Annotation of rpl/lapack/lapack/zgeevx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL,
        !             2:      $                   LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE,
        !             3:      $                   RCONDV, WORK, LWORK, RWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
        !            12:       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
        !            13:       DOUBLE PRECISION   ABNRM
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       DOUBLE PRECISION   RCONDE( * ), RCONDV( * ), RWORK( * ),
        !            17:      $                   SCALE( * )
        !            18:       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
        !            19:      $                   W( * ), WORK( * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  ZGEEVX computes for an N-by-N complex nonsymmetric matrix A, the
        !            26: *  eigenvalues and, optionally, the left and/or right eigenvectors.
        !            27: *
        !            28: *  Optionally also, it computes a balancing transformation to improve
        !            29: *  the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
        !            30: *  SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
        !            31: *  (RCONDE), and reciprocal condition numbers for the right
        !            32: *  eigenvectors (RCONDV).
        !            33: *
        !            34: *  The right eigenvector v(j) of A satisfies
        !            35: *                   A * v(j) = lambda(j) * v(j)
        !            36: *  where lambda(j) is its eigenvalue.
        !            37: *  The left eigenvector u(j) of A satisfies
        !            38: *                u(j)**H * A = lambda(j) * u(j)**H
        !            39: *  where u(j)**H denotes the conjugate transpose of u(j).
        !            40: *
        !            41: *  The computed eigenvectors are normalized to have Euclidean norm
        !            42: *  equal to 1 and largest component real.
        !            43: *
        !            44: *  Balancing a matrix means permuting the rows and columns to make it
        !            45: *  more nearly upper triangular, and applying a diagonal similarity
        !            46: *  transformation D * A * D**(-1), where D is a diagonal matrix, to
        !            47: *  make its rows and columns closer in norm and the condition numbers
        !            48: *  of its eigenvalues and eigenvectors smaller.  The computed
        !            49: *  reciprocal condition numbers correspond to the balanced matrix.
        !            50: *  Permuting rows and columns will not change the condition numbers
        !            51: *  (in exact arithmetic) but diagonal scaling will.  For further
        !            52: *  explanation of balancing, see section 4.10.2 of the LAPACK
        !            53: *  Users' Guide.
        !            54: *
        !            55: *  Arguments
        !            56: *  =========
        !            57: *
        !            58: *  BALANC  (input) CHARACTER*1
        !            59: *          Indicates how the input matrix should be diagonally scaled
        !            60: *          and/or permuted to improve the conditioning of its
        !            61: *          eigenvalues.
        !            62: *          = 'N': Do not diagonally scale or permute;
        !            63: *          = 'P': Perform permutations to make the matrix more nearly
        !            64: *                 upper triangular. Do not diagonally scale;
        !            65: *          = 'S': Diagonally scale the matrix, ie. replace A by
        !            66: *                 D*A*D**(-1), where D is a diagonal matrix chosen
        !            67: *                 to make the rows and columns of A more equal in
        !            68: *                 norm. Do not permute;
        !            69: *          = 'B': Both diagonally scale and permute A.
        !            70: *
        !            71: *          Computed reciprocal condition numbers will be for the matrix
        !            72: *          after balancing and/or permuting. Permuting does not change
        !            73: *          condition numbers (in exact arithmetic), but balancing does.
        !            74: *
        !            75: *  JOBVL   (input) CHARACTER*1
        !            76: *          = 'N': left eigenvectors of A are not computed;
        !            77: *          = 'V': left eigenvectors of A are computed.
        !            78: *          If SENSE = 'E' or 'B', JOBVL must = 'V'.
        !            79: *
        !            80: *  JOBVR   (input) CHARACTER*1
        !            81: *          = 'N': right eigenvectors of A are not computed;
        !            82: *          = 'V': right eigenvectors of A are computed.
        !            83: *          If SENSE = 'E' or 'B', JOBVR must = 'V'.
        !            84: *
        !            85: *  SENSE   (input) CHARACTER*1
        !            86: *          Determines which reciprocal condition numbers are computed.
        !            87: *          = 'N': None are computed;
        !            88: *          = 'E': Computed for eigenvalues only;
        !            89: *          = 'V': Computed for right eigenvectors only;
        !            90: *          = 'B': Computed for eigenvalues and right eigenvectors.
        !            91: *
        !            92: *          If SENSE = 'E' or 'B', both left and right eigenvectors
        !            93: *          must also be computed (JOBVL = 'V' and JOBVR = 'V').
        !            94: *
        !            95: *  N       (input) INTEGER
        !            96: *          The order of the matrix A. N >= 0.
