Annotation of rpl/lapack/lapack/zgeesx.f, revision 1.19

1.9       bertrand    1: *> \brief <b> ZGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download ZGEESX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeesx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeesx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeesx.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W,
                     22: *                          VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK,
                     23: *                          BWORK, INFO )
1.16      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBVS, SENSE, SORT
                     27: *       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
                     28: *       DOUBLE PRECISION   RCONDE, RCONDV
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       LOGICAL            BWORK( * )
                     32: *       DOUBLE PRECISION   RWORK( * )
                     33: *       COMPLEX*16         A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
                     34: *       ..
                     35: *       .. Function Arguments ..
                     36: *       LOGICAL            SELECT
                     37: *       EXTERNAL           SELECT
                     38: *       ..
1.16      bertrand   39: *
1.9       bertrand   40: *
                     41: *> \par Purpose:
                     42: *  =============
                     43: *>
                     44: *> \verbatim
                     45: *>
                     46: *> ZGEESX computes for an N-by-N complex nonsymmetric matrix A, the
                     47: *> eigenvalues, the Schur form T, and, optionally, the matrix of Schur
                     48: *> vectors Z.  This gives the Schur factorization A = Z*T*(Z**H).
                     49: *>
                     50: *> Optionally, it also orders the eigenvalues on the diagonal of the
                     51: *> Schur form so that selected eigenvalues are at the top left;
                     52: *> computes a reciprocal condition number for the average of the
                     53: *> selected eigenvalues (RCONDE); and computes a reciprocal condition
                     54: *> number for the right invariant subspace corresponding to the
                     55: *> selected eigenvalues (RCONDV).  The leading columns of Z form an
                     56: *> orthonormal basis for this invariant subspace.
                     57: *>
                     58: *> For further explanation of the reciprocal condition numbers RCONDE
                     59: *> and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
                     60: *> these quantities are called s and sep respectively).
                     61: *>
                     62: *> A complex matrix is in Schur form if it is upper triangular.
                     63: *> \endverbatim
                     64: *
                     65: *  Arguments:
                     66: *  ==========
                     67: *
                     68: *> \param[in] JOBVS
                     69: *> \verbatim
                     70: *>          JOBVS is CHARACTER*1
                     71: *>          = 'N': Schur vectors are not computed;
                     72: *>          = 'V': Schur vectors are computed.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] SORT
                     76: *> \verbatim
                     77: *>          SORT is CHARACTER*1
                     78: *>          Specifies whether or not to order the eigenvalues on the
                     79: *>          diagonal of the Schur form.
                     80: *>          = 'N': Eigenvalues are not ordered;
                     81: *>          = 'S': Eigenvalues are ordered (see SELECT).
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] SELECT
                     85: *> \verbatim
1.14      bertrand   86: *>          SELECT is a LOGICAL FUNCTION of one COMPLEX*16 argument
1.9       bertrand   87: *>          SELECT must be declared EXTERNAL in the calling subroutine.
                     88: *>          If SORT = 'S', SELECT is used to select eigenvalues to order
                     89: *>          to the top left of the Schur form.
                     90: *>          If SORT = 'N', SELECT is not referenced.
                     91: *>          An eigenvalue W(j) is selected if SELECT(W(j)) is true.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] SENSE
                     95: *> \verbatim
                     96: *>          SENSE is CHARACTER*1
                     97: *>          Determines which reciprocal condition numbers are computed.
                     98: *>          = 'N': None are computed;
                     99: *>          = 'E': Computed for average of selected eigenvalues only;
                    100: *>          = 'V': Computed for selected right invariant subspace only;
                    101: *>          = 'B': Computed for both.
                    102: *>          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] N
                    106: *> \verbatim
                    107: *>          N is INTEGER
                    108: *>          The order of the matrix A. N >= 0.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in,out] A
                    112: *> \verbatim
                    113: *>          A is COMPLEX*16 array, dimension (LDA, N)
                    114: *>          On entry, the N-by-N matrix A.
                    115: *>          On exit, A is overwritten by its Schur form T.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] LDA
                    119: *> \verbatim
                    120: *>          LDA is INTEGER
                    121: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[out] SDIM
                    125: *> \verbatim
                    126: *>          SDIM is INTEGER
                    127: *>          If SORT = 'N', SDIM = 0.
                    128: *>          If SORT = 'S', SDIM = number of eigenvalues for which
                    129: *>                         SELECT is true.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[out] W
                    133: *> \verbatim
                    134: *>          W is COMPLEX*16 array, dimension (N)
                    135: *>          W contains the computed eigenvalues, in the same order
                    136: *>          that they appear on the diagonal of the output Schur form T.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[out] VS
                    140: *> \verbatim
                    141: *>          VS is COMPLEX*16 array, dimension (LDVS,N)
                    142: *>          If JOBVS = 'V', VS contains the unitary matrix Z of Schur
                    143: *>          vectors.
