Annotation of rpl/lapack/lapack/zgeev.f, revision 1.8

1.8     ! bertrand    1: *> \brief <b> ZGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGEEV + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeev.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeev.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeev.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
        !            22: *                         WORK, LWORK, RWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBVL, JOBVR
        !            26: *       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   RWORK( * )
        !            30: *       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
        !            31: *      $                   W( * ), WORK( * )
        !            32: *       ..
        !            33: *  
        !            34: *
        !            35: *> \par Purpose:
        !            36: *  =============
        !            37: *>
        !            38: *> \verbatim
        !            39: *>
        !            40: *> ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
        !            41: *> eigenvalues and, optionally, the left and/or right eigenvectors.
        !            42: *>
        !            43: *> The right eigenvector v(j) of A satisfies
        !            44: *>                  A * v(j) = lambda(j) * v(j)
        !            45: *> where lambda(j) is its eigenvalue.
        !            46: *> The left eigenvector u(j) of A satisfies
        !            47: *>               u(j)**H * A = lambda(j) * u(j)**H
        !            48: *> where u(j)**H denotes the conjugate transpose of u(j).
        !            49: *>
        !            50: *> The computed eigenvectors are normalized to have Euclidean norm
        !            51: *> equal to 1 and largest component real.
        !            52: *> \endverbatim
        !            53: *
        !            54: *  Arguments:
        !            55: *  ==========
        !            56: *
        !            57: *> \param[in] JOBVL
        !            58: *> \verbatim
        !            59: *>          JOBVL is CHARACTER*1
        !            60: *>          = 'N': left eigenvectors of A are not computed;
        !            61: *>          = 'V': left eigenvectors of are computed.
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] JOBVR
        !            65: *> \verbatim
        !            66: *>          JOBVR is CHARACTER*1
        !            67: *>          = 'N': right eigenvectors of A are not computed;
        !            68: *>          = 'V': right eigenvectors of A are computed.
        !            69: *> \endverbatim
        !            70: *>
        !            71: *> \param[in] N
        !            72: *> \verbatim
        !            73: *>          N is INTEGER
        !            74: *>          The order of the matrix A. N >= 0.
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in,out] A
        !            78: *> \verbatim
        !            79: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            80: *>          On entry, the N-by-N matrix A.
        !            81: *>          On exit, A has been overwritten.
        !            82: *> \endverbatim
        !            83: *>
        !            84: *> \param[in] LDA
        !            85: *> \verbatim
        !            86: *>          LDA is INTEGER
        !            87: *>          The leading dimension of the array A.  LDA >= max(1,N).
        !            88: *> \endverbatim
        !            89: *>
        !            90: *> \param[out] W
        !            91: *> \verbatim
        !            92: *>          W is COMPLEX*16 array, dimension (N)
        !            93: *>          W contains the computed eigenvalues.
        !            94: *> \endverbatim
        !            95: *>
        !            96: *> \param[out] VL
        !            97: *> \verbatim
        !            98: *>          VL is COMPLEX*16 array, dimension (LDVL,N)
        !            99: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
        !           100: *>          after another in the columns of VL, in the same order
        !           101: *>          as their eigenvalues.
        !           102: *>          If JOBVL = 'N', VL is not referenced.
        !           103: *>          u(j) = VL(:,j), the j-th column of VL.
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[in] LDVL
        !           107: *> \verbatim
        !           108: *>          LDVL is INTEGER
        !           109: *>          The leading dimension of the array VL.  LDVL >= 1; if
        !           110: *>          JOBVL = 'V', LDVL >= N.
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[out] VR
        !           114: *> \verbatim
        !           115: *>          VR is COMPLEX*16 array, dimension (LDVR,N)
        !           116: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
        !           117: *>          after another in the columns of VR, in the same order
        !           118: *>          as their eigenvalues.
        !           119: *>          If JOBVR = 'N', VR is not referenced.
        !           120: *>          v(j) = VR(:,j), the j-th column of VR.
        !           121: *> \endverbatim
        !           122: *>
        !           123: *> \param[in] LDVR
        !           124: *> \verbatim
        !           125: *>          LDVR is INTEGER
        !           126: *>          The leading dimension of the array VR.  LDVR >= 1; if
        !           127: *>          JOBVR = 'V', LDVR >= N.
