File:  [local] / rpl / lapack / lapack / zgeevx.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:44 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief <b> ZGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGEEVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeevx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeevx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeevx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
   22: *                          LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE,
   23: *                          RCONDV, WORK, LWORK, RWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
   27: *       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
   28: *       DOUBLE PRECISION   ABNRM
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   RCONDE( * ), RCONDV( * ), RWORK( * ),
   32: *      $                   SCALE( * )
   33: *       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
   34: *      $                   W( * ), WORK( * )
   35: *       ..
   36: *  
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> ZGEEVX computes for an N-by-N complex nonsymmetric matrix A, the
   44: *> eigenvalues and, optionally, the left and/or right eigenvectors.
   45: *>
   46: *> Optionally also, it computes a balancing transformation to improve
   47: *> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
   48: *> SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
   49: *> (RCONDE), and reciprocal condition numbers for the right
   50: *> eigenvectors (RCONDV).
   51: *>
   52: *> The right eigenvector v(j) of A satisfies
   53: *>                  A * v(j) = lambda(j) * v(j)
   54: *> where lambda(j) is its eigenvalue.
   55: *> The left eigenvector u(j) of A satisfies
   56: *>               u(j)**H * A = lambda(j) * u(j)**H
   57: *> where u(j)**H denotes the conjugate transpose of u(j).
   58: *>
   59: *> The computed eigenvectors are normalized to have Euclidean norm
   60: *> equal to 1 and largest component real.
   61: *>
   62: *> Balancing a matrix means permuting the rows and columns to make it
   63: *> more nearly upper triangular, and applying a diagonal similarity
   64: *> transformation D * A * D**(-1), where D is a diagonal matrix, to
   65: *> make its rows and columns closer in norm and the condition numbers
   66: *> of its eigenvalues and eigenvectors smaller.  The computed
   67: *> reciprocal condition numbers correspond to the balanced matrix.
   68: *> Permuting rows and columns will not change the condition numbers
   69: *> (in exact arithmetic) but diagonal scaling will.  For further
   70: *> explanation of balancing, see section 4.10.2 of the LAPACK
   71: *> Users' Guide.
   72: *> \endverbatim
   73: *
   74: *  Arguments:
   75: *  ==========
   76: *
   77: *> \param[in] BALANC
   78: *> \verbatim
   79: *>          BALANC is CHARACTER*1
   80: *>          Indicates how the input matrix should be diagonally scaled
   81: *>          and/or permuted to improve the conditioning of its
   82: *>          eigenvalues.
   83: *>          = 'N': Do not diagonally scale or permute;
   84: *>          = 'P': Perform permutations to make the matrix more nearly
   85: *>                 upper triangular. Do not diagonally scale;
   86: *>          = 'S': Diagonally scale the matrix, ie. replace A by
   87: *>                 D*A*D**(-1), where D is a diagonal matrix chosen
   88: *>                 to make the rows and columns of A more equal in
   89: *>                 norm. Do not permute;
   90: *>          = 'B': Both diagonally scale and permute A.
   91: *>
   92: *>          Computed reciprocal condition numbers will be for the matrix
   93: *>          after balancing and/or permuting. Permuting does not change
   94: *>          condition numbers (in exact arithmetic), but balancing does.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] JOBVL
   98: *> \verbatim
   99: *>          JOBVL is CHARACTER*1
  100: *>          = 'N': left eigenvectors of A are not computed;
  101: *>          = 'V': left eigenvectors of A are computed.
  102: *>          If SENSE = 'E' or 'B', JOBVL must = 'V'.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] JOBVR
  106: *> \verbatim
  107: *>          JOBVR is CHARACTER*1
  108: *>          = 'N': right eigenvectors of A are not computed;
  109: *>          = 'V': right eigenvectors of A are computed.
  110: *>          If SENSE = 'E' or 'B', JOBVR must = 'V'.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] SENSE
  114: *> \verbatim
  115: *>          SENSE is CHARACTER*1
  116: *>          Determines which reciprocal condition numbers are computed.
