Annotation of rpl/lapack/lapack/zgeev.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
                      2:      $                  WORK, LWORK, RWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBVL, JOBVR
                     11:       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       DOUBLE PRECISION   RWORK( * )
                     15:       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
                     16:      $                   W( * ), WORK( * )
                     17: *     ..
                     18: *
                     19: *  Purpose
                     20: *  =======
                     21: *
                     22: *  ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
                     23: *  eigenvalues and, optionally, the left and/or right eigenvectors.
                     24: *
                     25: *  The right eigenvector v(j) of A satisfies
                     26: *                   A * v(j) = lambda(j) * v(j)
                     27: *  where lambda(j) is its eigenvalue.
                     28: *  The left eigenvector u(j) of A satisfies
                     29: *                u(j)**H * A = lambda(j) * u(j)**H
                     30: *  where u(j)**H denotes the conjugate transpose of u(j).
                     31: *
                     32: *  The computed eigenvectors are normalized to have Euclidean norm
                     33: *  equal to 1 and largest component real.
                     34: *
                     35: *  Arguments
                     36: *  =========
                     37: *
                     38: *  JOBVL   (input) CHARACTER*1
                     39: *          = 'N': left eigenvectors of A are not computed;
                     40: *          = 'V': left eigenvectors of are computed.
                     41: *
                     42: *  JOBVR   (input) CHARACTER*1
                     43: *          = 'N': right eigenvectors of A are not computed;
                     44: *          = 'V': right eigenvectors of A are computed.
                     45: *
                     46: *  N       (input) INTEGER
                     47: *          The order of the matrix A. N >= 0.
                     48: *
                     49: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     50: *          On entry, the N-by-N matrix A.
                     51: *          On exit, A has been overwritten.
                     52: *
                     53: *  LDA     (input) INTEGER
                     54: *          The leading dimension of the array A.  LDA >= max(1,N).
                     55: *
                     56: *  W       (output) COMPLEX*16 array, dimension (N)
                     57: *          W contains the computed eigenvalues.
                     58: *
                     59: *  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
                     60: *          If JOBVL = 'V', the left eigenvectors u(j) are stored one
                     61: *          after another in the columns of VL, in the same order
                     62: *          as their eigenvalues.
                     63: *          If JOBVL = 'N', VL is not referenced.
                     64: *          u(j) = VL(:,j), the j-th column of VL.
                     65: *
                     66: *  LDVL    (input) INTEGER
                     67: *          The leading dimension of the array VL.  LDVL >= 1; if
                     68: *          JOBVL = 'V', LDVL >= N.
                     69: *
                     70: *  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
                     71: *          If JOBVR = 'V', the right eigenvectors v(j) are stored one
                     72: *          after another in the columns of VR, in the same order
                     73: *          as their eigenvalues.
                     74: *          If JOBVR = 'N', VR is not referenced.
                     75: *          v(j) = VR(:,j), the j-th column of VR.
                     76: *
                     77: *  LDVR    (input) INTEGER
                     78: *          The leading dimension of the array VR.  LDVR >= 1; if
                     79: *          JOBVR = 'V', LDVR >= N.
                     80: *
                     81: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     82: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     83: *
                     84: *  LWORK   (input) INTEGER
                     85: *          The dimension of the array WORK.  LWORK >= max(1,2*N).
                     86: *          For good performance, LWORK must generally be larger.
                     87: *
                     88: *          If LWORK = -1, then a workspace query is assumed; the routine
                     89: *          only calculates the optimal size of the WORK array, returns
                     90: *          this value as the first entry of the WORK array, and no error
                     91: *          message related to LWORK is issued by XERBLA.
                     92: *
                     93: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
                     94: *
                     95: *  INFO    (output) INTEGER
                     96: *          = 0:  successful exit
                     97: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                     98: *          > 0:  if INFO = i, the QR algorithm failed to compute all the
                     99: *                eigenvalues, and no eigenvectors have been computed;
                    100: *                elements and i+1:N of W contain eigenvalues which have
                    101: *                converged.
                    102: *
                    103: *  =====================================================================
                    104: *
                    105: *     .. Parameters ..
                    106:       DOUBLE PRECISION   ZERO, ONE
                    107:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    108: *     ..
                    109: *     .. Local Scalars ..
                    110:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
                    111:       CHARACTER          SIDE
                    112:       INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
                    113:      $                   IWRK, K, MAXWRK, MINWRK, NOUT
                    114:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
                    115:       COMPLEX*16         TMP
                    116: *     ..
                    117: *     .. Local Arrays ..
                    118:       LOGICAL            SELECT( 1 )
                    119:       DOUBLE PRECISION   DUM( 1 )
                    120: *     ..
                    121: *     .. External Subroutines ..
                    122:       EXTERNAL           DLABAD, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL, ZGEHRD,
                    123:      $                   ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC, ZUNGHR
                    124: *     ..