                    144: *>          If JOBVS = 'N', VS is not referenced.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[in] LDVS
                    148: *> \verbatim
                    149: *>          LDVS is INTEGER
                    150: *>          The leading dimension of the array VS.  LDVS >= 1, and if
                    151: *>          JOBVS = 'V', LDVS >= N.
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[out] RCONDE
                    155: *> \verbatim
                    156: *>          RCONDE is DOUBLE PRECISION
                    157: *>          If SENSE = 'E' or 'B', RCONDE contains the reciprocal
                    158: *>          condition number for the average of the selected eigenvalues.
                    159: *>          Not referenced if SENSE = 'N' or 'V'.
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[out] RCONDV
                    163: *> \verbatim
                    164: *>          RCONDV is DOUBLE PRECISION
                    165: *>          If SENSE = 'V' or 'B', RCONDV contains the reciprocal
                    166: *>          condition number for the selected right invariant subspace.
                    167: *>          Not referenced if SENSE = 'N' or 'E'.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[out] WORK
                    171: *> \verbatim
                    172: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    173: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    174: *> \endverbatim
                    175: *>
                    176: *> \param[in] LWORK
                    177: *> \verbatim
                    178: *>          LWORK is INTEGER
                    179: *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
                    180: *>          Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM),
                    181: *>          where SDIM is the number of selected eigenvalues computed by
                    182: *>          this routine.  Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also
                    183: *>          that an error is only returned if LWORK < max(1,2*N), but if
                    184: *>          SENSE = 'E' or 'V' or 'B' this may not be large enough.
                    185: *>          For good performance, LWORK must generally be larger.
                    186: *>
                    187: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    188: *>          only calculates upper bound on the optimal size of the
                    189: *>          array WORK, returns this value as the first entry of the WORK
                    190: *>          array, and no error message related to LWORK is issued by
                    191: *>          XERBLA.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] RWORK
                    195: *> \verbatim
                    196: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    197: *> \endverbatim
                    198: *>
                    199: *> \param[out] BWORK
                    200: *> \verbatim
                    201: *>          BWORK is LOGICAL array, dimension (N)
                    202: *>          Not referenced if SORT = 'N'.
                    203: *> \endverbatim
                    204: *>
                    205: *> \param[out] INFO
                    206: *> \verbatim
                    207: *>          INFO is INTEGER
                    208: *>          = 0: successful exit
                    209: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
                    210: *>          > 0: if INFO = i, and i is
                    211: *>             <= N: the QR algorithm failed to compute all the
                    212: *>                   eigenvalues; elements 1:ILO-1 and i+1:N of W
                    213: *>                   contain those eigenvalues which have converged; if
                    214: *>                   JOBVS = 'V', VS contains the transformation which
                    215: *>                   reduces A to its partially converged Schur form.
                    216: *>             = N+1: the eigenvalues could not be reordered because some
                    217: *>                   eigenvalues were too close to separate (the problem
                    218: *>                   is very ill-conditioned);
                    219: *>             = N+2: after reordering, roundoff changed values of some
                    220: *>                   complex eigenvalues so that leading eigenvalues in
                    221: *>                   the Schur form no longer satisfy SELECT=.TRUE.  This
                    222: *>                   could also be caused by underflow due to scaling.
                    223: *> \endverbatim
                    224: *
                    225: *  Authors:
                    226: *  ========
                    227: *
1.16      bertrand  228: *> \author Univ. of Tennessee
                    229: *> \author Univ. of California Berkeley
                    230: *> \author Univ. of Colorado Denver
                    231: *> \author NAG Ltd.
1.9       bertrand  232: *
                    233: *> \ingroup complex16GEeigen
                    234: *
                    235: *  =====================================================================
1.1       bertrand  236:       SUBROUTINE ZGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W,
                    237:      $                   VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK,
                    238:      $                   BWORK, INFO )
                    239: *
1.19    ! bertrand  240: *  -- LAPACK driver routine --
1.1       bertrand  241: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    242: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    243: *
                    244: *     .. Scalar Arguments ..
                    245:       CHARACTER          JOBVS, SENSE, SORT
                    246:       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
                    247:       DOUBLE PRECISION   RCONDE, RCONDV
                    248: *     ..
                    249: *     .. Array Arguments ..
                    250:       LOGICAL            BWORK( * )
                    251:       DOUBLE PRECISION   RWORK( * )
                    252:       COMPLEX*16         A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
                    253: *     ..
