File:  [local] / rpl / lapack / lapack / zgeev.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:32 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief <b> ZGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGEEV + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeev.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeev.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeev.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
   22: *                         WORK, LWORK, RWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOBVL, JOBVR
   26: *       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   RWORK( * )
   30: *       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
   31: *      $                   W( * ), WORK( * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
   41: *> eigenvalues and, optionally, the left and/or right eigenvectors.
   42: *>
   43: *> The right eigenvector v(j) of A satisfies
   44: *>                  A * v(j) = lambda(j) * v(j)
   45: *> where lambda(j) is its eigenvalue.
   46: *> The left eigenvector u(j) of A satisfies
   47: *>               u(j)**H * A = lambda(j) * u(j)**H
   48: *> where u(j)**H denotes the conjugate transpose of u(j).
   49: *>
   50: *> The computed eigenvectors are normalized to have Euclidean norm
   51: *> equal to 1 and largest component real.
   52: *> \endverbatim
   53: *
   54: *  Arguments:
   55: *  ==========
   56: *
   57: *> \param[in] JOBVL
   58: *> \verbatim
   59: *>          JOBVL is CHARACTER*1
   60: *>          = 'N': left eigenvectors of A are not computed;
   61: *>          = 'V': left eigenvectors of are computed.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] JOBVR
   65: *> \verbatim
   66: *>          JOBVR is CHARACTER*1
   67: *>          = 'N': right eigenvectors of A are not computed;
   68: *>          = 'V': right eigenvectors of A are computed.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] N
   72: *> \verbatim
   73: *>          N is INTEGER
   74: *>          The order of the matrix A. N >= 0.
   75: *> \endverbatim
   76: *>
   77: *> \param[in,out] A
   78: *> \verbatim
   79: *>          A is COMPLEX*16 array, dimension (LDA,N)
   80: *>          On entry, the N-by-N matrix A.
   81: *>          On exit, A has been overwritten.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] LDA
   85: *> \verbatim
   86: *>          LDA is INTEGER
   87: *>          The leading dimension of the array A.  LDA >= max(1,N).
   88: *> \endverbatim
   89: *>
   90: *> \param[out] W
   91: *> \verbatim
   92: *>          W is COMPLEX*16 array, dimension (N)
   93: *>          W contains the computed eigenvalues.
   94: *> \endverbatim
   95: *>
   96: *> \param[out] VL
   97: *> \verbatim
   98: *>          VL is COMPLEX*16 array, dimension (LDVL,N)
   99: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
  100: *>          after another in the columns of VL, in the same order
  101: *>          as their eigenvalues.
  102: *>          If JOBVL = 'N', VL is not referenced.
  103: *>          u(j) = VL(:,j), the j-th column of VL.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] LDVL
  107: *> \verbatim
  108: *>          LDVL is INTEGER
  109: *>          The leading dimension of the array VL.  LDVL >= 1; if
  110: *>          JOBVL = 'V', LDVL >= N.
  111: *> \endverbatim
  112: *>
  113: *> \param[out] VR
  114: *> \verbatim
  115: *>          VR is COMPLEX*16 array, dimension (LDVR,N)
  116: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
  117: *>          after another in the columns of VR, in the same order
  118: *>          as their eigenvalues.
  119: *>          If JOBVR = 'N', VR is not referenced.
  120: *>          v(j) = VR(:,j), the j-th column of VR.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] LDVR
  124: *> \verbatim
  125: *>          LDVR is INTEGER
  126: *>          The leading dimension of the array VR.  LDVR >= 1; if
  127: *>          JOBVR = 'V', LDVR >= N.
  128: *> \endverbatim
  129: *>
  130: *> \param[out] WORK
  131: *> \verbatim
  132: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  133: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] LWORK
  137: *> \verbatim
  138: *>          LWORK is INTEGER
  139: *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
  140: *>          For good performance, LWORK must generally be larger.
  141: *>
  142: *>          If LWORK = -1, then a workspace query is assumed; the routine
  143: *>          only calculates the optimal size of the WORK array, returns
  144: *>          this value as the first entry of the WORK array, and no error
  145: *>          message related to LWORK is issued by XERBLA.
  146: *> \endverbatim
  147: *>
  148: *> \param[out] RWORK
  149: *> \verbatim
  150: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  151: *> \endverbatim
  152: *>
  153: *> \param[out] INFO
  154: *> \verbatim
  155: *>          INFO is INTEGER
  156: *>          = 0:  successful exit
  157: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  158: *>          > 0:  if INFO = i, the QR algorithm failed to compute all the
  159: *>                eigenvalues, and no eigenvectors have been computed;
  160: *>                elements and i+1:N of W contain eigenvalues which have
  161: *>                converged.
  162: *> \endverbatim
  163: *
  164: *  Authors:
  165: *  ========
  166: *
  167: *> \author Univ. of Tennessee 
  168: *> \author Univ. of California Berkeley 
  169: *> \author Univ. of Colorado Denver 
  170: *> \author NAG Ltd. 