  117: *>          = 'N': None are computed;
  118: *>          = 'E': Computed for eigenvalues only;
  119: *>          = 'V': Computed for right eigenvectors only;
  120: *>          = 'B': Computed for eigenvalues and right eigenvectors.
  121: *>
  122: *>          If SENSE = 'E' or 'B', both left and right eigenvectors
  123: *>          must also be computed (JOBVL = 'V' and JOBVR = 'V').
  124: *> \endverbatim
  125: *>
  126: *> \param[in] N
  127: *> \verbatim
  128: *>          N is INTEGER
  129: *>          The order of the matrix A. N >= 0.
  130: *> \endverbatim
  131: *>
  132: *> \param[in,out] A
  133: *> \verbatim
  134: *>          A is COMPLEX*16 array, dimension (LDA,N)
  135: *>          On entry, the N-by-N matrix A.
  136: *>          On exit, A has been overwritten.  If JOBVL = 'V' or
  137: *>          JOBVR = 'V', A contains the Schur form of the balanced
  138: *>          version of the matrix A.
  139: *> \endverbatim
  140: *>
  141: *> \param[in] LDA
  142: *> \verbatim
  143: *>          LDA is INTEGER
  144: *>          The leading dimension of the array A.  LDA >= max(1,N).
  145: *> \endverbatim
  146: *>
  147: *> \param[out] W
  148: *> \verbatim
  149: *>          W is COMPLEX*16 array, dimension (N)
  150: *>          W contains the computed eigenvalues.
  151: *> \endverbatim
  152: *>
  153: *> \param[out] VL
  154: *> \verbatim
  155: *>          VL is COMPLEX*16 array, dimension (LDVL,N)
  156: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
  157: *>          after another in the columns of VL, in the same order
  158: *>          as their eigenvalues.
  159: *>          If JOBVL = 'N', VL is not referenced.
  160: *>          u(j) = VL(:,j), the j-th column of VL.
  161: *> \endverbatim
  162: *>
  163: *> \param[in] LDVL
  164: *> \verbatim
  165: *>          LDVL is INTEGER
  166: *>          The leading dimension of the array VL.  LDVL >= 1; if
  167: *>          JOBVL = 'V', LDVL >= N.
  168: *> \endverbatim
  169: *>
  170: *> \param[out] VR
  171: *> \verbatim
  172: *>          VR is COMPLEX*16 array, dimension (LDVR,N)
  173: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
  174: *>          after another in the columns of VR, in the same order
  175: *>          as their eigenvalues.
  176: *>          If JOBVR = 'N', VR is not referenced.
  177: *>          v(j) = VR(:,j), the j-th column of VR.
  178: *> \endverbatim
  179: *>
  180: *> \param[in] LDVR
  181: *> \verbatim
  182: *>          LDVR is INTEGER
  183: *>          The leading dimension of the array VR.  LDVR >= 1; if
  184: *>          JOBVR = 'V', LDVR >= N.
  185: *> \endverbatim
  186: *>
  187: *> \param[out] ILO
  188: *> \verbatim
  189: *>          ILO is INTEGER
  190: *> \endverbatim
  191: *>
  192: *> \param[out] IHI
  193: *> \verbatim
  194: *>          IHI is INTEGER
  195: *>          ILO and IHI are integer values determined when A was
  196: *>          balanced.  The balanced A(i,j) = 0 if I > J and
  197: *>          J = 1,...,ILO-1 or I = IHI+1,...,N.
  198: *> \endverbatim
  199: *>
  200: *> \param[out] SCALE
  201: *> \verbatim
  202: *>          SCALE is DOUBLE PRECISION array, dimension (N)
  203: *>          Details of the permutations and scaling factors applied
  204: *>          when balancing A.  If P(j) is the index of the row and column
  205: *>          interchanged with row and column j, and D(j) is the scaling
  206: *>          factor applied to row and column j, then
  207: *>          SCALE(J) = P(J),    for J = 1,...,ILO-1
  208: *>                   = D(J),    for J = ILO,...,IHI
  209: *>                   = P(J)     for J = IHI+1,...,N.