        !            97: *
        !            98: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            99: *          On entry, the N-by-N matrix A.
        !           100: *          On exit, A has been overwritten.  If JOBVL = 'V' or
        !           101: *          JOBVR = 'V', A contains the Schur form of the balanced
        !           102: *          version of the matrix A.
        !           103: *
        !           104: *  LDA     (input) INTEGER
        !           105: *          The leading dimension of the array A.  LDA >= max(1,N).
        !           106: *
        !           107: *  W       (output) COMPLEX*16 array, dimension (N)
        !           108: *          W contains the computed eigenvalues.
        !           109: *
        !           110: *  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
        !           111: *          If JOBVL = 'V', the left eigenvectors u(j) are stored one
        !           112: *          after another in the columns of VL, in the same order
        !           113: *          as their eigenvalues.
        !           114: *          If JOBVL = 'N', VL is not referenced.
        !           115: *          u(j) = VL(:,j), the j-th column of VL.
        !           116: *
        !           117: *  LDVL    (input) INTEGER
        !           118: *          The leading dimension of the array VL.  LDVL >= 1; if
        !           119: *          JOBVL = 'V', LDVL >= N.
        !           120: *
        !           121: *  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
        !           122: *          If JOBVR = 'V', the right eigenvectors v(j) are stored one
        !           123: *          after another in the columns of VR, in the same order
        !           124: *          as their eigenvalues.
        !           125: *          If JOBVR = 'N', VR is not referenced.
        !           126: *          v(j) = VR(:,j), the j-th column of VR.
        !           127: *
        !           128: *  LDVR    (input) INTEGER
        !           129: *          The leading dimension of the array VR.  LDVR >= 1; if
        !           130: *          JOBVR = 'V', LDVR >= N.
        !           131: *
        !           132: *  ILO     (output) INTEGER
        !           133: *  IHI     (output) INTEGER
        !           134: *          ILO and IHI are integer values determined when A was
        !           135: *          balanced.  The balanced A(i,j) = 0 if I > J and
        !           136: *          J = 1,...,ILO-1 or I = IHI+1,...,N.
        !           137: *
        !           138: *  SCALE   (output) DOUBLE PRECISION array, dimension (N)
        !           139: *          Details of the permutations and scaling factors applied
        !           140: *          when balancing A.  If P(j) is the index of the row and column
        !           141: *          interchanged with row and column j, and D(j) is the scaling
        !           142: *          factor applied to row and column j, then
        !           143: *          SCALE(J) = P(J),    for J = 1,...,ILO-1
        !           144: *                   = D(J),    for J = ILO,...,IHI
        !           145: *                   = P(J)     for J = IHI+1,...,N.
        !           146: *          The order in which the interchanges are made is N to IHI+1,
        !           147: *          then 1 to ILO-1.
        !           148: *
        !           149: *  ABNRM   (output) DOUBLE PRECISION
        !           150: *          The one-norm of the balanced matrix (the maximum
        !           151: *          of the sum of absolute values of elements of any column).
        !           152: *
        !           153: *  RCONDE  (output) DOUBLE PRECISION array, dimension (N)
        !           154: *          RCONDE(j) is the reciprocal condition number of the j-th
        !           155: *          eigenvalue.
        !           156: *
        !           157: *  RCONDV  (output) DOUBLE PRECISION array, dimension (N)
        !           158: *          RCONDV(j) is the reciprocal condition number of the j-th
        !           159: *          right eigenvector.
        !           160: *
        !           161: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           162: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           163: *
        !           164: *  LWORK   (input) INTEGER
        !           165: *          The dimension of the array WORK.  If SENSE = 'N' or 'E',
        !           166: *          LWORK >= max(1,2*N), and if SENSE = 'V' or 'B',
        !           167: *          LWORK >= N*N+2*N.
        !           168: *          For good performance, LWORK must generally be larger.
        !           169: *
        !           170: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           171: *          only calculates the optimal size of the WORK array, returns
        !           172: *          this value as the first entry of the WORK array, and no error
        !           173: *          message related to LWORK is issued by XERBLA.
        !           174: *
        !           175: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
        !           176: *
        !           177: *  INFO    (output) INTEGER
        !           178: *          = 0:  successful exit
        !           179: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           180: *          > 0:  if INFO = i, the QR algorithm failed to compute all the
        !           181: *                eigenvalues, and no eigenvectors or condition numbers
        !           182: *                have been computed; elements 1:ILO-1 and i+1:N of W
        !           183: *                contain eigenvalues which have converged.
        !           184: *
        !           185: *  =====================================================================
        !           186: *
        !           187: *     .. Parameters ..
