Annotation of rpl/lapack/lapack/zgeev.f, revision 1.11

1.8       bertrand    1: *> \brief <b> ZGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZGEEV + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeev.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeev.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeev.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
                     22: *                         WORK, LWORK, RWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBVL, JOBVR
                     26: *       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   RWORK( * )
                     30: *       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
                     31: *      $                   W( * ), WORK( * )
                     32: *       ..
                     33: *  
                     34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
                     41: *> eigenvalues and, optionally, the left and/or right eigenvectors.
                     42: *>
                     43: *> The right eigenvector v(j) of A satisfies
                     44: *>                  A * v(j) = lambda(j) * v(j)
                     45: *> where lambda(j) is its eigenvalue.
                     46: *> The left eigenvector u(j) of A satisfies
                     47: *>               u(j)**H * A = lambda(j) * u(j)**H
                     48: *> where u(j)**H denotes the conjugate transpose of u(j).
                     49: *>
                     50: *> The computed eigenvectors are normalized to have Euclidean norm
                     51: *> equal to 1 and largest component real.
                     52: *> \endverbatim
                     53: *
                     54: *  Arguments:
                     55: *  ==========
                     56: *
                     57: *> \param[in] JOBVL
                     58: *> \verbatim
                     59: *>          JOBVL is CHARACTER*1
                     60: *>          = 'N': left eigenvectors of A are not computed;
                     61: *>          = 'V': left eigenvectors of are computed.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] JOBVR
                     65: *> \verbatim
                     66: *>          JOBVR is CHARACTER*1
                     67: *>          = 'N': right eigenvectors of A are not computed;
                     68: *>          = 'V': right eigenvectors of A are computed.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] N
                     72: *> \verbatim
                     73: *>          N is INTEGER
                     74: *>          The order of the matrix A. N >= 0.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in,out] A
                     78: *> \verbatim
                     79: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     80: *>          On entry, the N-by-N matrix A.
                     81: *>          On exit, A has been overwritten.
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] LDA
                     85: *> \verbatim
                     86: *>          LDA is INTEGER
                     87: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[out] W
                     91: *> \verbatim
                     92: *>          W is COMPLEX*16 array, dimension (N)
                     93: *>          W contains the computed eigenvalues.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[out] VL
                     97: *> \verbatim
                     98: *>          VL is COMPLEX*16 array, dimension (LDVL,N)
                     99: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
                    100: *>          after another in the columns of VL, in the same order
                    101: *>          as their eigenvalues.
                    102: *>          If JOBVL = 'N', VL is not referenced.
                    103: *>          u(j) = VL(:,j), the j-th column of VL.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] LDVL
                    107: *> \verbatim
                    108: *>          LDVL is INTEGER
                    109: *>          The leading dimension of the array VL.  LDVL >= 1; if
                    110: *>          JOBVL = 'V', LDVL >= N.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[out] VR
                    114: *> \verbatim
                    115: *>          VR is COMPLEX*16 array, dimension (LDVR,N)
                    116: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
                    117: *>          after another in the columns of VR, in the same order
                    118: *>          as their eigenvalues.
                    119: *>          If JOBVR = 'N', VR is not referenced.
                    120: *>          v(j) = VR(:,j), the j-th column of VR.
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in] LDVR
                    124: *> \verbatim
                    125: *>          LDVR is INTEGER
                    126: *>          The leading dimension of the array VR.  LDVR >= 1; if
                    127: *>          JOBVR = 'V', LDVR >= N.
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[out] WORK
                    131: *> \verbatim
                    132: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    133: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in] LWORK
                    137: *> \verbatim
                    138: *>          LWORK is INTEGER
                    139: *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
                    140: *>          For good performance, LWORK must generally be larger.
