Annotation of rpl/lapack/lapack/zgeev.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
        !             2:      $                  WORK, LWORK, RWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBVL, JOBVR
        !            11:       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       DOUBLE PRECISION   RWORK( * )
        !            15:       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
        !            16:      $                   W( * ), WORK( * )
        !            17: *     ..
        !            18: *
        !            19: *  Purpose
        !            20: *  =======
        !            21: *
        !            22: *  ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
        !            23: *  eigenvalues and, optionally, the left and/or right eigenvectors.
        !            24: *
        !            25: *  The right eigenvector v(j) of A satisfies
        !            26: *                   A * v(j) = lambda(j) * v(j)
        !            27: *  where lambda(j) is its eigenvalue.
        !            28: *  The left eigenvector u(j) of A satisfies
        !            29: *                u(j)**H * A = lambda(j) * u(j)**H
        !            30: *  where u(j)**H denotes the conjugate transpose of u(j).
        !            31: *
        !            32: *  The computed eigenvectors are normalized to have Euclidean norm
        !            33: *  equal to 1 and largest component real.
        !            34: *
        !            35: *  Arguments
        !            36: *  =========
        !            37: *
        !            38: *  JOBVL   (input) CHARACTER*1
        !            39: *          = 'N': left eigenvectors of A are not computed;
        !            40: *          = 'V': left eigenvectors of are computed.
        !            41: *
        !            42: *  JOBVR   (input) CHARACTER*1
        !            43: *          = 'N': right eigenvectors of A are not computed;
        !            44: *          = 'V': right eigenvectors of A are computed.
        !            45: *
        !            46: *  N       (input) INTEGER
        !            47: *          The order of the matrix A. N >= 0.
        !            48: *
        !            49: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            50: *          On entry, the N-by-N matrix A.
        !            51: *          On exit, A has been overwritten.
        !            52: *
        !            53: *  LDA     (input) INTEGER
        !            54: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            55: *
        !            56: *  W       (output) COMPLEX*16 array, dimension (N)
        !            57: *          W contains the computed eigenvalues.
        !            58: *
        !            59: *  VL      (output) COMPLEX*16 array, dimension (LDVL,N)
        !            60: *          If JOBVL = 'V', the left eigenvectors u(j) are stored one
        !            61: *          after another in the columns of VL, in the same order
        !            62: *          as their eigenvalues.
        !            63: *          If JOBVL = 'N', VL is not referenced.
        !            64: *          u(j) = VL(:,j), the j-th column of VL.
        !            65: *
        !            66: *  LDVL    (input) INTEGER
        !            67: *          The leading dimension of the array VL.  LDVL >= 1; if
        !            68: *          JOBVL = 'V', LDVL >= N.
        !            69: *
        !            70: *  VR      (output) COMPLEX*16 array, dimension (LDVR,N)
        !            71: *          If JOBVR = 'V', the right eigenvectors v(j) are stored one
        !            72: *          after another in the columns of VR, in the same order
        !            73: *          as their eigenvalues.
        !            74: *          If JOBVR = 'N', VR is not referenced.
        !            75: *          v(j) = VR(:,j), the j-th column of VR.
        !            76: *
        !            77: *  LDVR    (input) INTEGER
        !            78: *          The leading dimension of the array VR.  LDVR >= 1; if
        !            79: *          JOBVR = 'V', LDVR >= N.
        !            80: *
        !            81: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !            82: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            83: *
        !            84: *  LWORK   (input) INTEGER
        !            85: *          The dimension of the array WORK.  LWORK >= max(1,2*N).
        !            86: *          For good performance, LWORK must generally be larger.
        !            87: *
        !            88: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            89: *          only calculates the optimal size of the WORK array, returns
        !            90: *          this value as the first entry of the WORK array, and no error
        !            91: *          message related to LWORK is issued by XERBLA.
