Annotation of rpl/lapack/lapack/zgeesx.f, revision 1.11

1.9       bertrand    1: *> \brief <b> ZGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZGEESX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeesx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeesx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeesx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W,
                     22: *                          VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK,
                     23: *                          BWORK, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBVS, SENSE, SORT
                     27: *       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
                     28: *       DOUBLE PRECISION   RCONDE, RCONDV
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       LOGICAL            BWORK( * )
                     32: *       DOUBLE PRECISION   RWORK( * )
                     33: *       COMPLEX*16         A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
                     34: *       ..
                     35: *       .. Function Arguments ..
                     36: *       LOGICAL            SELECT
                     37: *       EXTERNAL           SELECT
                     38: *       ..
                     39: *  
                     40: *
                     41: *> \par Purpose:
                     42: *  =============
                     43: *>
                     44: *> \verbatim
                     45: *>
                     46: *> ZGEESX computes for an N-by-N complex nonsymmetric matrix A, the
                     47: *> eigenvalues, the Schur form T, and, optionally, the matrix of Schur
                     48: *> vectors Z.  This gives the Schur factorization A = Z*T*(Z**H).
                     49: *>
                     50: *> Optionally, it also orders the eigenvalues on the diagonal of the
                     51: *> Schur form so that selected eigenvalues are at the top left;
                     52: *> computes a reciprocal condition number for the average of the
                     53: *> selected eigenvalues (RCONDE); and computes a reciprocal condition
                     54: *> number for the right invariant subspace corresponding to the
                     55: *> selected eigenvalues (RCONDV).  The leading columns of Z form an
                     56: *> orthonormal basis for this invariant subspace.
                     57: *>
                     58: *> For further explanation of the reciprocal condition numbers RCONDE
                     59: *> and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
                     60: *> these quantities are called s and sep respectively).
                     61: *>
                     62: *> A complex matrix is in Schur form if it is upper triangular.
                     63: *> \endverbatim
                     64: *
                     65: *  Arguments:
                     66: *  ==========
                     67: *
                     68: *> \param[in] JOBVS
                     69: *> \verbatim
                     70: *>          JOBVS is CHARACTER*1
                     71: *>          = 'N': Schur vectors are not computed;
                     72: *>          = 'V': Schur vectors are computed.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] SORT
                     76: *> \verbatim
                     77: *>          SORT is CHARACTER*1
                     78: *>          Specifies whether or not to order the eigenvalues on the
                     79: *>          diagonal of the Schur form.
                     80: *>          = 'N': Eigenvalues are not ordered;
                     81: *>          = 'S': Eigenvalues are ordered (see SELECT).
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] SELECT
                     85: *> \verbatim
                     86: *>          SELECT is procedure) LOGICAL FUNCTION of one COMPLEX*16 argument
                     87: *>          SELECT must be declared EXTERNAL in the calling subroutine.
                     88: *>          If SORT = 'S', SELECT is used to select eigenvalues to order
                     89: *>          to the top left of the Schur form.
                     90: *>          If SORT = 'N', SELECT is not referenced.
                     91: *>          An eigenvalue W(j) is selected if SELECT(W(j)) is true.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] SENSE
                     95: *> \verbatim
                     96: *>          SENSE is CHARACTER*1
                     97: *>          Determines which reciprocal condition numbers are computed.
                     98: *>          = 'N': None are computed;
                     99: *>          = 'E': Computed for average of selected eigenvalues only;
                    100: *>          = 'V': Computed for selected right invariant subspace only;
                    101: *>          = 'B': Computed for both.
                    102: *>          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] N
                    106: *> \verbatim
                    107: *>          N is INTEGER
                    108: *>          The order of the matrix A. N >= 0.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in,out] A
                    112: *> \verbatim
                    113: *>          A is COMPLEX*16 array, dimension (LDA, N)
                    114: *>          On entry, the N-by-N matrix A.
                    115: *>          On exit, A is overwritten by its Schur form T.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] LDA
                    119: *> \verbatim
                    120: *>          LDA is INTEGER
                    121: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[out] SDIM
                    125: *> \verbatim
                    126: *>          SDIM is INTEGER
                    127: *>          If SORT = 'N', SDIM = 0.
                    128: *>          If SORT = 'S', SDIM = number of eigenvalues for which
                    129: *>                         SELECT is true.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[out] W
                    133: *> \verbatim
                    134: *>          W is COMPLEX*16 array, dimension (N)
                    135: *>          W contains the computed eigenvalues, in the same order
                    136: *>          that they appear on the diagonal of the output Schur form T.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[out] VS
                    140: *> \verbatim
                    141: *>          VS is COMPLEX*16 array, dimension (LDVS,N)
                    142: *>          If JOBVS = 'V', VS contains the unitary matrix Z of Schur
                    143: *>          vectors.
