),    for J = 1,...,ILO-1
  208: *>                   = D(J),    for J = ILO,...,IHI
  209: *>                   = P(J)     for J = IHI+1,...,N.
  210: *>          The order in which the interchanges are made is N to IHI+1,
  211: *>          then 1 to ILO-1.
  212: *> \endverbatim
  213: *>
  214: *> \param[out] ABNRM
  215: *> \verbatim
  216: *>          ABNRM is DOUBLE PRECISION
  217: *>          The one-norm of the balanced matrix (the maximum
  218: *>          of the sum of absolute values of elements of any column).
  219: *> \endverbatim
  220: *>
  221: *> \param[out] RCONDE
  222: *> \verbatim
  223: *>          RCONDE is DOUBLE PRECISION array, dimension (N)
  224: *>          RCONDE(j) is the reciprocal condition number of the j-th
  225: *>          eigenvalue.
  226: *> \endverbatim
  227: *>
  228: *> \param[out] RCONDV
  229: *> \verbatim
  230: *>          RCONDV is DOUBLE PRECISION array, dimension (N)
  231: *>          RCONDV(j) is the reciprocal condition number of the j-th
  232: *>          right eigenvector.
  233: *> \endverbatim
  234: *>
  235: *> \param[out] WORK
  236: *> \verbatim
  237: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  238: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  239: *> \endverbatim
  240: *>
  241: *> \param[in] LWORK
  242: *> \verbatim
  243: *>          LWORK is INTEGER
  244: *>          The dimension of the array WORK.  If SENSE = 'N' or 'E',
  245: *>          LWORK >= max(1,2*N), and if SENSE = 'V' or 'B',
  246: *>          LWORK >= N*N+2*N.
  247: *>          For good performance, LWORK must generally be larger.
  248: *>
  249: *>          If LWORK = -1, then a workspace query is assumed; the routine
  250: *>          only calculates the optimal size of the WORK array, returns
  251: *>          this value as the first entry of the WORK array, and no error
  252: *>          message related to LWORK is issued by XERBLA.
  253: *> \endverbatim
  254: *>
  255: *> \param[out] RWORK
  256: *> \verbatim
  257: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  258: *> \endverbatim
  259: *>
  260: *> \param[out] INFO
  261: *> \verbatim
  262: *>          INFO is INTEGER
  263: *>          = 0:  successful exit
  264: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  265: *>          > 0:  if INFO = i, the QR algorithm failed to compute all the
  266: *>                eigenvalues, and no eigenvectors or condition numbers
  267: *>                have been computed; elements 1:ILO-1 and i+1:N of W
  268: *>                contain eigenvalues which have converged.
  269: *> \endverbatim
  270: *
  271: *  Authors:
  272: *  ========
  273: *
  274: *> \author Univ. of Tennessee
  275: *> \author Univ. of California Berkeley
  276: *> \author Univ. of Colorado Denver
  277: *> \author NAG Ltd.
  278: *
  279: *
  280: *  @precisions fortran z -> c
  281: *
  282: *> \ingroup complex16GEeigen
  283: *
  284: *  =====================================================================
  285:       SUBROUTINE ZGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
  286:      $                   LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE,
  287:      $                   RCONDV, WORK, LWORK, RWORK, INFO )
  288:       implicit none
  289: *
  290: *  -- LAPACK driver routine --
  291: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  292: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  293: *
  294: *     .. Scalar Arguments ..
  295:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
  296:       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
  297:       DOUBLE PRECISION   ABNRM
  298: *     ..
  299: *     .. Array Arguments ..
  300:       DOUBLE PRECISION   RCONDE( * ), RCONDV( * ), RWORK( * ),
  301:      $                   SCALE( * )
  302:       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
  303:      $                   W( * ), WORK( * )
  304: *     ..
  305: *
  306: *  =====================================================================
  307: *
  308: *     .. Parameters ..
  309:       DOUBLE PRECISION   ZERO, ONE
  310:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  311: *     ..
  312: *     .. Local Scalars ..
  313:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
  314:      $                   WNTSNN, WNTSNV
  315:       CHARACTER          JOB, SIDE
  316:       INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K,
  317:      $                   LWORK_TREVC, MAXWRK, MINWRK, NOUT
  318:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
  319:       COMPLEX*16         TMP
  320: *     ..