  171: *
  172: *> \date November 2011
  173: *
  174: *> \ingroup complex16GEeigen
  175: *
  176: *  =====================================================================
  177:       SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
  178:      $                  WORK, LWORK, RWORK, INFO )
  179: *
  180: *  -- LAPACK driver routine (version 3.4.0) --
  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  183: *     November 2011
  184: *
  185: *     .. Scalar Arguments ..
  186:       CHARACTER          JOBVL, JOBVR
  187:       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
  188: *     ..
  189: *     .. Array Arguments ..
  190:       DOUBLE PRECISION   RWORK( * )
  191:       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
  192:      $                   W( * ), WORK( * )
  193: *     ..
  194: *
  195: *  =====================================================================
  196: *
  197: *     .. Parameters ..
  198:       DOUBLE PRECISION   ZERO, ONE
  199:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  200: *     ..
  201: *     .. Local Scalars ..
  202:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
  203:       CHARACTER          SIDE
  204:       INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
  205:      $                   IWRK, K, MAXWRK, MINWRK, NOUT
  206:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
  207:       COMPLEX*16         TMP
  208: *     ..
  209: *     .. Local Arrays ..
  210:       LOGICAL            SELECT( 1 )
  211:       DOUBLE PRECISION   DUM( 1 )
  212: *     ..
  213: *     .. External Subroutines ..
  214:       EXTERNAL           DLABAD, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL, ZGEHRD,
  215:      $                   ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC, ZUNGHR
  216: *     ..
  217: *     .. External Functions ..
  218:       LOGICAL            LSAME
  219:       INTEGER            IDAMAX, ILAENV
  220:       DOUBLE PRECISION   DLAMCH, DZNRM2, ZLANGE
  221:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
  222: *     ..
  223: *     .. Intrinsic Functions ..
  224:       INTRINSIC          DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
  225: *     ..
  226: *     .. Executable Statements ..
  227: *
  228: *     Test the input arguments
  229: *
  230:       INFO = 0
  231:       LQUERY = ( LWORK.EQ.-1 )
  232:       WANTVL = LSAME( JOBVL, 'V' )
  233:       WANTVR = LSAME( JOBVR, 'V' )
  234:       IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
  235:          INFO = -1
  236:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
  237:          INFO = -2
  238:       ELSE IF( N.LT.0 ) THEN
  239:          INFO = -3
  240:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  241:          INFO = -5
  242:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
  243:          INFO = -8
  244:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
  245:          INFO = -10
  246:       END IF
  247: *
  248: *     Compute workspace
  249: *      (Note: Comments in the code beginning "Workspace:" describe the
  250: *       minimal amount of workspace needed at that point in the code,
  251: *       as well as the preferred amount for good performance.
  252: *       CWorkspace refers to complex workspace, and RWorkspace to real
  253: *       workspace. NB refers to the optimal block size for the
  254: *       immediately following subroutine, as returned by ILAENV.
  255: *       HSWORK refers to the workspace preferred by ZHSEQR, as
  256: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  257: *       the worst case.)
  258: *
  259:       IF( INFO.EQ.0 ) THEN
  260:          IF( N.EQ.0 ) THEN
  261:             MINWRK = 1
  262:             MAXWRK = 1
  263:          ELSE
  264:             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
  265:             MINWRK = 2*N
  266:             IF( WANTVL ) THEN
  267:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
  268:      $                       ' ', N, 1, N, -1 ) )
  269:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
  270:      $                WORK, -1, INFO )
  271:             ELSE IF( WANTVR ) THEN
  272:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
  273:      $                       ' ', N, 1, N, -1 ) )
  274:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
  275:      $                WORK, -1, INFO )
  276:             ELSE
  277:                CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
  278:      $                WORK, -1, INFO )
  279:             END IF
  280:             HSWORK = WORK( 1 )
  281:             MAXWRK = MAX( MAXWRK, HSWORK, MINWRK )
  282:          END IF
  283:          WORK( 1 ) = MAXWRK
  284: *
  285:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  286:             INFO = -12
  287:          END IF
  288:       END IF
  289: *
  290:       IF( INFO.NE.0 ) THEN
  291:          CALL XERBLA( 'ZGEEV ', -INFO )
  292:          RETURN
  293:       ELSE IF( LQUERY ) THEN
  294:          RETURN
  295:       END IF
  296: *
  297: *     Quick return if possible
  298: *
  299:       IF( N.EQ.0 )
  300:      $   RETURN
  301: *
  302: *     Get machine constants
  303: *
  304:       EPS = DLAMCH( 'P' )
  305:       SMLNUM = DLAMCH( 'S' )
  306:       BIGNUM = ONE / SMLNUM
  307:       CALL DLABAD( SMLNUM, BIGNUM )
  308:       SMLNUM = SQRT( SMLNUM ) / EPS
  309:       BIGNUM = ONE / SMLNUM
  310: *
  311: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  312: *
  313:       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
  314:       SCALEA = .FALSE.
  315:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  316:          SCALEA = .TRUE.
  317:          CSCALE = SMLNUM
  318:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  319:          SCALEA = .TRUE.