                    144: *>          If JOBVS = 'N', VS is not referenced.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[in] LDVS
                    148: *> \verbatim
                    149: *>          LDVS is INTEGER
                    150: *>          The leading dimension of the array VS.  LDVS >= 1, and if
                    151: *>          JOBVS = 'V', LDVS >= N.
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[out] RCONDE
                    155: *> \verbatim
                    156: *>          RCONDE is DOUBLE PRECISION
                    157: *>          If SENSE = 'E' or 'B', RCONDE contains the reciprocal
                    158: *>          condition number for the average of the selected eigenvalues.
                    159: *>          Not referenced if SENSE = 'N' or 'V'.
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[out] RCONDV
                    163: *> \verbatim
                    164: *>          RCONDV is DOUBLE PRECISION
                    165: *>          If SENSE = 'V' or 'B', RCONDV contains the reciprocal
                    166: *>          condition number for the selected right invariant subspace.
                    167: *>          Not referenced if SENSE = 'N' or 'E'.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[out] WORK
                    171: *> \verbatim
                    172: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    173: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    174: *> \endverbatim
                    175: *>
                    176: *> \param[in] LWORK
                    177: *> \verbatim
                    178: *>          LWORK is INTEGER
                    179: *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
                    180: *>          Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM),
                    181: *>          where SDIM is the number of selected eigenvalues computed by
                    182: *>          this routine.  Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also
                    183: *>          that an error is only returned if LWORK < max(1,2*N), but if
                    184: *>          SENSE = 'E' or 'V' or 'B' this may not be large enough.
                    185: *>          For good performance, LWORK must generally be larger.
                    186: *>
                    187: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    188: *>          only calculates upper bound on the optimal size of the
                    189: *>          array WORK, returns this value as the first entry of the WORK
                    190: *>          array, and no error message related to LWORK is issued by
                    191: *>          XERBLA.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] RWORK
                    195: *> \verbatim
                    196: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    197: *> \endverbatim
                    198: *>
                    199: *> \param[out] BWORK
                    200: *> \verbatim
                    201: *>          BWORK is LOGICAL array, dimension (N)
                    202: *>          Not referenced if SORT = 'N'.
                    203: *> \endverbatim
                    204: *>
                    205: *> \param[out] INFO
                    206: *> \verbatim
                    207: *>          INFO is INTEGER
                    208: *>          = 0: successful exit
                    209: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
                    210: *>          > 0: if INFO = i, and i is
                    211: *>             <= N: the QR algorithm failed to compute all the
                    212: *>                   eigenvalues; elements 1:ILO-1 and i+1:N of W
                    213: *>                   contain those eigenvalues which have converged; if
                    214: *>                   JOBVS = 'V', VS contains the transformation which
                    215: *>                   reduces A to its partially converged Schur form.
                    216: *>             = N+1: the eigenvalues could not be reordered because some
                    217: *>                   eigenvalues were too close to separate (the problem
                    218: *>                   is very ill-conditioned);
                    219: *>             = N+2: after reordering, roundoff changed values of some
                    220: *>                   complex eigenvalues so that leading eigenvalues in
                    221: *>                   the Schur form no longer satisfy SELECT=.TRUE.  This
                    222: *>                   could also be caused by underflow due to scaling.
                    223: *> \endverbatim
                    224: *
                    225: *  Authors:
                    226: *  ========
                    227: *
                    228: *> \author Univ. of Tennessee 
                    229: *> \author Univ. of California Berkeley 
                    230: *> \author Univ. of Colorado Denver 
                    231: *> \author NAG Ltd. 
                    232: *
                    233: *> \date November 2011
                    234: *
                    235: *> \ingroup complex16GEeigen
                    236: *
                    237: *  =====================================================================
1.1       bertrand  238:       SUBROUTINE ZGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W,
                    239:      $                   VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK,
                    240:      $                   BWORK, INFO )
                    241: *
1.9       bertrand  242: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  243: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    244: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  245: *     November 2011
1.1       bertrand  246: *
                    247: *     .. Scalar Arguments ..
                    248:       CHARACTER          JOBVS, SENSE, SORT
                    249:       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
                    250:       DOUBLE PRECISION   RCONDE, RCONDV
                    251: *     ..
                    252: *     .. Array Arguments ..
                    253:       LOGICAL            BWORK( * )
                    254:       DOUBLE PRECISION   RWORK( * )
                    255:       COMPLEX*16         A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
                    256: *     ..