        !           188:       DOUBLE PRECISION   ZERO, ONE
        !           189:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           190: *     ..
        !           191: *     .. Local Scalars ..
        !           192:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
        !           193:      $                   WNTSNN, WNTSNV
        !           194:       CHARACTER          JOB, SIDE
        !           195:       INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
        !           196:      $                   MINWRK, NOUT
        !           197:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
        !           198:       COMPLEX*16         TMP
        !           199: *     ..
        !           200: *     .. Local Arrays ..
        !           201:       LOGICAL            SELECT( 1 )
        !           202:       DOUBLE PRECISION   DUM( 1 )
        !           203: *     ..
        !           204: *     .. External Subroutines ..
        !           205:       EXTERNAL           DLABAD, DLASCL, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL,
        !           206:      $                   ZGEHRD, ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC,
        !           207:      $                   ZTRSNA, ZUNGHR
        !           208: *     ..
        !           209: *     .. External Functions ..
        !           210:       LOGICAL            LSAME
        !           211:       INTEGER            IDAMAX, ILAENV
        !           212:       DOUBLE PRECISION   DLAMCH, DZNRM2, ZLANGE
        !           213:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
        !           214: *     ..
        !           215: *     .. Intrinsic Functions ..
        !           216:       INTRINSIC          DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
        !           217: *     ..
        !           218: *     .. Executable Statements ..
        !           219: *
        !           220: *     Test the input arguments
        !           221: *
        !           222:       INFO = 0
        !           223:       LQUERY = ( LWORK.EQ.-1 )
        !           224:       WANTVL = LSAME( JOBVL, 'V' )
        !           225:       WANTVR = LSAME( JOBVR, 'V' )
        !           226:       WNTSNN = LSAME( SENSE, 'N' )
        !           227:       WNTSNE = LSAME( SENSE, 'E' )
        !           228:       WNTSNV = LSAME( SENSE, 'V' )
        !           229:       WNTSNB = LSAME( SENSE, 'B' )
        !           230:       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'S' ) .OR.
        !           231:      $    LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) ) THEN
        !           232:          INFO = -1
        !           233:       ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
        !           234:          INFO = -2
        !           235:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
        !           236:          INFO = -3
        !           237:       ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
        !           238:      $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
        !           239:      $         WANTVR ) ) ) THEN
        !           240:          INFO = -4
        !           241:       ELSE IF( N.LT.0 ) THEN
        !           242:          INFO = -5
        !           243:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           244:          INFO = -7
        !           245:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
        !           246:          INFO = -10
        !           247:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
        !           248:          INFO = -12
        !           249:       END IF
        !           250: *
        !           251: *     Compute workspace
        !           252: *      (Note: Comments in the code beginning "Workspace:" describe the
        !           253: *       minimal amount of workspace needed at that point in the code,
        !           254: *       as well as the preferred amount for good performance.
        !           255: *       CWorkspace refers to complex workspace, and RWorkspace to real
        !           256: *       workspace. NB refers to the optimal block size for the
        !           257: *       immediately following subroutine, as returned by ILAENV.
        !           258: *       HSWORK refers to the workspace preferred by ZHSEQR, as
        !           259: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
        !           260: *       the worst case.)
        !           261: *
        !           262:       IF( INFO.EQ.0 ) THEN
        !           263:          IF( N.EQ.0 ) THEN
        !           264:             MINWRK = 1
        !           265:             MAXWRK = 1
        !           266:          ELSE
        !           267:             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
        !           268: *
        !           269:             IF( WANTVL ) THEN
        !           270:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
        !           271:      $                WORK, -1, INFO )
        !           272:             ELSE IF( WANTVR ) THEN
        !           273:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
        !           274:      $                WORK, -1, INFO )
        !           275:             ELSE
        !           276:                IF( WNTSNN ) THEN
        !           277:                   CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
        !           278:      $                WORK, -1, INFO )
        !           279:                ELSE
        !           280:                   CALL ZHSEQR( 'S', 'N', N, 1, N, A, LDA, W, VR, LDVR,
        !           281:      $                WORK, -1, INFO )
        !           282:                END IF
        !           283:             END IF
        !           284:             HSWORK = WORK( 1 )
        !           285: *
        !           286:             IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
        !           287:                MINWRK = 2*N
        !           288:                IF( .NOT.( WNTSNN .OR. WNTSNE ) )
        !           289:      $            MINWRK = MAX( MINWRK, N*N + 2*N )
        !           290:                MAXWRK = MAX( MAXWRK, HSWORK )
        !           291:                IF( .NOT.( WNTSNN .OR. WNTSNE ) )
        !           292:      $            MAXWRK = MAX( MAXWRK, N*N + 2*N )