  320:          CSCALE = BIGNUM
  321:       END IF
  322:       IF( SCALEA )
  323:      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  324: *
  325: *     Balance the matrix
  326: *     (CWorkspace: none)
  327: *     (RWorkspace: need N)
  328: *
  329:       IBAL = 1
  330:       CALL ZGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
  331: *
  332: *     Reduce to upper Hessenberg form
  333: *     (CWorkspace: need 2*N, prefer N+N*NB)
  334: *     (RWorkspace: none)
  335: *
  336:       ITAU = 1
  337:       IWRK = ITAU + N
  338:       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  339:      $             LWORK-IWRK+1, IERR )
  340: *
  341:       IF( WANTVL ) THEN
  342: *
  343: *        Want left eigenvectors
  344: *        Copy Householder vectors to VL
  345: *
  346:          SIDE = 'L'
  347:          CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
  348: *
  349: *        Generate unitary matrix in VL
  350: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
  351: *        (RWorkspace: none)
  352: *
  353:          CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
  354:      $                LWORK-IWRK+1, IERR )
  355: *
  356: *        Perform QR iteration, accumulating Schur vectors in VL
  357: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
  358: *        (RWorkspace: none)
  359: *
  360:          IWRK = ITAU
  361:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
  362:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  363: *
  364:          IF( WANTVR ) THEN
  365: *
  366: *           Want left and right eigenvectors
  367: *           Copy Schur vectors to VR
  368: *
  369:             SIDE = 'B'
  370:             CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
  371:          END IF
  372: *
  373:       ELSE IF( WANTVR ) THEN
  374: *
  375: *        Want right eigenvectors
  376: *        Copy Householder vectors to VR
  377: *
  378:          SIDE = 'R'
  379:          CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
  380: *
  381: *        Generate unitary matrix in VR
  382: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
  383: *        (RWorkspace: none)
  384: *
  385:          CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
  386:      $                LWORK-IWRK+1, IERR )
  387: *
  388: *        Perform QR iteration, accumulating Schur vectors in VR
  389: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
  390: *        (RWorkspace: none)
  391: *
  392:          IWRK = ITAU
  393:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
  394:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  395: *
  396:       ELSE
  397: *
  398: *        Compute eigenvalues only
  399: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
  400: *        (RWorkspace: none)
  401: *
  402:          IWRK = ITAU
  403:          CALL ZHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
  404:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  405:       END IF
  406: *
  407: *     If INFO > 0 from ZHSEQR, then quit
  408: *
  409:       IF( INFO.GT.0 )
  410:      $   GO TO 50
  411: *
  412:       IF( WANTVL .OR. WANTVR ) THEN
  413: *
  414: *        Compute left and/or right eigenvectors
  415: *        (CWorkspace: need 2*N)
  416: *        (RWorkspace: need 2*N)
  417: *
  418:          IRWORK = IBAL + N
  419:          CALL ZTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  420:      $                N, NOUT, WORK( IWRK ), RWORK( IRWORK ), IERR )
  421:       END IF
  422: *
  423:       IF( WANTVL ) THEN
  424: *
  425: *        Undo balancing of left eigenvectors
  426: *        (CWorkspace: none)
  427: *        (RWorkspace: need N)
  428: *
  429:          CALL ZGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
  430:      $                IERR )
  431: *
  432: *        Normalize left eigenvectors and make largest component real
  433: *
  434:          DO 20 I = 1, N
  435:             SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
  436:             CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
  437:             DO 10 K = 1, N
  438:                RWORK( IRWORK+K-1 ) = DBLE( VL( K, I ) )**2 +
  439:      $                               DIMAG( VL( K, I ) )**2
  440:    10       CONTINUE
  441:             K = IDAMAX( N, RWORK( IRWORK ), 1 )
  442:             TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
  443:             CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
  444:             VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
  445:    20    CONTINUE
  446:       END IF
  447: *
  448:       IF( WANTVR ) THEN
  449: *
  450: *        Undo balancing of right eigenvectors
  451: *        (CWorkspace: none)
  452: *        (RWorkspace: need N)
  453: *
  454:          CALL ZGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
  455:      $                IERR )
  456: *
  457: *        Normalize right eigenvectors and make largest component real
  458: *
  459:          DO 40 I = 1, N
  460:             SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
  461:             CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
  462:             DO 30 K = 1, N
  463:                RWORK( IRWORK+K-1 ) = DBLE( VR( K, I ) )**2 +
  464:      $                               DIMAG( VR( K, I ) )**2
  465:    30       CONTINUE
  466:             K = IDAMAX( N, RWORK( IRWORK ), 1 )
  467:             TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
  468:             CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
  469:             VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
  470:    40    CONTINUE
  471:       END IF
  472: *
  473: *     Undo scaling if necessary
  474: *
  475:    50 CONTINUE
  476:       IF( SCALEA ) THEN
  477:          CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
  478:      $                MAX( N-INFO, 1 ), IERR )
  479:          IF( INFO.GT.0 ) THEN
  480:             CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
  481:          END IF
  482:       END IF
  483: *
  484:       WORK( 1 ) = MAXWRK
  485:       RETURN
  486: *
  487: *     End of ZGEEV
  488: *
  489:       END

CVSweb interface <joel.bertrand@systella.fr>