                    141: *>
                    142: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    143: *>          only calculates the optimal size of the WORK array, returns
                    144: *>          this value as the first entry of the WORK array, and no error
                    145: *>          message related to LWORK is issued by XERBLA.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[out] RWORK
                    149: *> \verbatim
                    150: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] INFO
                    154: *> \verbatim
                    155: *>          INFO is INTEGER
                    156: *>          = 0:  successful exit
                    157: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    158: *>          > 0:  if INFO = i, the QR algorithm failed to compute all the
                    159: *>                eigenvalues, and no eigenvectors have been computed;
                    160: *>                elements and i+1:N of W contain eigenvalues which have
                    161: *>                converged.
                    162: *> \endverbatim
                    163: *
                    164: *  Authors:
                    165: *  ========
                    166: *
                    167: *> \author Univ. of Tennessee 
                    168: *> \author Univ. of California Berkeley 
                    169: *> \author Univ. of Colorado Denver 
                    170: *> \author NAG Ltd. 
                    171: *
                    172: *> \date November 2011
                    173: *
                    174: *> \ingroup complex16GEeigen
                    175: *
                    176: *  =====================================================================
1.1       bertrand  177:       SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
                    178:      $                  WORK, LWORK, RWORK, INFO )
                    179: *
1.8       bertrand  180: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  183: *     November 2011
1.1       bertrand  184: *
                    185: *     .. Scalar Arguments ..
                    186:       CHARACTER          JOBVL, JOBVR
                    187:       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
                    188: *     ..
                    189: *     .. Array Arguments ..
                    190:       DOUBLE PRECISION   RWORK( * )
                    191:       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
                    192:      $                   W( * ), WORK( * )
                    193: *     ..
                    194: *
                    195: *  =====================================================================
                    196: *
                    197: *     .. Parameters ..
                    198:       DOUBLE PRECISION   ZERO, ONE
                    199:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    200: *     ..
                    201: *     .. Local Scalars ..
                    202:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
                    203:       CHARACTER          SIDE
                    204:       INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
                    205:      $                   IWRK, K, MAXWRK, MINWRK, NOUT
                    206:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
                    207:       COMPLEX*16         TMP
                    208: *     ..
                    209: *     .. Local Arrays ..
                    210:       LOGICAL            SELECT( 1 )
                    211:       DOUBLE PRECISION   DUM( 1 )
                    212: *     ..
                    213: *     .. External Subroutines ..
                    214:       EXTERNAL           DLABAD, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL, ZGEHRD,
                    215:      $                   ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC, ZUNGHR
                    216: *     ..
                    217: *     .. External Functions ..
                    218:       LOGICAL            LSAME
                    219:       INTEGER            IDAMAX, ILAENV
                    220:       DOUBLE PRECISION   DLAMCH, DZNRM2, ZLANGE
                    221:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
                    222: *     ..
                    223: *     .. Intrinsic Functions ..
                    224:       INTRINSIC          DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
                    225: *     ..
                    226: *     .. Executable Statements ..
                    227: *
                    228: *     Test the input arguments
                    229: *
                    230:       INFO = 0
                    231:       LQUERY = ( LWORK.EQ.-1 )
                    232:       WANTVL = LSAME( JOBVL, 'V' )
                    233:       WANTVR = LSAME( JOBVR, 'V' )
                    234:       IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
                    235:          INFO = -1
                    236:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
                    237:          INFO = -2
                    238:       ELSE IF( N.LT.0 ) THEN
                    239:          INFO = -3
                    240:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    241:          INFO = -5
                    242:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
                    243:          INFO = -8
                    244:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
                    245:          INFO = -10
                    246:       END IF
                    247: *
                    248: *     Compute workspace
                    249: *      (Note: Comments in the code beginning "Workspace:" describe the
                    250: *       minimal amount of workspace needed at that point in the code,
                    251: *       as well as the preferred amount for good performance.
                    252: *       CWorkspace refers to complex workspace, and RWorkspace to real
                    253: *       workspace. NB refers to the optimal block size for the
                    254: *       immediately following subroutine, as returned by ILAENV.
                    255: *       HSWORK refers to the workspace preferred by ZHSEQR, as
                    256: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    257: *       the worst case.)