  321: *     .. Local Arrays ..
  322:       LOGICAL            SELECT( 1 )
  323:       DOUBLE PRECISION   DUM( 1 )
  324: *     ..
  325: *     .. External Subroutines ..
  326:       EXTERNAL           DLABAD, DLASCL, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL,
  327:      $                   ZGEHRD, ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC3,
  328:      $                   ZTRSNA, ZUNGHR
  329: *     ..
  330: *     .. External Functions ..
  331:       LOGICAL            LSAME
  332:       INTEGER            IDAMAX, ILAENV
  333:       DOUBLE PRECISION   DLAMCH, DZNRM2, ZLANGE
  334:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
  335: *     ..
  336: *     .. Intrinsic Functions ..
  337:       INTRINSIC          DBLE, DCMPLX, CONJG, AIMAG, MAX, SQRT
  338: *     ..
  339: *     .. Executable Statements ..
  340: *
  341: *     Test the input arguments
  342: *
  343:       INFO = 0
  344:       LQUERY = ( LWORK.EQ.-1 )
  345:       WANTVL = LSAME( JOBVL, 'V' )
  346:       WANTVR = LSAME( JOBVR, 'V' )
  347:       WNTSNN = LSAME( SENSE, 'N' )
  348:       WNTSNE = LSAME( SENSE, 'E' )
  349:       WNTSNV = LSAME( SENSE, 'V' )
  350:       WNTSNB = LSAME( SENSE, 'B' )
  351:       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'S' ) .OR.
  352:      $    LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) ) THEN
  353:          INFO = -1
  354:       ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
  355:          INFO = -2
  356:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
  357:          INFO = -3
  358:       ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
  359:      $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
  360:      $         WANTVR ) ) ) THEN
  361:          INFO = -4
  362:       ELSE IF( N.LT.0 ) THEN
  363:          INFO = -5
  364:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  365:          INFO = -7
  366:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
  367:          INFO = -10
  368:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
  369:          INFO = -12
  370:       END IF
  371: *
  372: *     Compute workspace
  373: *      (Note: Comments in the code beginning "Workspace:" describe the
  374: *       minimal amount of workspace needed at that point in the code,
  375: *       as well as the preferred amount for good performance.
  376: *       CWorkspace refers to complex workspace, and RWorkspace to real
  377: *       workspace. NB refers to the optimal block size for the
  378: *       immediately following subroutine, as returned by ILAENV.
  379: *       HSWORK refers to the workspace preferred by ZHSEQR, as
  380: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  381: *       the worst case.)
  382: *
  383:       IF( INFO.EQ.0 ) THEN
  384:          IF( N.EQ.0 ) THEN
  385:             MINWRK = 1
  386:             MAXWRK = 1
  387:          ELSE
  388:             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
  389: *
  390:             IF( WANTVL ) THEN
  391:                CALL ZTREVC3( 'L', 'B', SELECT, N, A, LDA,
  392:      $                       VL, LDVL, VR, LDVR,
  393:      $                       N, NOUT, WORK, -1, RWORK, -1, IERR )
  394:                LWORK_TREVC = INT( WORK(1) )
  395:                MAXWRK = MAX( MAXWRK, LWORK_TREVC )
  396:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
  397:      $                WORK, -1, INFO )
  398:             ELSE IF( WANTVR ) THEN
  399:                CALL ZTREVC3( 'R', 'B', SELECT, N, A, LDA,
  400:      $                       VL, LDVL, VR, LDVR,
  401:      $                       N, NOUT, WORK, -1, RWORK, -1, IERR )
  402:                LWORK_TREVC = INT( WORK(1) )
  403:                MAXWRK = MAX( MAXWRK, LWORK_TREVC )
  404:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
  405:      $                WORK, -1, INFO )
  406:             ELSE
  407:                IF( WNTSNN ) THEN
  408:                   CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
  409:      $                WORK, -1, INFO )
  410:                ELSE
  411:                   CALL ZHSEQR( 'S', 'N', N, 1, N, A, LDA, W, VR, LDVR,
  412:      $                WORK, -1, INFO )
  413:                END IF
  414:             END IF
  415:             HSWORK = INT( WORK(1) )
  416: *
  417:             IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
  418:                MINWRK = 2*N
  419:                IF( .NOT.( WNTSNN .OR. WNTSNE ) )