  210: *>          The order in which the interchanges are made is N to IHI+1,
  211: *>          then 1 to ILO-1.
  212: *> \endverbatim
  213: *>
  214: *> \param[out] ABNRM
  215: *> \verbatim
  216: *>          ABNRM is DOUBLE PRECISION
  217: *>          The one-norm of the balanced matrix (the maximum
  218: *>          of the sum of absolute values of elements of any column).
  219: *> \endverbatim
  220: *>
  221: *> \param[out] RCONDE
  222: *> \verbatim
  223: *>          RCONDE is DOUBLE PRECISION array, dimension (N)
  224: *>          RCONDE(j) is the reciprocal condition number of the j-th
  225: *>          eigenvalue.
  226: *> \endverbatim
  227: *>
  228: *> \param[out] RCONDV
  229: *> \verbatim
  230: *>          RCONDV is DOUBLE PRECISION array, dimension (N)
  231: *>          RCONDV(j) is the reciprocal condition number of the j-th
  232: *>          right eigenvector.
  233: *> \endverbatim
  234: *>
  235: *> \param[out] WORK
  236: *> \verbatim
  237: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  238: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  239: *> \endverbatim
  240: *>
  241: *> \param[in] LWORK
  242: *> \verbatim
  243: *>          LWORK is INTEGER
  244: *>          The dimension of the array WORK.  If SENSE = 'N' or 'E',
  245: *>          LWORK >= max(1,2*N), and if SENSE = 'V' or 'B',
  246: *>          LWORK >= N*N+2*N.
  247: *>          For good performance, LWORK must generally be larger.
  248: *>
  249: *>          If LWORK = -1, then a workspace query is assumed; the routine
  250: *>          only calculates the optimal size of the WORK array, returns
  251: *>          this value as the first entry of the WORK array, and no error
  252: *>          message related to LWORK is issued by XERBLA.
  253: *> \endverbatim
  254: *>
  255: *> \param[out] RWORK
  256: *> \verbatim
  257: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  258: *> \endverbatim
  259: *>
  260: *> \param[out] INFO
  261: *> \verbatim
  262: *>          INFO is INTEGER
  263: *>          = 0:  successful exit
  264: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  265: *>          > 0:  if INFO = i, the QR algorithm failed to compute all the
  266: *>                eigenvalues, and no eigenvectors or condition numbers
  267: *>                have been computed; elements 1:ILO-1 and i+1:N of W
  268: *>                contain eigenvalues which have converged.
  269: *> \endverbatim
  270: *
  271: *  Authors:
  272: *  ========
  273: *
  274: *> \author Univ. of Tennessee 
  275: *> \author Univ. of California Berkeley 
  276: *> \author Univ. of Colorado Denver 
  277: *> \author NAG Ltd. 
  278: *
  279: *> \date November 2011
  280: *
  281: *> \ingroup complex16GEeigen
  282: *
  283: *  =====================================================================
  284:       SUBROUTINE ZGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
  285:      $                   LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE,
  286:      $                   RCONDV, WORK, LWORK, RWORK, INFO )
  287: *
  288: *  -- LAPACK driver routine (version 3.4.0) --
  289: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  290: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  291: *     November 2011
  292: *
  293: *     .. Scalar Arguments ..
  294:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
  295:       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
  296:       DOUBLE PRECISION   ABNRM
  297: *     ..
  298: *     .. Array Arguments ..
  299:       DOUBLE PRECISION   RCONDE( * ), RCONDV( * ), RWORK( * ),
  300:      $                   SCALE( * )
  301:       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
  302:      $                   W( * ), WORK( * )
  303: *     ..
  304: *
  305: *  =====================================================================
  306: *
  307: *     .. Parameters ..
  308:       DOUBLE PRECISION   ZERO, ONE
  309:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  310: *     ..