                    258: *
                    259:       IF( INFO.EQ.0 ) THEN
                    260:          IF( N.EQ.0 ) THEN
                    261:             MINWRK = 1
                    262:             MAXWRK = 1
                    263:          ELSE
                    264:             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
                    265:             MINWRK = 2*N
                    266:             IF( WANTVL ) THEN
                    267:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
                    268:      $                       ' ', N, 1, N, -1 ) )
                    269:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
                    270:      $                WORK, -1, INFO )
                    271:             ELSE IF( WANTVR ) THEN
                    272:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
                    273:      $                       ' ', N, 1, N, -1 ) )
                    274:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
                    275:      $                WORK, -1, INFO )
                    276:             ELSE
                    277:                CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
                    278:      $                WORK, -1, INFO )
                    279:             END IF
                    280:             HSWORK = WORK( 1 )
                    281:             MAXWRK = MAX( MAXWRK, HSWORK, MINWRK )
                    282:          END IF
                    283:          WORK( 1 ) = MAXWRK
                    284: *
                    285:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    286:             INFO = -12
                    287:          END IF
                    288:       END IF
                    289: *
                    290:       IF( INFO.NE.0 ) THEN
                    291:          CALL XERBLA( 'ZGEEV ', -INFO )
                    292:          RETURN
                    293:       ELSE IF( LQUERY ) THEN
                    294:          RETURN
                    295:       END IF
                    296: *
                    297: *     Quick return if possible
                    298: *
                    299:       IF( N.EQ.0 )
                    300:      $   RETURN
                    301: *
                    302: *     Get machine constants
                    303: *
                    304:       EPS = DLAMCH( 'P' )
                    305:       SMLNUM = DLAMCH( 'S' )
                    306:       BIGNUM = ONE / SMLNUM
                    307:       CALL DLABAD( SMLNUM, BIGNUM )
                    308:       SMLNUM = SQRT( SMLNUM ) / EPS
                    309:       BIGNUM = ONE / SMLNUM
                    310: *
                    311: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    312: *
                    313:       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
                    314:       SCALEA = .FALSE.
                    315:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    316:          SCALEA = .TRUE.
                    317:          CSCALE = SMLNUM
                    318:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    319:          SCALEA = .TRUE.
                    320:          CSCALE = BIGNUM
                    321:       END IF
                    322:       IF( SCALEA )
                    323:      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    324: *
                    325: *     Balance the matrix
                    326: *     (CWorkspace: none)
                    327: *     (RWorkspace: need N)
                    328: *
                    329:       IBAL = 1
                    330:       CALL ZGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
                    331: *
                    332: *     Reduce to upper Hessenberg form
                    333: *     (CWorkspace: need 2*N, prefer N+N*NB)
                    334: *     (RWorkspace: none)
                    335: *
                    336:       ITAU = 1
                    337:       IWRK = ITAU + N
                    338:       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    339:      $             LWORK-IWRK+1, IERR )
                    340: *
                    341:       IF( WANTVL ) THEN
                    342: *
                    343: *        Want left eigenvectors
                    344: *        Copy Householder vectors to VL
                    345: *
                    346:          SIDE = 'L'
                    347:          CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
                    348: *
                    349: *        Generate unitary matrix in VL
                    350: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
                    351: *        (RWorkspace: none)
                    352: *
                    353:          CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
                    354:      $                LWORK-IWRK+1, IERR )
                    355: *
                    356: *        Perform QR iteration, accumulating Schur vectors in VL
                    357: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
                    358: *        (RWorkspace: none)
                    359: *
                    360:          IWRK = ITAU
                    361:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
                    362:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    363: *
                    364:          IF( WANTVR ) THEN
                    365: *
                    366: *           Want left and right eigenvectors
                    367: *           Copy Schur vectors to VR
                    368: *
                    369:             SIDE = 'B'
                    370:             CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
                    371:          END IF
                    372: *
                    373:       ELSE IF( WANTVR ) THEN
                    374: *
                    375: *        Want right eigenvectors
                    376: *        Copy Householder vectors to VR
                    377: *
                    378:          SIDE = 'R'