        !           128: *> \endverbatim
        !           129: *>
        !           130: *> \param[out] WORK
        !           131: *> \verbatim
        !           132: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           133: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in] LWORK
        !           137: *> \verbatim
        !           138: *>          LWORK is INTEGER
        !           139: *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
        !           140: *>          For good performance, LWORK must generally be larger.
        !           141: *>
        !           142: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           143: *>          only calculates the optimal size of the WORK array, returns
        !           144: *>          this value as the first entry of the WORK array, and no error
        !           145: *>          message related to LWORK is issued by XERBLA.
        !           146: *> \endverbatim
        !           147: *>
        !           148: *> \param[out] RWORK
        !           149: *> \verbatim
        !           150: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
        !           151: *> \endverbatim
        !           152: *>
        !           153: *> \param[out] INFO
        !           154: *> \verbatim
        !           155: *>          INFO is INTEGER
        !           156: *>          = 0:  successful exit
        !           157: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           158: *>          > 0:  if INFO = i, the QR algorithm failed to compute all the
        !           159: *>                eigenvalues, and no eigenvectors have been computed;
        !           160: *>                elements and i+1:N of W contain eigenvalues which have
        !           161: *>                converged.
        !           162: *> \endverbatim
        !           163: *
        !           164: *  Authors:
        !           165: *  ========
        !           166: *
        !           167: *> \author Univ. of Tennessee 
        !           168: *> \author Univ. of California Berkeley 
        !           169: *> \author Univ. of Colorado Denver 
        !           170: *> \author NAG Ltd. 
        !           171: *
        !           172: *> \date November 2011
        !           173: *
        !           174: *> \ingroup complex16GEeigen
        !           175: *
        !           176: *  =====================================================================
1.1       bertrand  177:       SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
                    178:      $                  WORK, LWORK, RWORK, INFO )
                    179: *
1.8     ! bertrand  180: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  183: *     November 2011
1.1       bertrand  184: *
                    185: *     .. Scalar Arguments ..
                    186:       CHARACTER          JOBVL, JOBVR
                    187:       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
                    188: *     ..
                    189: *     .. Array Arguments ..
                    190:       DOUBLE PRECISION   RWORK( * )
                    191:       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
                    192:      $                   W( * ), WORK( * )
                    193: *     ..
                    194: *
                    195: *  =====================================================================
                    196: *
                    197: *     .. Parameters ..
                    198:       DOUBLE PRECISION   ZERO, ONE
                    199:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    200: *     ..
                    201: *     .. Local Scalars ..
                    202:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
                    203:       CHARACTER          SIDE
                    204:       INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
                    205:      $                   IWRK, K, MAXWRK, MINWRK, NOUT
                    206:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
                    207:       COMPLEX*16         TMP
                    208: *     ..
                    209: *     .. Local Arrays ..
                    210:       LOGICAL            SELECT( 1 )
                    211:       DOUBLE PRECISION   DUM( 1 )
                    212: *     ..
                    213: *     .. External Subroutines ..
                    214:       EXTERNAL           DLABAD, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL, ZGEHRD,
                    215:      $                   ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC, ZUNGHR
                    216: *     ..
                    217: *     .. External Functions ..
                    218:       LOGICAL            LSAME
                    219:       INTEGER            IDAMAX, ILAENV
                    220:       DOUBLE PRECISION   DLAMCH, DZNRM2, ZLANGE
                    221:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
                    222: *     ..
                    223: *     .. Intrinsic Functions ..
                    224:       INTRINSIC          DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
                    225: *     ..
                    226: *     .. Executable Statements ..
                    227: *
                    228: *     Test the input arguments
                    229: *
                    230:       INFO = 0
                    231:       LQUERY = ( LWORK.EQ.-1 )
                    232:       WANTVL = LSAME( JOBVL, 'V' )
                    233:       WANTVR = LSAME( JOBVR, 'V' )
                    234:       IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
                    235:          INFO = -1
                    236:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
                    237:          INFO = -2
                    238:       ELSE IF( N.LT.0 ) THEN
                    239:          INFO = -3
                    240:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    241:          INFO = -5
                    242:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
                    243:          INFO = -8
                    244:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
                    245:          INFO = -10
                    246:       END IF
                    247: *
                    248: *     Compute workspace
                    249: *      (Note: Comments in the code beginning "Workspace:" describe the
                    250: *       minimal amount of workspace needed at that point in the code,
                    251: *       as well as the preferred amount for good performance.