  420:      $            MINWRK = MAX( MINWRK, N*N + 2*N )
  421:                MAXWRK = MAX( MAXWRK, HSWORK )
  422:                IF( .NOT.( WNTSNN .OR. WNTSNE ) )
  423:      $            MAXWRK = MAX( MAXWRK, N*N + 2*N )
  424:             ELSE
  425:                MINWRK = 2*N
  426:                IF( .NOT.( WNTSNN .OR. WNTSNE ) )
  427:      $            MINWRK = MAX( MINWRK, N*N + 2*N )
  428:                MAXWRK = MAX( MAXWRK, HSWORK )
  429:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
  430:      $                       ' ', N, 1, N, -1 ) )
  431:                IF( .NOT.( WNTSNN .OR. WNTSNE ) )
  432:      $            MAXWRK = MAX( MAXWRK, N*N + 2*N )
  433:                MAXWRK = MAX( MAXWRK, 2*N )
  434:             END IF
  435:             MAXWRK = MAX( MAXWRK, MINWRK )
  436:          END IF
  437:          WORK( 1 ) = MAXWRK
  438: *
  439:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  440:             INFO = -20
  441:          END IF
  442:       END IF
  443: *
  444:       IF( INFO.NE.0 ) THEN
  445:          CALL XERBLA( 'ZGEEVX', -INFO )
  446:          RETURN
  447:       ELSE IF( LQUERY ) THEN
  448:          RETURN
  449:       END IF
  450: *
  451: *     Quick return if possible
  452: *
  453:       IF( N.EQ.0 )
  454:      $   RETURN
  455: *
  456: *     Get machine constants
  457: *
  458:       EPS = DLAMCH( 'P' )
  459:       SMLNUM = DLAMCH( 'S' )
  460:       BIGNUM = ONE / SMLNUM
  461:       CALL DLABAD( SMLNUM, BIGNUM )
  462:       SMLNUM = SQRT( SMLNUM ) / EPS
  463:       BIGNUM = ONE / SMLNUM
  464: *
  465: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  466: *
  467:       ICOND = 0
  468:       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
  469:       SCALEA = .FALSE.
  470:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  471:          SCALEA = .TRUE.
  472:          CSCALE = SMLNUM
  473:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  474:          SCALEA = .TRUE.
  475:          CSCALE = BIGNUM
  476:       END IF
  477:       IF( SCALEA )
  478:      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  479: *
  480: *     Balance the matrix and compute ABNRM
  481: *
  482:       CALL ZGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
  483:       ABNRM = ZLANGE( '1', N, N, A, LDA, DUM )
  484:       IF( SCALEA ) THEN
  485:          DUM( 1 ) = ABNRM
  486:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
  487:          ABNRM = DUM( 1 )
  488:       END IF
  489: *
  490: *     Reduce to upper Hessenberg form
  491: *     (CWorkspace: need 2*N, prefer N+N*NB)
  492: *     (RWorkspace: none)
  493: *
  494:       ITAU = 1
  495:       IWRK = ITAU + N
  496:       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  497:      $             LWORK-IWRK+1, IERR )
  498: *
  499:       IF( WANTVL ) THEN
  500: *
  501: *        Want left eigenvectors
  502: *        Copy Householder vectors to VL
  503: *
  504:          SIDE = 'L'
  505:          CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
  506: *
  507: *        Generate unitary matrix in VL
  508: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
  509: *        (RWorkspace: none)
  510: *
  511:          CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
  512:      $                LWORK-IWRK+1, IERR )
  513: *
  514: *        Perform QR iteration, accumulating Schur vectors in VL
  515: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
  516: *        (RWorkspace: none)
  517: *
  518:          IWRK = ITAU
  519:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
  520:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  521: *
  522:          IF( WANTVR ) THEN
  523: *
  524: *           Want left and right eigenvectors
  525: *           Copy Schur vectors to VR
  526: *
  527:             SIDE = 'B'
  528:             CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
  529:          END IF
  530: *
  531:       ELSE IF( WANTVR ) THEN
  532: *
  533: *        Want right eigenvectors
  534: *        Copy Householder vectors to VR
  535: *
  536:          SIDE = 'R'
  537:          CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
  538: *
  539: *        Generate unitary matrix in VR
  540: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
  541: *        (RWorkspace: none)
  542: *
  543:          CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
  544:      $                LWORK-IWRK+1, IERR )
  545: *
  546: *        Perform QR iteration, accumulating Schur vectors in VR