  311: *     .. Local Scalars ..
  312:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
  313:      $                   WNTSNN, WNTSNV
  314:       CHARACTER          JOB, SIDE
  315:       INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
  316:      $                   MINWRK, NOUT
  317:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
  318:       COMPLEX*16         TMP
  319: *     ..
  320: *     .. Local Arrays ..
  321:       LOGICAL            SELECT( 1 )
  322:       DOUBLE PRECISION   DUM( 1 )
  323: *     ..
  324: *     .. External Subroutines ..
  325:       EXTERNAL           DLABAD, DLASCL, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL,
  326:      $                   ZGEHRD, ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC,
  327:      $                   ZTRSNA, ZUNGHR
  328: *     ..
  329: *     .. External Functions ..
  330:       LOGICAL            LSAME
  331:       INTEGER            IDAMAX, ILAENV
  332:       DOUBLE PRECISION   DLAMCH, DZNRM2, ZLANGE
  333:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
  334: *     ..
  335: *     .. Intrinsic Functions ..
  336:       INTRINSIC          DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  337: *     ..
  338: *     .. Executable Statements ..
  339: *
  340: *     Test the input arguments
  341: *
  342:       INFO = 0
  343:       LQUERY = ( LWORK.EQ.-1 )
  344:       WANTVL = LSAME( JOBVL, 'V' )
  345:       WANTVR = LSAME( JOBVR, 'V' )
  346:       WNTSNN = LSAME( SENSE, 'N' )
  347:       WNTSNE = LSAME( SENSE, 'E' )
  348:       WNTSNV = LSAME( SENSE, 'V' )
  349:       WNTSNB = LSAME( SENSE, 'B' )
  350:       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'S' ) .OR.
  351:      $    LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) ) THEN
  352:          INFO = -1
  353:       ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
  354:          INFO = -2
  355:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
  356:          INFO = -3
  357:       ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
  358:      $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
  359:      $         WANTVR ) ) ) THEN
  360:          INFO = -4
  361:       ELSE IF( N.LT.0 ) THEN
  362:          INFO = -5
  363:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  364:          INFO = -7
  365:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
  366:          INFO = -10
  367:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
  368:          INFO = -12
  369:       END IF
  370: *
  371: *     Compute workspace
  372: *      (Note: Comments in the code beginning "Workspace:" describe the
  373: *       minimal amount of workspace needed at that point in the code,
  374: *       as well as the preferred amount for good performance.
  375: *       CWorkspace refers to complex workspace, and RWorkspace to real
  376: *       workspace. NB refers to the optimal block size for the
  377: *       immediately following subroutine, as returned by ILAENV.
  378: *       HSWORK refers to the workspace preferred by ZHSEQR, as
  379: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  380: *       the worst case.)
  381: *
  382:       IF( INFO.EQ.0 ) THEN
  383:          IF( N.EQ.0 ) THEN
  384:             MINWRK = 1
  385:             MAXWRK = 1
  386:          ELSE
  387:             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
  388: *
  389:             IF( WANTVL ) THEN
  390:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
  391:      $                WORK, -1, INFO )
  392:             ELSE IF( WANTVR ) THEN
  393:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
  394:      $                WORK, -1, INFO )
  395:             ELSE
  396:                IF( WNTSNN ) THEN
  397:                   CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
  398:      $                WORK, -1, INFO )
  399:                ELSE
  400:                   CALL ZHSEQR( 'S', 'N', N, 1, N, A, LDA, W, VR, LDVR,
  401:      $                WORK, -1, INFO )
  402:                END IF
  403:             END IF
  404:             HSWORK = WORK( 1 )
  405: *
  406:             IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
  407:                MINWRK = 2*N
  408:                IF( .NOT.( WNTSNN .OR. WNTSNE ) )
  409:      $            MINWRK = MAX( MINWRK, N*N + 2*N )
  410:                MAXWRK = MAX( MAXWRK, HSWORK )