                    257: *     .. Function Arguments ..
                    258:       LOGICAL            SELECT
                    259:       EXTERNAL           SELECT
                    260: *     ..
                    261: *
                    262: *  =====================================================================
                    263: *
                    264: *     .. Parameters ..
                    265:       DOUBLE PRECISION   ZERO, ONE
                    266:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    267: *     ..
                    268: *     .. Local Scalars ..
1.5       bertrand  269:       LOGICAL            LQUERY, SCALEA, WANTSB, WANTSE, WANTSN, WANTST,
                    270:      $                   WANTSV, WANTVS
1.1       bertrand  271:       INTEGER            HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
                    272:      $                   ITAU, IWRK, LWRK, MAXWRK, MINWRK
                    273:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SMLNUM
                    274: *     ..
                    275: *     .. Local Arrays ..
                    276:       DOUBLE PRECISION   DUM( 1 )
                    277: *     ..
                    278: *     .. External Subroutines ..
                    279:       EXTERNAL           DLABAD, DLASCL, XERBLA, ZCOPY, ZGEBAK, ZGEBAL,
                    280:      $                   ZGEHRD, ZHSEQR, ZLACPY, ZLASCL, ZTRSEN, ZUNGHR
                    281: *     ..
                    282: *     .. External Functions ..
                    283:       LOGICAL            LSAME
                    284:       INTEGER            ILAENV
                    285:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    286:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    287: *     ..
                    288: *     .. Intrinsic Functions ..
                    289:       INTRINSIC          MAX, SQRT
                    290: *     ..
                    291: *     .. Executable Statements ..
                    292: *
                    293: *     Test the input arguments
                    294: *
                    295:       INFO = 0
                    296:       WANTVS = LSAME( JOBVS, 'V' )
                    297:       WANTST = LSAME( SORT, 'S' )
                    298:       WANTSN = LSAME( SENSE, 'N' )
                    299:       WANTSE = LSAME( SENSE, 'E' )
                    300:       WANTSV = LSAME( SENSE, 'V' )
                    301:       WANTSB = LSAME( SENSE, 'B' )
1.5       bertrand  302:       LQUERY = ( LWORK.EQ.-1 )
                    303: *
1.1       bertrand  304:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
                    305:          INFO = -1
                    306:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    307:          INFO = -2
                    308:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    309:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    310:          INFO = -4
                    311:       ELSE IF( N.LT.0 ) THEN
                    312:          INFO = -5
                    313:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    314:          INFO = -7
                    315:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
                    316:          INFO = -11
                    317:       END IF
                    318: *
                    319: *     Compute workspace
                    320: *      (Note: Comments in the code beginning "Workspace:" describe the
                    321: *       minimal amount of real workspace needed at that point in the
                    322: *       code, as well as the preferred amount for good performance.
                    323: *       CWorkspace refers to complex workspace, and RWorkspace to real
                    324: *       workspace. NB refers to the optimal block size for the
                    325: *       immediately following subroutine, as returned by ILAENV.
                    326: *       HSWORK refers to the workspace preferred by ZHSEQR, as
                    327: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    328: *       the worst case.
                    329: *       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
                    330: *       depends on SDIM, which is computed by the routine ZTRSEN later
                    331: *       in the code.)
                    332: *
                    333:       IF( INFO.EQ.0 ) THEN
                    334:          IF( N.EQ.0 ) THEN
                    335:             MINWRK = 1
                    336:             LWRK = 1
                    337:          ELSE
                    338:             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
                    339:             MINWRK = 2*N
                    340: *
                    341:             CALL ZHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS,
                    342:      $             WORK, -1, IEVAL )
                    343:             HSWORK = WORK( 1 )
                    344: *
                    345:             IF( .NOT.WANTVS ) THEN
                    346:                MAXWRK = MAX( MAXWRK, HSWORK )
                    347:             ELSE
                    348:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
                    349:      $                       ' ', N, 1, N, -1 ) )
                    350:                MAXWRK = MAX( MAXWRK, HSWORK )
                    351:             END IF
                    352:             LWRK = MAXWRK
                    353:             IF( .NOT.WANTSN )
                    354:      $         LWRK = MAX( LWRK, ( N*N )/2 )
                    355:          END IF
                    356:          WORK( 1 ) = LWRK
                    357: *
1.5       bertrand  358:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
1.1       bertrand  359:             INFO = -15
                    360:          END IF
                    361:       END IF
                    362: *
                    363:       IF( INFO.NE.0 ) THEN
                    364:          CALL XERBLA( 'ZGEESX', -INFO )
                    365:          RETURN
1.5       bertrand  366:       ELSE IF( LQUERY ) THEN
                    367:          RETURN
1.1       bertrand  368:       END IF
                    369: *
                    370: *     Quick return if possible
                    371: *
                    372:       IF( N.EQ.0 ) THEN
                    373:          SDIM = 0
                    374:          RETURN
                    375:       END IF
                    376: *
                    377: *     Get machine constants
                    378: *
                    379:       EPS = DLAMCH( 'P' )
                    380:       SMLNUM = DLAMCH( 'S' )
                    381:       BIGNUM = ONE / SMLNUM
                    382:       CALL DLABAD( SMLNUM, BIGNUM )
                    383:       SMLNUM = SQRT( SMLNUM ) / EPS
                    384:       BIGNUM = ONE / SMLNUM
                    385: *
                    386: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    387: *
                    388:       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
                    389:       SCALEA = .FALSE.