                    254: *     .. Function Arguments ..
                    255:       LOGICAL            SELECT
                    256:       EXTERNAL           SELECT
                    257: *     ..
                    258: *
                    259: *  =====================================================================
                    260: *
                    261: *     .. Parameters ..
                    262:       DOUBLE PRECISION   ZERO, ONE
                    263:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    264: *     ..
                    265: *     .. Local Scalars ..
1.5       bertrand  266:       LOGICAL            LQUERY, SCALEA, WANTSB, WANTSE, WANTSN, WANTST,
                    267:      $                   WANTSV, WANTVS
1.1       bertrand  268:       INTEGER            HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
                    269:      $                   ITAU, IWRK, LWRK, MAXWRK, MINWRK
                    270:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SMLNUM
                    271: *     ..
                    272: *     .. Local Arrays ..
                    273:       DOUBLE PRECISION   DUM( 1 )
                    274: *     ..
                    275: *     .. External Subroutines ..
                    276:       EXTERNAL           DLABAD, DLASCL, XERBLA, ZCOPY, ZGEBAK, ZGEBAL,
                    277:      $                   ZGEHRD, ZHSEQR, ZLACPY, ZLASCL, ZTRSEN, ZUNGHR
                    278: *     ..
                    279: *     .. External Functions ..
                    280:       LOGICAL            LSAME
                    281:       INTEGER            ILAENV
                    282:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    283:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    284: *     ..
                    285: *     .. Intrinsic Functions ..
                    286:       INTRINSIC          MAX, SQRT
                    287: *     ..
                    288: *     .. Executable Statements ..
                    289: *
                    290: *     Test the input arguments
                    291: *
                    292:       INFO = 0
                    293:       WANTVS = LSAME( JOBVS, 'V' )
                    294:       WANTST = LSAME( SORT, 'S' )
                    295:       WANTSN = LSAME( SENSE, 'N' )
                    296:       WANTSE = LSAME( SENSE, 'E' )
                    297:       WANTSV = LSAME( SENSE, 'V' )
                    298:       WANTSB = LSAME( SENSE, 'B' )
1.5       bertrand  299:       LQUERY = ( LWORK.EQ.-1 )
                    300: *
1.1       bertrand  301:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
                    302:          INFO = -1
                    303:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    304:          INFO = -2
                    305:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    306:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    307:          INFO = -4
                    308:       ELSE IF( N.LT.0 ) THEN
                    309:          INFO = -5
                    310:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    311:          INFO = -7
                    312:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
                    313:          INFO = -11
                    314:       END IF
                    315: *
                    316: *     Compute workspace
                    317: *      (Note: Comments in the code beginning "Workspace:" describe the
                    318: *       minimal amount of real workspace needed at that point in the
                    319: *       code, as well as the preferred amount for good performance.
                    320: *       CWorkspace refers to complex workspace, and RWorkspace to real
                    321: *       workspace. NB refers to the optimal block size for the
                    322: *       immediately following subroutine, as returned by ILAENV.
                    323: *       HSWORK refers to the workspace preferred by ZHSEQR, as
                    324: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    325: *       the worst case.
                    326: *       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
                    327: *       depends on SDIM, which is computed by the routine ZTRSEN later
                    328: *       in the code.)
                    329: *
                    330:       IF( INFO.EQ.0 ) THEN
                    331:          IF( N.EQ.0 ) THEN
                    332:             MINWRK = 1
                    333:             LWRK = 1
                    334:          ELSE
                    335:             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
                    336:             MINWRK = 2*N
                    337: *
                    338:             CALL ZHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS,
                    339:      $             WORK, -1, IEVAL )
1.19    ! bertrand  340:             HSWORK = INT( WORK( 1 ) )
1.1       bertrand  341: *
                    342:             IF( .NOT.WANTVS ) THEN
                    343:                MAXWRK = MAX( MAXWRK, HSWORK )
                    344:             ELSE
                    345:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
                    346:      $                       ' ', N, 1, N, -1 ) )
                    347:                MAXWRK = MAX( MAXWRK, HSWORK )
                    348:             END IF
                    349:             LWRK = MAXWRK
                    350:             IF( .NOT.WANTSN )
                    351:      $         LWRK = MAX( LWRK, ( N*N )/2 )
                    352:          END IF
                    353:          WORK( 1 ) = LWRK
                    354: *
1.5       bertrand  355:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
1.1       bertrand  356:             INFO = -15
                    357:          END IF
                    358:       END IF
                    359: *
                    360:       IF( INFO.NE.0 ) THEN
                    361:          CALL XERBLA( 'ZGEESX', -INFO )
                    362:          RETURN
1.5       bertrand  363:       ELSE IF( LQUERY ) THEN
                    364:          RETURN
1.1       bertrand  365:       END IF
                    366: *
                    367: *     Quick return if possible
                    368: *
                    369:       IF( N.EQ.0 ) THEN
                    370:          SDIM = 0
                    371:          RETURN
                    372:       END IF
                    373: *
                    374: *     Get machine constants
                    375: *
                    376:       EPS = DLAMCH( 'P' )
                    377:       SMLNUM = DLAMCH( 'S' )
                    378:       BIGNUM = ONE / SMLNUM
                    379:       CALL DLABAD( SMLNUM, BIGNUM )
                    380:       SMLNUM = SQRT( SMLNUM ) / EPS
                    381:       BIGNUM = ONE / SMLNUM
                    382: *
                    383: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    384: *
                    385:       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
                    386:       SCALEA = .FALSE.