                    125: *     .. External Functions ..
                    126:       LOGICAL            LSAME
                    127:       INTEGER            IDAMAX, ILAENV
                    128:       DOUBLE PRECISION   DLAMCH, DZNRM2, ZLANGE
                    129:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
                    130: *     ..
                    131: *     .. Intrinsic Functions ..
                    132:       INTRINSIC          DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
                    133: *     ..
                    134: *     .. Executable Statements ..
                    135: *
                    136: *     Test the input arguments
                    137: *
                    138:       INFO = 0
                    139:       LQUERY = ( LWORK.EQ.-1 )
                    140:       WANTVL = LSAME( JOBVL, 'V' )
                    141:       WANTVR = LSAME( JOBVR, 'V' )
                    142:       IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
                    143:          INFO = -1
                    144:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
                    145:          INFO = -2
                    146:       ELSE IF( N.LT.0 ) THEN
                    147:          INFO = -3
                    148:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    149:          INFO = -5
                    150:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
                    151:          INFO = -8
                    152:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
                    153:          INFO = -10
                    154:       END IF
                    155: *
                    156: *     Compute workspace
                    157: *      (Note: Comments in the code beginning "Workspace:" describe the
                    158: *       minimal amount of workspace needed at that point in the code,
                    159: *       as well as the preferred amount for good performance.
                    160: *       CWorkspace refers to complex workspace, and RWorkspace to real
                    161: *       workspace. NB refers to the optimal block size for the
                    162: *       immediately following subroutine, as returned by ILAENV.
                    163: *       HSWORK refers to the workspace preferred by ZHSEQR, as
                    164: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    165: *       the worst case.)
                    166: *
                    167:       IF( INFO.EQ.0 ) THEN
                    168:          IF( N.EQ.0 ) THEN
                    169:             MINWRK = 1
                    170:             MAXWRK = 1
                    171:          ELSE
                    172:             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
                    173:             MINWRK = 2*N
                    174:             IF( WANTVL ) THEN
                    175:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
                    176:      $                       ' ', N, 1, N, -1 ) )
                    177:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
                    178:      $                WORK, -1, INFO )
                    179:             ELSE IF( WANTVR ) THEN
                    180:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
                    181:      $                       ' ', N, 1, N, -1 ) )
                    182:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
                    183:      $                WORK, -1, INFO )
                    184:             ELSE
                    185:                CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
                    186:      $                WORK, -1, INFO )
                    187:             END IF
                    188:             HSWORK = WORK( 1 )
                    189:             MAXWRK = MAX( MAXWRK, HSWORK, MINWRK )
                    190:          END IF
                    191:          WORK( 1 ) = MAXWRK
                    192: *
                    193:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    194:             INFO = -12
                    195:          END IF
                    196:       END IF
                    197: *
                    198:       IF( INFO.NE.0 ) THEN
                    199:          CALL XERBLA( 'ZGEEV ', -INFO )
                    200:          RETURN
                    201:       ELSE IF( LQUERY ) THEN
                    202:          RETURN
                    203:       END IF
                    204: *
                    205: *     Quick return if possible
                    206: *
                    207:       IF( N.EQ.0 )
                    208:      $   RETURN
                    209: *
                    210: *     Get machine constants
                    211: *
                    212:       EPS = DLAMCH( 'P' )
                    213:       SMLNUM = DLAMCH( 'S' )
                    214:       BIGNUM = ONE / SMLNUM
                    215:       CALL DLABAD( SMLNUM, BIGNUM )
                    216:       SMLNUM = SQRT( SMLNUM ) / EPS
                    217:       BIGNUM = ONE / SMLNUM
                    218: *
                    219: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    220: *
                    221:       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
                    222:       SCALEA = .FALSE.
                    223:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    224:          SCALEA = .TRUE.
                    225:          CSCALE = SMLNUM
                    226:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    227:          SCALEA = .TRUE.