        !            92: *
        !            93: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
        !            94: *
        !            95: *  INFO    (output) INTEGER
        !            96: *          = 0:  successful exit
        !            97: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !            98: *          > 0:  if INFO = i, the QR algorithm failed to compute all the
        !            99: *                eigenvalues, and no eigenvectors have been computed;
        !           100: *                elements and i+1:N of W contain eigenvalues which have
        !           101: *                converged.
        !           102: *
        !           103: *  =====================================================================
        !           104: *
        !           105: *     .. Parameters ..
        !           106:       DOUBLE PRECISION   ZERO, ONE
        !           107:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           108: *     ..
        !           109: *     .. Local Scalars ..
        !           110:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
        !           111:       CHARACTER          SIDE
        !           112:       INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
        !           113:      $                   IWRK, K, MAXWRK, MINWRK, NOUT
        !           114:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
        !           115:       COMPLEX*16         TMP
        !           116: *     ..
        !           117: *     .. Local Arrays ..
        !           118:       LOGICAL            SELECT( 1 )
        !           119:       DOUBLE PRECISION   DUM( 1 )
        !           120: *     ..
        !           121: *     .. External Subroutines ..
        !           122:       EXTERNAL           DLABAD, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL, ZGEHRD,
        !           123:      $                   ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC, ZUNGHR
        !           124: *     ..
        !           125: *     .. External Functions ..
        !           126:       LOGICAL            LSAME
        !           127:       INTEGER            IDAMAX, ILAENV
        !           128:       DOUBLE PRECISION   DLAMCH, DZNRM2, ZLANGE
        !           129:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
        !           130: *     ..
        !           131: *     .. Intrinsic Functions ..
        !           132:       INTRINSIC          DBLE, DCMPLX, DCONJG, DIMAG, MAX, SQRT
        !           133: *     ..
        !           134: *     .. Executable Statements ..
        !           135: *
        !           136: *     Test the input arguments
        !           137: *
        !           138:       INFO = 0
        !           139:       LQUERY = ( LWORK.EQ.-1 )
        !           140:       WANTVL = LSAME( JOBVL, 'V' )
        !           141:       WANTVR = LSAME( JOBVR, 'V' )
        !           142:       IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
        !           143:          INFO = -1
        !           144:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
        !           145:          INFO = -2
        !           146:       ELSE IF( N.LT.0 ) THEN
        !           147:          INFO = -3
        !           148:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           149:          INFO = -5
        !           150:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
        !           151:          INFO = -8
        !           152:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
        !           153:          INFO = -10
        !           154:       END IF
        !           155: *
        !           156: *     Compute workspace
        !           157: *      (Note: Comments in the code beginning "Workspace:" describe the
        !           158: *       minimal amount of workspace needed at that point in the code,
        !           159: *       as well as the preferred amount for good performance.
        !           160: *       CWorkspace refers to complex workspace, and RWorkspace to real
        !           161: *       workspace. NB refers to the optimal block size for the
        !           162: *       immediately following subroutine, as returned by ILAENV.
        !           163: *       HSWORK refers to the workspace preferred by ZHSEQR, as
        !           164: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
        !           165: *       the worst case.)