  547: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
  548: *        (RWorkspace: none)
  549: *
  550:          IWRK = ITAU
  551:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
  552:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  553: *
  554:       ELSE
  555: *
  556: *        Compute eigenvalues only
  557: *        If condition numbers desired, compute Schur form
  558: *
  559:          IF( WNTSNN ) THEN
  560:             JOB = 'E'
  561:          ELSE
  562:             JOB = 'S'
  563:          END IF
  564: *
  565: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
  566: *        (RWorkspace: none)
  567: *
  568:          IWRK = ITAU
  569:          CALL ZHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
  570:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  571:       END IF
  572: *
  573: *     If INFO .NE. 0 from ZHSEQR, then quit
  574: *
  575:       IF( INFO.NE.0 )
  576:      $   GO TO 50
  577: *
  578:       IF( WANTVL .OR. WANTVR ) THEN
  579: *
  580: *        Compute left and/or right eigenvectors
  581: *        (CWorkspace: need 2*N, prefer N + 2*N*NB)
  582: *        (RWorkspace: need N)
  583: *
  584:          CALL ZTREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  585:      $                 N, NOUT, WORK( IWRK ), LWORK-IWRK+1,
  586:      $                 RWORK, N, IERR )
  587:       END IF
  588: *
  589: *     Compute condition numbers if desired
  590: *     (CWorkspace: need N*N+2*N unless SENSE = 'E')
  591: *     (RWorkspace: need 2*N unless SENSE = 'E')
  592: *
  593:       IF( .NOT.WNTSNN ) THEN
  594:          CALL ZTRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  595:      $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, RWORK,
  596:      $                ICOND )
  597:       END IF
  598: *
  599:       IF( WANTVL ) THEN
  600: *
  601: *        Undo balancing of left eigenvectors
  602: *
  603:          CALL ZGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
  604:      $                IERR )
  605: *
  606: *        Normalize left eigenvectors and make largest component real
  607: *
  608:          DO 20 I = 1, N
  609:             SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
  610:             CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
  611:             DO 10 K = 1, N
  612:                RWORK( K ) = DBLE( VL( K, I ) )**2 +
  613:      $                      AIMAG( VL( K, I ) )**2
  614:    10       CONTINUE
  615:             K = IDAMAX( N, RWORK, 1 )
  616:             TMP = CONJG( VL( K, I ) ) / SQRT( RWORK( K ) )
  617:             CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
  618:             VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
  619:    20    CONTINUE
  620:       END IF
  621: *
  622:       IF( WANTVR ) THEN
  623: *
  624: *        Undo balancing of right eigenvectors
  625: *
  626:          CALL ZGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
  627:      $                IERR )
  628: *
  629: *        Normalize right eigenvectors and make largest component real
  630: *
  631:          DO 40 I = 1, N
  632:             SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
  633:             CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
  634:             DO 30 K = 1, N
  635:                RWORK( K ) = DBLE( VR( K, I ) )**2 +
  636:      $                      AIMAG( VR( K, I ) )**2
  637:    30       CONTINUE
  638:             K = IDAMAX( N, RWORK, 1 )
  639:             TMP = CONJG( VR( K, I ) ) / SQRT( RWORK( K ) )
  640:             CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
  641:             VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
  642:    40    CONTINUE
  643:       END IF
  644: *
  645: *     Undo scaling if necessary
  646: *
  647:    50 CONTINUE
  648:       IF( SCALEA ) THEN
  649:          CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
  650:      $                MAX( N-INFO, 1 ), IERR )
  651:          IF( INFO.EQ.0 ) THEN
  652:             IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
  653:      $         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
  654:      $                      IERR )
  655:          ELSE
  656:             CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
  657:          END IF
  658:       END IF
  659: *
  660:       WORK( 1 ) = MAXWRK
  661:       RETURN
  662: *
  663: *     End of ZGEEVX
  664: *
  665:       END

CVSweb interface <joel.bertrand@systella.fr>