                    379:          CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
                    380: *
                    381: *        Generate unitary matrix in VR
                    382: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
                    383: *        (RWorkspace: none)
                    384: *
                    385:          CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
                    386:      $                LWORK-IWRK+1, IERR )
                    387: *
                    388: *        Perform QR iteration, accumulating Schur vectors in VR
                    389: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
                    390: *        (RWorkspace: none)
                    391: *
                    392:          IWRK = ITAU
                    393:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
                    394:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    395: *
                    396:       ELSE
                    397: *
                    398: *        Compute eigenvalues only
                    399: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
                    400: *        (RWorkspace: none)
                    401: *
                    402:          IWRK = ITAU
                    403:          CALL ZHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
                    404:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    405:       END IF
                    406: *
                    407: *     If INFO > 0 from ZHSEQR, then quit
                    408: *
                    409:       IF( INFO.GT.0 )
                    410:      $   GO TO 50
                    411: *
                    412:       IF( WANTVL .OR. WANTVR ) THEN
                    413: *
                    414: *        Compute left and/or right eigenvectors
                    415: *        (CWorkspace: need 2*N)
                    416: *        (RWorkspace: need 2*N)
                    417: *
                    418:          IRWORK = IBAL + N
                    419:          CALL ZTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
                    420:      $                N, NOUT, WORK( IWRK ), RWORK( IRWORK ), IERR )
                    421:       END IF
                    422: *
                    423:       IF( WANTVL ) THEN
                    424: *
                    425: *        Undo balancing of left eigenvectors
                    426: *        (CWorkspace: none)
                    427: *        (RWorkspace: need N)
                    428: *
                    429:          CALL ZGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
                    430:      $                IERR )
                    431: *
                    432: *        Normalize left eigenvectors and make largest component real
                    433: *
                    434:          DO 20 I = 1, N
                    435:             SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
                    436:             CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
                    437:             DO 10 K = 1, N
                    438:                RWORK( IRWORK+K-1 ) = DBLE( VL( K, I ) )**2 +
                    439:      $                               DIMAG( VL( K, I ) )**2
                    440:    10       CONTINUE
                    441:             K = IDAMAX( N, RWORK( IRWORK ), 1 )
                    442:             TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
                    443:             CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
                    444:             VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
                    445:    20    CONTINUE
                    446:       END IF
                    447: *
                    448:       IF( WANTVR ) THEN
                    449: *
                    450: *        Undo balancing of right eigenvectors
                    451: *        (CWorkspace: none)
                    452: *        (RWorkspace: need N)
                    453: *
                    454:          CALL ZGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
                    455:      $                IERR )
                    456: *
                    457: *        Normalize right eigenvectors and make largest component real
                    458: *
                    459:          DO 40 I = 1, N
                    460:             SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
                    461:             CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
                    462:             DO 30 K = 1, N
                    463:                RWORK( IRWORK+K-1 ) = DBLE( VR( K, I ) )**2 +
                    464:      $                               DIMAG( VR( K, I ) )**2
                    465:    30       CONTINUE
                    466:             K = IDAMAX( N, RWORK( IRWORK ), 1 )
                    467:             TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
                    468:             CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
                    469:             VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
                    470:    40    CONTINUE
                    471:       END IF
                    472: *
                    473: *     Undo scaling if necessary
                    474: *
                    475:    50 CONTINUE
                    476:       IF( SCALEA ) THEN
                    477:          CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
                    478:      $                MAX( N-INFO, 1 ), IERR )
                    479:          IF( INFO.GT.0 ) THEN
                    480:             CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
                    481:          END IF
                    482:       END IF
                    483: *
                    484:       WORK( 1 ) = MAXWRK
                    485:       RETURN
                    486: *
                    487: *     End of ZGEEV
                    488: *
                    489:       END

CVSweb interface <joel.bertrand@systella.fr>