        !           166: *
        !           167:       IF( INFO.EQ.0 ) THEN
        !           168:          IF( N.EQ.0 ) THEN
        !           169:             MINWRK = 1
        !           170:             MAXWRK = 1
        !           171:          ELSE
        !           172:             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
        !           173:             MINWRK = 2*N
        !           174:             IF( WANTVL ) THEN
        !           175:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
        !           176:      $                       ' ', N, 1, N, -1 ) )
        !           177:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
        !           178:      $                WORK, -1, INFO )
        !           179:             ELSE IF( WANTVR ) THEN
        !           180:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
        !           181:      $                       ' ', N, 1, N, -1 ) )
        !           182:                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
        !           183:      $                WORK, -1, INFO )
        !           184:             ELSE
        !           185:                CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
        !           186:      $                WORK, -1, INFO )
        !           187:             END IF
        !           188:             HSWORK = WORK( 1 )
        !           189:             MAXWRK = MAX( MAXWRK, HSWORK, MINWRK )
        !           190:          END IF
        !           191:          WORK( 1 ) = MAXWRK
        !           192: *
        !           193:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
        !           194:             INFO = -12
        !           195:          END IF
        !           196:       END IF
        !           197: *
        !           198:       IF( INFO.NE.0 ) THEN
        !           199:          CALL XERBLA( 'ZGEEV ', -INFO )
        !           200:          RETURN
        !           201:       ELSE IF( LQUERY ) THEN
        !           202:          RETURN
        !           203:       END IF
        !           204: *
        !           205: *     Quick return if possible
        !           206: *
        !           207:       IF( N.EQ.0 )
        !           208:      $   RETURN
        !           209: *
        !           210: *     Get machine constants
        !           211: *
        !           212:       EPS = DLAMCH( 'P' )
        !           213:       SMLNUM = DLAMCH( 'S' )
        !           214:       BIGNUM = ONE / SMLNUM
        !           215:       CALL DLABAD( SMLNUM, BIGNUM )
        !           216:       SMLNUM = SQRT( SMLNUM ) / EPS
        !           217:       BIGNUM = ONE / SMLNUM
        !           218: *
        !           219: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           220: *
        !           221:       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
        !           222:       SCALEA = .FALSE.
        !           223:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           224:          SCALEA = .TRUE.
        !           225:          CSCALE = SMLNUM
        !           226:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           227:          SCALEA = .TRUE.
        !           228:          CSCALE = BIGNUM
        !           229:       END IF
        !           230:       IF( SCALEA )
        !           231:      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
        !           232: *
        !           233: *     Balance the matrix
        !           234: *     (CWorkspace: none)
        !           235: *     (RWorkspace: need N)
        !           236: *
        !           237:       IBAL = 1
        !           238:       CALL ZGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
        !           239: *
        !           240: *     Reduce to upper Hessenberg form
        !           241: *     (CWorkspace: need 2*N, prefer N+N*NB)
        !           242: *     (RWorkspace: none)
        !           243: *
        !           244:       ITAU = 1
        !           245:       IWRK = ITAU + N
        !           246:       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
        !           247:      $             LWORK-IWRK+1, IERR )
        !           248: *
        !           249:       IF( WANTVL ) THEN
        !           250: *
        !           251: *        Want left eigenvectors
        !           252: *        Copy Householder vectors to VL
        !           253: *
        !           254:          SIDE = 'L'
        !           255:          CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
        !           256: *
        !           257: *        Generate unitary matrix in VL
        !           258: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
        !           259: *        (RWorkspace: none)
        !           260: *
        !           261:          CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
        !           262:      $                LWORK-IWRK+1, IERR )
        !           263: *
        !           264: *        Perform QR iteration, accumulating Schur vectors in VL
        !           265: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
        !           266: *        (RWorkspace: none)
        !           267: *
        !           268:          IWRK = ITAU
        !           269:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
        !           270:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
        !           271: *
        !           272:          IF( WANTVR ) THEN
        !           273: *
        !           274: *           Want left and right eigenvectors
        !           275: *           Copy Schur vectors to VR
        !           276: *
        !           277:             SIDE = 'B'
        !           278:             CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
        !           279:          END IF
        !           280: *
        !           281:       ELSE IF( WANTVR ) THEN
        !           282: *
        !           283: *        Want right eigenvectors
        !           284: *        Copy Householder vectors to VR
        !           285: *
        !           286:          SIDE = 'R'