  411:                IF( .NOT.( WNTSNN .OR. WNTSNE ) )
  412:      $            MAXWRK = MAX( MAXWRK, N*N + 2*N )
  413:             ELSE
  414:                MINWRK = 2*N
  415:                IF( .NOT.( WNTSNN .OR. WNTSNE ) )
  416:      $            MINWRK = MAX( MINWRK, N*N + 2*N )
  417:                MAXWRK = MAX( MAXWRK, HSWORK )
  418:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
  419:      $                       ' ', N, 1, N, -1 ) )
  420:                IF( .NOT.( WNTSNN .OR. WNTSNE ) )
  421:      $            MAXWRK = MAX( MAXWRK, N*N + 2*N )
  422:                MAXWRK = MAX( MAXWRK, 2*N )
  423:             END IF
  424:             MAXWRK = MAX( MAXWRK, MINWRK )
  425:          END IF
  426:          WORK( 1 ) = MAXWRK
  427: *
  428:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  429:             INFO = -20
  430:          END IF
  431:       END IF
  432: *
  433:       IF( INFO.NE.0 ) THEN
  434:          CALL XERBLA( 'ZGEEVX', -INFO )
  435:          RETURN
  436:       ELSE IF( LQUERY ) THEN
  437:          RETURN
  438:       END IF
  439: *
  440: *     Quick return if possible
  441: *
  442:       IF( N.EQ.0 )
  443:      $   RETURN
  444: *
  445: *     Get machine constants
  446: *
  447:       EPS = DLAMCH( 'P' )
  448:       SMLNUM = DLAMCH( 'S' )
  449:       BIGNUM = ONE / SMLNUM
  450:       CALL DLABAD( SMLNUM, BIGNUM )
  451:       SMLNUM = SQRT( SMLNUM ) / EPS
  452:       BIGNUM = ONE / SMLNUM
  453: *
  454: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  455: *
  456:       ICOND = 0
  457:       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
  458:       SCALEA = .FALSE.
  459:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  460:          SCALEA = .TRUE.
  461:          CSCALE = SMLNUM
  462:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  463:          SCALEA = .TRUE.
  464:          CSCALE = BIGNUM
  465:       END IF
  466:       IF( SCALEA )
  467:      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  468: *
  469: *     Balance the matrix and compute ABNRM
  470: *
  471:       CALL ZGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
  472:       ABNRM = ZLANGE( '1', N, N, A, LDA, DUM )
  473:       IF( SCALEA ) THEN
  474:          DUM( 1 ) = ABNRM
  475:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
  476:          ABNRM = DUM( 1 )
  477:       END IF
  478: *
  479: *     Reduce to upper Hessenberg form
  480: *     (CWorkspace: need 2*N, prefer N+N*NB)
  481: *     (RWorkspace: none)
  482: *
  483:       ITAU = 1
  484:       IWRK = ITAU + N
  485:       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  486:      $             LWORK-IWRK+1, IERR )
  487: *
  488:       IF( WANTVL ) THEN
  489: *
  490: *        Want left eigenvectors
  491: *        Copy Householder vectors to VL
  492: *
  493:          SIDE = 'L'
  494:          CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
  495: *
  496: *        Generate unitary matrix in VL
  497: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
  498: *        (RWorkspace: none)
  499: *
  500:          CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
  501:      $                LWORK-IWRK+1, IERR )
  502: *
  503: *        Perform QR iteration, accumulating Schur vectors in VL
  504: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
  505: *        (RWorkspace: none)
  506: *
  507:          IWRK = ITAU
  508:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
  509:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  510: *
  511:          IF( WANTVR ) THEN
  512: *
  513: *           Want left and right eigenvectors
  514: *           Copy Schur vectors to VR
  515: *
  516:             SIDE = 'B'
  517:             CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
  518:          END IF
  519: *
  520:       ELSE IF( WANTVR ) THEN
  521: *
  522: *        Want right eigenvectors
  523: *        Copy Householder vectors to VR
  524: *
  525:          SIDE = 'R'
  526:          CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
  527: *
  528: *        Generate unitary matrix in VR
  529: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
  530: *        (RWorkspace: none)
  531: *
  532:          CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
  533:      $                LWORK-IWRK+1, IERR )
  534: *
  535: *        Perform QR iteration, accumulating Schur vectors in VR
  536: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