        !           293:             ELSE
        !           294:                MINWRK = 2*N
        !           295:                IF( .NOT.( WNTSNN .OR. WNTSNE ) )
        !           296:      $            MINWRK = MAX( MINWRK, N*N + 2*N )
        !           297:                MAXWRK = MAX( MAXWRK, HSWORK )
        !           298:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
        !           299:      $                       ' ', N, 1, N, -1 ) )
        !           300:                IF( .NOT.( WNTSNN .OR. WNTSNE ) )
        !           301:      $            MAXWRK = MAX( MAXWRK, N*N + 2*N )
        !           302:                MAXWRK = MAX( MAXWRK, 2*N )
        !           303:             END IF
        !           304:             MAXWRK = MAX( MAXWRK, MINWRK )
        !           305:          END IF
        !           306:          WORK( 1 ) = MAXWRK
        !           307: *
        !           308:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
        !           309:             INFO = -20
        !           310:          END IF
        !           311:       END IF
        !           312: *
        !           313:       IF( INFO.NE.0 ) THEN
        !           314:          CALL XERBLA( 'ZGEEVX', -INFO )
        !           315:          RETURN
        !           316:       ELSE IF( LQUERY ) THEN
        !           317:          RETURN
        !           318:       END IF
        !           319: *
        !           320: *     Quick return if possible
        !           321: *
        !           322:       IF( N.EQ.0 )
        !           323:      $   RETURN
        !           324: *
        !           325: *     Get machine constants
        !           326: *
        !           327:       EPS = DLAMCH( 'P' )
        !           328:       SMLNUM = DLAMCH( 'S' )
        !           329:       BIGNUM = ONE / SMLNUM
        !           330:       CALL DLABAD( SMLNUM, BIGNUM )
        !           331:       SMLNUM = SQRT( SMLNUM ) / EPS
        !           332:       BIGNUM = ONE / SMLNUM
        !           333: *
        !           334: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           335: *
        !           336:       ICOND = 0
        !           337:       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
        !           338:       SCALEA = .FALSE.
        !           339:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           340:          SCALEA = .TRUE.
        !           341:          CSCALE = SMLNUM
        !           342:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           343:          SCALEA = .TRUE.
        !           344:          CSCALE = BIGNUM
        !           345:       END IF
        !           346:       IF( SCALEA )
        !           347:      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
        !           348: *
        !           349: *     Balance the matrix and compute ABNRM
        !           350: *
        !           351:       CALL ZGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
        !           352:       ABNRM = ZLANGE( '1', N, N, A, LDA, DUM )
        !           353:       IF( SCALEA ) THEN
        !           354:          DUM( 1 ) = ABNRM
        !           355:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
        !           356:          ABNRM = DUM( 1 )
        !           357:       END IF
        !           358: *
        !           359: *     Reduce to upper Hessenberg form
        !           360: *     (CWorkspace: need 2*N, prefer N+N*NB)
        !           361: *     (RWorkspace: none)
        !           362: *
        !           363:       ITAU = 1
        !           364:       IWRK = ITAU + N
        !           365:       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
        !           366:      $             LWORK-IWRK+1, IERR )
        !           367: *
        !           368:       IF( WANTVL ) THEN
        !           369: *
        !           370: *        Want left eigenvectors
        !           371: *        Copy Householder vectors to VL
        !           372: *
        !           373:          SIDE = 'L'
        !           374:          CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
        !           375: *
        !           376: *        Generate unitary matrix in VL
        !           377: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
        !           378: *        (RWorkspace: none)
        !           379: *
        !           380:          CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
        !           381:      $                LWORK-IWRK+1, IERR )
        !           382: *
        !           383: *        Perform QR iteration, accumulating Schur vectors in VL
        !           384: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
        !           385: *        (RWorkspace: none)
        !           386: *
        !           387:          IWRK = ITAU
        !           388:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
        !           389:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
        !           390: *
        !           391:          IF( WANTVR ) THEN
        !           392: *
        !           393: *           Want left and right eigenvectors
        !           394: *           Copy Schur vectors to VR
        !           395: *
        !           396:             SIDE = 'B'
        !           397:             CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
        !           398:          END IF
        !           399: *
        !           400:       ELSE IF( WANTVR ) THEN
        !           401: *
        !           402: *        Want right eigenvectors
        !           403: *        Copy Householder vectors to VR
        !           404: *
        !           405:          SIDE = 'R'
        !           406:          CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
        !           407: *
        !           408: *        Generate unitary matrix in VR
        !           409: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
        !           410: *        (RWorkspace: none)
        !           411: *
        !           412:          CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
        !           413:      $                LWORK-IWRK+1, IERR )
        !           414: *
        !           415: *        Perform QR iteration, accumulating Schur vectors in VR
        !           416: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