                    387:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    388:          SCALEA = .TRUE.
                    389:          CSCALE = SMLNUM
                    390:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    391:          SCALEA = .TRUE.
                    392:          CSCALE = BIGNUM
                    393:       END IF
                    394:       IF( SCALEA )
                    395:      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    396: *
                    397: *
                    398: *     Permute the matrix to make it more nearly triangular
                    399: *     (CWorkspace: none)
                    400: *     (RWorkspace: need N)
                    401: *
                    402:       IBAL = 1
                    403:       CALL ZGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
                    404: *
                    405: *     Reduce to upper Hessenberg form
                    406: *     (CWorkspace: need 2*N, prefer N+N*NB)
                    407: *     (RWorkspace: none)
                    408: *
                    409:       ITAU = 1
                    410:       IWRK = N + ITAU
                    411:       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    412:      $             LWORK-IWRK+1, IERR )
                    413: *
                    414:       IF( WANTVS ) THEN
                    415: *
                    416: *        Copy Householder vectors to VS
                    417: *
                    418:          CALL ZLACPY( 'L', N, N, A, LDA, VS, LDVS )
                    419: *
                    420: *        Generate unitary matrix in VS
                    421: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
                    422: *        (RWorkspace: none)
                    423: *
                    424:          CALL ZUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
                    425:      $                LWORK-IWRK+1, IERR )
                    426:       END IF
                    427: *
                    428:       SDIM = 0
                    429: *
                    430: *     Perform QR iteration, accumulating Schur vectors in VS if desired
                    431: *     (CWorkspace: need 1, prefer HSWORK (see comments) )
                    432: *     (RWorkspace: none)
                    433: *
                    434:       IWRK = ITAU
                    435:       CALL ZHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS,
                    436:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
                    437:       IF( IEVAL.GT.0 )
                    438:      $   INFO = IEVAL
                    439: *
                    440: *     Sort eigenvalues if desired
                    441: *
                    442:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    443:          IF( SCALEA )
                    444:      $      CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR )
                    445:          DO 10 I = 1, N
                    446:             BWORK( I ) = SELECT( W( I ) )
                    447:    10    CONTINUE
                    448: *
                    449: *        Reorder eigenvalues, transform Schur vectors, and compute
                    450: *        reciprocal condition numbers
                    451: *        (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM)
                    452: *                     otherwise, need none )
                    453: *        (RWorkspace: none)
                    454: *
                    455:          CALL ZTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM,
                    456:      $                RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
                    457:      $                ICOND )
                    458:          IF( .NOT.WANTSN )
                    459:      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
                    460:          IF( ICOND.EQ.-14 ) THEN
                    461: *
                    462: *           Not enough complex workspace
                    463: *
                    464:             INFO = -15
                    465:          END IF
                    466:       END IF
                    467: *
                    468:       IF( WANTVS ) THEN
                    469: *
                    470: *        Undo balancing
                    471: *        (CWorkspace: none)
                    472: *        (RWorkspace: need N)
                    473: *
                    474:          CALL ZGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS,
                    475:      $                IERR )
                    476:       END IF
                    477: *
                    478:       IF( SCALEA ) THEN
                    479: *
                    480: *        Undo scaling for the Schur form of A
                    481: *
                    482:          CALL ZLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
                    483:          CALL ZCOPY( N, A, LDA+1, W, 1 )
                    484:          IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
                    485:             DUM( 1 ) = RCONDV
                    486:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
                    487:             RCONDV = DUM( 1 )
                    488:          END IF
                    489:       END IF
                    490: *
                    491:       WORK( 1 ) = MAXWRK
                    492:       RETURN
                    493: *
                    494: *     End of ZGEESX
                    495: *
                    496:       END

CVSweb interface <joel.bertrand@systella.fr>