  537: *        (RWorkspace: none)
  538: *
  539:          IWRK = ITAU
  540:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
  541:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  542: *
  543:       ELSE
  544: *
  545: *        Compute eigenvalues only
  546: *        If condition numbers desired, compute Schur form
  547: *
  548:          IF( WNTSNN ) THEN
  549:             JOB = 'E'
  550:          ELSE
  551:             JOB = 'S'
  552:          END IF
  553: *
  554: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
  555: *        (RWorkspace: none)
  556: *
  557:          IWRK = ITAU
  558:          CALL ZHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
  559:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  560:       END IF
  561: *
  562: *     If INFO > 0 from ZHSEQR, then quit
  563: *
  564:       IF( INFO.GT.0 )
  565:      $   GO TO 50
  566: *
  567:       IF( WANTVL .OR. WANTVR ) THEN
  568: *
  569: *        Compute left and/or right eigenvectors
  570: *        (CWorkspace: need 2*N)
  571: *        (RWorkspace: need N)
  572: *
  573:          CALL ZTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  574:      $                N, NOUT, WORK( IWRK ), RWORK, IERR )
  575:       END IF
  576: *
  577: *     Compute condition numbers if desired
  578: *     (CWorkspace: need N*N+2*N unless SENSE = 'E')
  579: *     (RWorkspace: need 2*N unless SENSE = 'E')
  580: *
  581:       IF( .NOT.WNTSNN ) THEN
  582:          CALL ZTRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  583:      $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, RWORK,
  584:      $                ICOND )
  585:       END IF
  586: *
  587:       IF( WANTVL ) THEN
  588: *
  589: *        Undo balancing of left eigenvectors
  590: *
  591:          CALL ZGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
  592:      $                IERR )
  593: *
  594: *        Normalize left eigenvectors and make largest component real
  595: *
  596:          DO 20 I = 1, N
  597:             SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
  598:             CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
  599:             DO 10 K = 1, N
  600:                RWORK( K ) = DBLE( VL( K, I ) )**2 +
  601:      $                      DIMAG( VL( K, I ) )**2
  602:    10       CONTINUE
  603:             K = IDAMAX( N, RWORK, 1 )
  604:             TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( K ) )
  605:             CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
  606:             VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
  607:    20    CONTINUE
  608:       END IF
  609: *
  610:       IF( WANTVR ) THEN
  611: *
  612: *        Undo balancing of right eigenvectors
  613: *
  614:          CALL ZGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
  615:      $                IERR )
  616: *
  617: *        Normalize right eigenvectors and make largest component real
  618: *
  619:          DO 40 I = 1, N
  620:             SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
  621:             CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
  622:             DO 30 K = 1, N
  623:                RWORK( K ) = DBLE( VR( K, I ) )**2 +
  624:      $                      DIMAG( VR( K, I ) )**2
  625:    30       CONTINUE
  626:             K = IDAMAX( N, RWORK, 1 )
  627:             TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( K ) )
  628:             CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
  629:             VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
  630:    40    CONTINUE
  631:       END IF
  632: *
  633: *     Undo scaling if necessary
  634: *
  635:    50 CONTINUE
  636:       IF( SCALEA ) THEN
  637:          CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
  638:      $                MAX( N-INFO, 1 ), IERR )
  639:          IF( INFO.EQ.0 ) THEN
  640:             IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
  641:      $         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
  642:      $                      IERR )
  643:          ELSE
  644:             CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
  645:          END IF
  646:       END IF
  647: *
  648:       WORK( 1 ) = MAXWRK
  649:       RETURN
  650: *
  651: *     End of ZGEEVX
  652: *
  653:       END

CVSweb interface <joel.bertrand@systella.fr>