        !           417: *        (RWorkspace: none)
        !           418: *
        !           419:          IWRK = ITAU
        !           420:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
        !           421:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
        !           422: *
        !           423:       ELSE
        !           424: *
        !           425: *        Compute eigenvalues only
        !           426: *        If condition numbers desired, compute Schur form
        !           427: *
        !           428:          IF( WNTSNN ) THEN
        !           429:             JOB = 'E'
        !           430:          ELSE
        !           431:             JOB = 'S'
        !           432:          END IF
        !           433: *
        !           434: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
        !           435: *        (RWorkspace: none)
        !           436: *
        !           437:          IWRK = ITAU
        !           438:          CALL ZHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
        !           439:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
        !           440:       END IF
        !           441: *
        !           442: *     If INFO > 0 from ZHSEQR, then quit
        !           443: *
        !           444:       IF( INFO.GT.0 )
        !           445:      $   GO TO 50
        !           446: *
        !           447:       IF( WANTVL .OR. WANTVR ) THEN
        !           448: *
        !           449: *        Compute left and/or right eigenvectors
        !           450: *        (CWorkspace: need 2*N)
        !           451: *        (RWorkspace: need N)
        !           452: *
        !           453:          CALL ZTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
        !           454:      $                N, NOUT, WORK( IWRK ), RWORK, IERR )
        !           455:       END IF
        !           456: *
        !           457: *     Compute condition numbers if desired
        !           458: *     (CWorkspace: need N*N+2*N unless SENSE = 'E')
        !           459: *     (RWorkspace: need 2*N unless SENSE = 'E')
        !           460: *
        !           461:       IF( .NOT.WNTSNN ) THEN
        !           462:          CALL ZTRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
        !           463:      $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, RWORK,
        !           464:      $                ICOND )
        !           465:       END IF
        !           466: *
        !           467:       IF( WANTVL ) THEN
        !           468: *
        !           469: *        Undo balancing of left eigenvectors
        !           470: *
        !           471:          CALL ZGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
        !           472:      $                IERR )
        !           473: *
        !           474: *        Normalize left eigenvectors and make largest component real
        !           475: *
        !           476:          DO 20 I = 1, N
        !           477:             SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
        !           478:             CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
        !           479:             DO 10 K = 1, N
        !           480:                RWORK( K ) = DBLE( VL( K, I ) )**2 +
        !           481:      $                      DIMAG( VL( K, I ) )**2
        !           482:    10       CONTINUE
        !           483:             K = IDAMAX( N, RWORK, 1 )
        !           484:             TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( K ) )
        !           485:             CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
        !           486:             VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
        !           487:    20    CONTINUE
        !           488:       END IF
        !           489: *
        !           490:       IF( WANTVR ) THEN
        !           491: *
        !           492: *        Undo balancing of right eigenvectors
        !           493: *
        !           494:          CALL ZGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
        !           495:      $                IERR )
        !           496: *
        !           497: *        Normalize right eigenvectors and make largest component real
        !           498: *
        !           499:          DO 40 I = 1, N
        !           500:             SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
        !           501:             CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
        !           502:             DO 30 K = 1, N
        !           503:                RWORK( K ) = DBLE( VR( K, I ) )**2 +
        !           504:      $                      DIMAG( VR( K, I ) )**2
        !           505:    30       CONTINUE
        !           506:             K = IDAMAX( N, RWORK, 1 )
        !           507:             TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( K ) )
        !           508:             CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
        !           509:             VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
        !           510:    40    CONTINUE
        !           511:       END IF
        !           512: *
        !           513: *     Undo scaling if necessary
        !           514: *
        !           515:    50 CONTINUE
        !           516:       IF( SCALEA ) THEN
        !           517:          CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
        !           518:      $                MAX( N-INFO, 1 ), IERR )
        !           519:          IF( INFO.EQ.0 ) THEN
        !           520:             IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
        !           521:      $         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
        !           522:      $                      IERR )
        !           523:          ELSE
        !           524:             CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
        !           525:          END IF
        !           526:       END IF
        !           527: *
        !           528:       WORK( 1 ) = MAXWRK
        !           529:       RETURN
        !           530: *
        !           531: *     End of ZGEEVX
        !           532: *
        !           533:       END

CVSweb interface <joel.bertrand@systella.fr>