        !           287:          CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
        !           288: *
        !           289: *        Generate unitary matrix in VR
        !           290: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
        !           291: *        (RWorkspace: none)
        !           292: *
        !           293:          CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
        !           294:      $                LWORK-IWRK+1, IERR )
        !           295: *
        !           296: *        Perform QR iteration, accumulating Schur vectors in VR
        !           297: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
        !           298: *        (RWorkspace: none)
        !           299: *
        !           300:          IWRK = ITAU
        !           301:          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
        !           302:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
        !           303: *
        !           304:       ELSE
        !           305: *
        !           306: *        Compute eigenvalues only
        !           307: *        (CWorkspace: need 1, prefer HSWORK (see comments) )
        !           308: *        (RWorkspace: none)
        !           309: *
        !           310:          IWRK = ITAU
        !           311:          CALL ZHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
        !           312:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
        !           313:       END IF
        !           314: *
        !           315: *     If INFO > 0 from ZHSEQR, then quit
        !           316: *
        !           317:       IF( INFO.GT.0 )
        !           318:      $   GO TO 50
        !           319: *
        !           320:       IF( WANTVL .OR. WANTVR ) THEN
        !           321: *
        !           322: *        Compute left and/or right eigenvectors
        !           323: *        (CWorkspace: need 2*N)
        !           324: *        (RWorkspace: need 2*N)
        !           325: *
        !           326:          IRWORK = IBAL + N
        !           327:          CALL ZTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
        !           328:      $                N, NOUT, WORK( IWRK ), RWORK( IRWORK ), IERR )
        !           329:       END IF
        !           330: *
        !           331:       IF( WANTVL ) THEN
        !           332: *
        !           333: *        Undo balancing of left eigenvectors
        !           334: *        (CWorkspace: none)
        !           335: *        (RWorkspace: need N)
        !           336: *
        !           337:          CALL ZGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
        !           338:      $                IERR )
        !           339: *
        !           340: *        Normalize left eigenvectors and make largest component real
        !           341: *
        !           342:          DO 20 I = 1, N
        !           343:             SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
        !           344:             CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
        !           345:             DO 10 K = 1, N
        !           346:                RWORK( IRWORK+K-1 ) = DBLE( VL( K, I ) )**2 +
        !           347:      $                               DIMAG( VL( K, I ) )**2
        !           348:    10       CONTINUE
        !           349:             K = IDAMAX( N, RWORK( IRWORK ), 1 )
        !           350:             TMP = DCONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
        !           351:             CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
        !           352:             VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
        !           353:    20    CONTINUE
        !           354:       END IF
        !           355: *
        !           356:       IF( WANTVR ) THEN
        !           357: *
        !           358: *        Undo balancing of right eigenvectors
        !           359: *        (CWorkspace: none)
        !           360: *        (RWorkspace: need N)
        !           361: *
        !           362:          CALL ZGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
        !           363:      $                IERR )
        !           364: *
        !           365: *        Normalize right eigenvectors and make largest component real
        !           366: *
        !           367:          DO 40 I = 1, N
        !           368:             SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
        !           369:             CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
        !           370:             DO 30 K = 1, N
        !           371:                RWORK( IRWORK+K-1 ) = DBLE( VR( K, I ) )**2 +
        !           372:      $                               DIMAG( VR( K, I ) )**2
        !           373:    30       CONTINUE
        !           374:             K = IDAMAX( N, RWORK( IRWORK ), 1 )
        !           375:             TMP = DCONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
        !           376:             CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
        !           377:             VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
        !           378:    40    CONTINUE
        !           379:       END IF
        !           380: *
        !           381: *     Undo scaling if necessary
        !           382: *
        !           383:    50 CONTINUE
        !           384:       IF( SCALEA ) THEN
        !           385:          CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
        !           386:      $                MAX( N-INFO, 1 ), IERR )
        !           387:          IF( INFO.GT.0 ) THEN
        !           388:             CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
        !           389:          END IF
        !           390:       END IF
        !           391: *
        !           392:       WORK( 1 ) = MAXWRK
        !           393:       RETURN
        !           394: *
        !           395: *     End of ZGEEV
        !           396: *
        !           397:       END

CVSweb interface <joel.bertrand@systella.fr>