                    228:          CSCALE = BIGNUM
                    229:       END IF
                    230:       IF( SCALEA )
                    231:      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    232: *
                    233: *     Balance the matrix
                    234: *     (CWorkspace: none)
                    235: *     (RWorkspace: need N)
                    236: *
                    237:       IBAL = 1
                    238:       CALL ZGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
                    239: *
                    240: *     Reduce to upper Hessenberg form
                    241: *     (CWorkspace: need 2*N, prefer N+N*NB)
                    242: *     (RWorkspace: none)
                    243: *
                    244:       ITAU = 1
                    245:       IWRK = ITAU + N
                    246:       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    247:      $             LWORK-IWRK+1, IERR )
                    248: *
                    249:       IF( WANTVL ) THEN
                    250: *
                    251: *        Want left eigenvectors
                    252: *        Copy Householder vectors to VL
                    253: *
                    254:          SIDE = 'L'
                    255:          CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
                    256: *
                    257: *        Generate unitary matrix in VL
                    258: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
                    259: *        (RWorkspace: none)
                    260: *
                    261:          CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
                    262:      $                LWORK-IWRK+1, IERR )
                    263: *
                    264: *        Perform QR iteration, accumulating Schur vectors in VL
                    265: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
                    266: *        (RWorkspace: none)
                    267: *
                    268:          IWRK = ITAU
                    269:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
                    270:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    271: *
                    272:          IF( WANTVR ) THEN
                    273: *
                    274: *           Want left and right eigenvectors
                    275: *           Copy Schur vectors to VR
                    276: *
                    277:             SIDE = 'B'
                    278:             CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
                    279:          END IF
                    280: *
                    281:       ELSE IF( WANTVR ) THEN
                    282: *
                    283: *        Want right eigenvectors
                    284: *        Copy Householder vectors to VR
                    285: *
                    286:          SIDE = 'R'
                    287:          CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
                    288: *
                    289: *        Generate unitary matrix in VR
                    290: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
                    291: *        (RWorkspace: none)
                    292: *
                    293:          CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
                    294:      $                LWORK-IWRK+1, IERR )
                    295: *
                    296: *        Perform QR iteration, accumulating Schur vectors in VR
                    297: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
                    298: *        (RWorkspace: none)
                    299: *
                    300:          IWRK = ITAU
                    301:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
                    302:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    303: *
                    304:       ELSE
                    305: *
                    306: *        Compute eigenvalues only
                    307: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
                    308: *        (RWorkspace: none)
                    309: *
                    310:          IWRK = ITAU
                    311:          CALL ZHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
                    312:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    313:       END IF
                    314: *
                    315: *     If INFO > 0 from ZHSEQR, then quit
                    316: *
                    317:       IF( INFO.GT.0 )
                    318:      $   GO TO 50
                    319: *
                    320:       IF( WANTVL .OR. WANTVR ) THEN
                    321: *
                    322: *        Compute left and/or right eigenvectors
                    323: *        (CWorkspace: need 2*N)
                    324: *        (RWorkspace: need 2*N)
                    325: *
                    326:          IRWORK = IBAL + N
                    327:          CALL ZTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
                    328:      $                N, NOUT, WORK( IWRK ), RWORK( IRWORK ), IERR )
                    329:       END IF
                    330: *
                    331:       IF( WANTVL ) THEN
                    332: *
                    333: *        Undo balancing of left eigenvectors
                    334: *        (CWorkspace: none)
                    335: *        (RWorkspace: need N)
                    336: *
                    337:          CALL ZGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
                    338:      $                IERR )
                    339: *
                    340: *        Normalize left eigenvectors and make largest component real
                    341: *
                    342:          DO 20 I = 1, N
                    343:             SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
                    344:             CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
                    345:             DO 10 K = 1, N
                    346:                RWORK( IRWORK+K-1 ) = DBLE( VL( K, I ) )**2 +
                    347:      $                               DIMAG( VL( K, I ) )**2
                    348:    10       CONTINUE
                    349:             K = IDAMAX( N, RWORK( IRWORK ), 1 )
                    350:             TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
                    351:             CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
                    352:             VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
                    353:    20    CONTINUE
                    354:       END IF
                    355: *
                    356:       IF( WANTVR ) THEN
                    357: *
                    358: *        Undo balancing of right eigenvectors
                    359: *        (CWorkspace: none)
                    360: *        (RWorkspace: need N)
                    361: *
                    362:          CALL ZGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
                    363:      $                IERR )
                    364: *
                    365: *        Normalize right eigenvectors and make largest component real
                    366: *
                    367:          DO 40 I = 1, N
                    368:             SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
                    369:             CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
                    370:             DO 30 K = 1, N
                    371:                RWORK( IRWORK+K-1 ) = DBLE( VR( K, I ) )**2 +
                    372:      $                               DIMAG( VR( K, I ) )**2
                    373:    30       CONTINUE
                    374:             K = IDAMAX( N, RWORK( IRWORK ), 1 )
                    375:             TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
                    376:             CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
                    377:             VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
                    378:    40    CONTINUE
                    379:       END IF
                    380: *
                    381: *     Undo scaling if necessary
                    382: *
                    383:    50 CONTINUE
                    384:       IF( SCALEA ) THEN
                    385:          CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
                    386:      $                MAX( N-INFO, 1 ), IERR )
                    387:          IF( INFO.GT.0 ) THEN
                    388:             CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
                    389:          END IF
                    390:       END IF
                    391: *
                    392:       WORK( 1 ) = MAXWRK
                    393:       RETURN
                    394: *
                    395: *     End of ZGEEV
                    396: *
                    397:       END

CVSweb interface <joel.bertrand@systella.fr>