                    252: *       CWorkspace refers to complex workspace, and RWorkspace to real
                    253: *       workspace. NB refers to the optimal block size for the
                    254: *       immediately following subroutine, as returned by ILAENV.
                    255: *       HSWORK refers to the workspace preferred by ZHSEQR, as
                    256: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    257: *       the worst case.)
                    258: *
                    259:       IF( INFO.EQ.0 ) THEN
                    260:          IF( N.EQ.0 ) THEN
                    261:             MINWRK = 1
                    262:             MAXWRK = 1
                    263:          ELSE
                    264:             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
                    265:             MINWRK = 2*N
                    266:             IF( WANTVL ) THEN
                    267:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
                    268:      $                       ' ', N, 1, N, -1 ) )
                    269:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
                    270:      $                WORK, -1, INFO )
                    271:             ELSE IF( WANTVR ) THEN
                    272:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
                    273:      $                       ' ', N, 1, N, -1 ) )
                    274:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
                    275:      $                WORK, -1, INFO )
                    276:             ELSE
                    277:                CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
                    278:      $                WORK, -1, INFO )
                    279:             END IF
                    280:             HSWORK = WORK( 1 )
                    281:             MAXWRK = MAX( MAXWRK, HSWORK, MINWRK )
                    282:          END IF
                    283:          WORK( 1 ) = MAXWRK
                    284: *
                    285:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    286:             INFO = -12
                    287:          END IF
                    288:       END IF
                    289: *
                    290:       IF( INFO.NE.0 ) THEN
                    291:          CALL XERBLA( 'ZGEEV ', -INFO )
                    292:          RETURN
                    293:       ELSE IF( LQUERY ) THEN
                    294:          RETURN
                    295:       END IF
                    296: *
                    297: *     Quick return if possible
                    298: *
                    299:       IF( N.EQ.0 )
                    300:      $   RETURN
                    301: *
                    302: *     Get machine constants
                    303: *
                    304:       EPS = DLAMCH( 'P' )
                    305:       SMLNUM = DLAMCH( 'S' )
                    306:       BIGNUM = ONE / SMLNUM
                    307:       CALL DLABAD( SMLNUM, BIGNUM )
                    308:       SMLNUM = SQRT( SMLNUM ) / EPS
                    309:       BIGNUM = ONE / SMLNUM
                    310: *
                    311: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    312: *
                    313:       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
                    314:       SCALEA = .FALSE.
                    315:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    316:          SCALEA = .TRUE.
                    317:          CSCALE = SMLNUM
                    318:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    319:          SCALEA = .TRUE.
                    320:          CSCALE = BIGNUM
                    321:       END IF
                    322:       IF( SCALEA )
                    323:      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    324: *
                    325: *     Balance the matrix
                    326: *     (CWorkspace: none)
                    327: *     (RWorkspace: need N)
                    328: *
                    329:       IBAL = 1
                    330:       CALL ZGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
                    331: *
                    332: *     Reduce to upper Hessenberg form
                    333: *     (CWorkspace: need 2*N, prefer N+N*NB)
                    334: *     (RWorkspace: none)
                    335: *
                    336:       ITAU = 1
                    337:       IWRK = ITAU + N
                    338:       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    339:      $             LWORK-IWRK+1, IERR )
                    340: *
                    341:       IF( WANTVL ) THEN
                    342: *
                    343: *        Want left eigenvectors
                    344: *        Copy Householder vectors to VL
                    345: *
                    346:          SIDE = 'L'
                    347:          CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
                    348: *
                    349: *        Generate unitary matrix in VL
                    350: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
                    351: *        (RWorkspace: none)
                    352: *
                    353:          CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
                    354:      $                LWORK-IWRK+1, IERR )
                    355: *
                    356: *        Perform QR iteration, accumulating Schur vectors in VL
                    357: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
                    358: *        (RWorkspace: none)
                    359: *
                    360:          IWRK = ITAU
                    361:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
                    362:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    363: *
                    364:          IF( WANTVR ) THEN
                    365: *
                    366: *           Want left and right eigenvectors
                    367: *           Copy Schur vectors to VR
                    368: *
                    369:             SIDE = 'B'
                    370:             CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
                    371:          END IF
                    372: *
                    373:       ELSE IF( WANTVR ) THEN