                    390:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    391:          SCALEA = .TRUE.
                    392:          CSCALE = SMLNUM
                    393:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    394:          SCALEA = .TRUE.
                    395:          CSCALE = BIGNUM
                    396:       END IF
                    397:       IF( SCALEA )
                    398:      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    399: *
                    400: *
                    401: *     Permute the matrix to make it more nearly triangular
                    402: *     (CWorkspace: none)
                    403: *     (RWorkspace: need N)
                    404: *
                    405:       IBAL = 1
                    406:       CALL ZGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
                    407: *
                    408: *     Reduce to upper Hessenberg form
                    409: *     (CWorkspace: need 2*N, prefer N+N*NB)
                    410: *     (RWorkspace: none)
                    411: *
                    412:       ITAU = 1
                    413:       IWRK = N + ITAU
                    414:       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    415:      $             LWORK-IWRK+1, IERR )
                    416: *
                    417:       IF( WANTVS ) THEN
                    418: *
                    419: *        Copy Householder vectors to VS
                    420: *
                    421:          CALL ZLACPY( 'L', N, N, A, LDA, VS, LDVS )
                    422: *
                    423: *        Generate unitary matrix in VS
                    424: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
                    425: *        (RWorkspace: none)
                    426: *
                    427:          CALL ZUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
                    428:      $                LWORK-IWRK+1, IERR )
                    429:       END IF
                    430: *
                    431:       SDIM = 0
                    432: *
                    433: *     Perform QR iteration, accumulating Schur vectors in VS if desired
                    434: *     (CWorkspace: need 1, prefer HSWORK (see comments) )
                    435: *     (RWorkspace: none)
                    436: *
                    437:       IWRK = ITAU
                    438:       CALL ZHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS,
                    439:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
                    440:       IF( IEVAL.GT.0 )
                    441:      $   INFO = IEVAL
                    442: *
                    443: *     Sort eigenvalues if desired
                    444: *
                    445:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    446:          IF( SCALEA )
                    447:      $      CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR )
                    448:          DO 10 I = 1, N
                    449:             BWORK( I ) = SELECT( W( I ) )
                    450:    10    CONTINUE
                    451: *
                    452: *        Reorder eigenvalues, transform Schur vectors, and compute
                    453: *        reciprocal condition numbers
                    454: *        (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM)
                    455: *                     otherwise, need none )
                    456: *        (RWorkspace: none)
                    457: *
                    458:          CALL ZTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM,
                    459:      $                RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
                    460:      $                ICOND )
                    461:          IF( .NOT.WANTSN )
                    462:      $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
                    463:          IF( ICOND.EQ.-14 ) THEN
                    464: *
                    465: *           Not enough complex workspace
                    466: *
                    467:             INFO = -15
                    468:          END IF
                    469:       END IF
                    470: *
                    471:       IF( WANTVS ) THEN
                    472: *
                    473: *        Undo balancing
                    474: *        (CWorkspace: none)
                    475: *        (RWorkspace: need N)
                    476: *
                    477:          CALL ZGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS,
                    478:      $                IERR )
                    479:       END IF
                    480: *
                    481:       IF( SCALEA ) THEN
                    482: *
                    483: *        Undo scaling for the Schur form of A
                    484: *
                    485:          CALL ZLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
                    486:          CALL ZCOPY( N, A, LDA+1, W, 1 )
                    487:          IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
                    488:             DUM( 1 ) = RCONDV
                    489:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
                    490:             RCONDV = DUM( 1 )
                    491:          END IF
                    492:       END IF
                    493: *
                    494:       WORK( 1 ) = MAXWRK
                    495:       RETURN
                    496: *
                    497: *     End of ZGEESX
                    498: *
                    499:       END

CVSweb interface <joel.bertrand@systella.fr>