                    374: *
                    375: *        Want right eigenvectors
                    376: *        Copy Householder vectors to VR
                    377: *
                    378:          SIDE = 'R'
                    379:          CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
                    380: *
                    381: *        Generate unitary matrix in VR
                    382: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
                    383: *        (RWorkspace: none)
                    384: *
                    385:          CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
                    386:      $                LWORK-IWRK+1, IERR )
                    387: *
                    388: *        Perform QR iteration, accumulating Schur vectors in VR
                    389: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
                    390: *        (RWorkspace: none)
                    391: *
                    392:          IWRK = ITAU
                    393:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
                    394:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    395: *
                    396:       ELSE
                    397: *
                    398: *        Compute eigenvalues only
                    399: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
                    400: *        (RWorkspace: none)
                    401: *
                    402:          IWRK = ITAU
                    403:          CALL ZHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
                    404:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    405:       END IF
                    406: *
                    407: *     If INFO > 0 from ZHSEQR, then quit
                    408: *
                    409:       IF( INFO.GT.0 )
                    410:      $   GO TO 50
                    411: *
                    412:       IF( WANTVL .OR. WANTVR ) THEN
                    413: *
                    414: *        Compute left and/or right eigenvectors
                    415: *        (CWorkspace: need 2*N)
                    416: *        (RWorkspace: need 2*N)
                    417: *
                    418:          IRWORK = IBAL + N
                    419:          CALL ZTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
                    420:      $                N, NOUT, WORK( IWRK ), RWORK( IRWORK ), IERR )
                    421:       END IF
                    422: *
                    423:       IF( WANTVL ) THEN
                    424: *
                    425: *        Undo balancing of left eigenvectors
                    426: *        (CWorkspace: none)
                    427: *        (RWorkspace: need N)
                    428: *
                    429:          CALL ZGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
                    430:      $                IERR )
                    431: *
                    432: *        Normalize left eigenvectors and make largest component real
                    433: *
                    434:          DO 20 I = 1, N
                    435:             SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
                    436:             CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
                    437:             DO 10 K = 1, N
                    438:                RWORK( IRWORK+K-1 ) = DBLE( VL( K, I ) )**2 +
                    439:      $                               DIMAG( VL( K, I ) )**2
                    440:    10       CONTINUE
                    441:             K = IDAMAX( N, RWORK( IRWORK ), 1 )
                    442:             TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
                    443:             CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
                    444:             VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
                    445:    20    CONTINUE
                    446:       END IF
                    447: *
                    448:       IF( WANTVR ) THEN
                    449: *
                    450: *        Undo balancing of right eigenvectors
                    451: *        (CWorkspace: none)
                    452: *        (RWorkspace: need N)
                    453: *
                    454:          CALL ZGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
                    455:      $                IERR )
                    456: *
                    457: *        Normalize right eigenvectors and make largest component real
                    458: *
                    459:          DO 40 I = 1, N
                    460:             SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
                    461:             CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
                    462:             DO 30 K = 1, N
                    463:                RWORK( IRWORK+K-1 ) = DBLE( VR( K, I ) )**2 +
                    464:      $                               DIMAG( VR( K, I ) )**2
                    465:    30       CONTINUE
                    466:             K = IDAMAX( N, RWORK( IRWORK ), 1 )
                    467:             TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
                    468:             CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
                    469:             VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
                    470:    40    CONTINUE
                    471:       END IF
                    472: *
                    473: *     Undo scaling if necessary
                    474: *
                    475:    50 CONTINUE
                    476:       IF( SCALEA ) THEN
                    477:          CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
                    478:      $                MAX( N-INFO, 1 ), IERR )
                    479:          IF( INFO.GT.0 ) THEN
                    480:             CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
                    481:          END IF
                    482:       END IF
                    483: *
                    484:       WORK( 1 ) = MAXWRK
                    485:       RETURN
                    486: *
                    487: *     End of ZGEEV
                    488: *
                    489:       END

CVSweb interface <joel.bertrand@systella.fr>