Annotation of rpl/lapack/lapack/zgees.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE ZGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS,
                      2:      $                  LDVS, WORK, LWORK, RWORK, BWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBVS, SORT
                     11:       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       LOGICAL            BWORK( * )
                     15:       DOUBLE PRECISION   RWORK( * )
                     16:       COMPLEX*16         A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
                     17: *     ..
                     18: *     .. Function Arguments ..
                     19:       LOGICAL            SELECT
                     20:       EXTERNAL           SELECT
                     21: *     ..
                     22: *
                     23: *  Purpose
                     24: *  =======
                     25: *
                     26: *  ZGEES computes for an N-by-N complex nonsymmetric matrix A, the
                     27: *  eigenvalues, the Schur form T, and, optionally, the matrix of Schur
                     28: *  vectors Z.  This gives the Schur factorization A = Z*T*(Z**H).
                     29: *
                     30: *  Optionally, it also orders the eigenvalues on the diagonal of the
                     31: *  Schur form so that selected eigenvalues are at the top left.
                     32: *  The leading columns of Z then form an orthonormal basis for the
                     33: *  invariant subspace corresponding to the selected eigenvalues.
                     34: *
                     35: *  A complex matrix is in Schur form if it is upper triangular.
                     36: *
                     37: *  Arguments
                     38: *  =========
                     39: *
                     40: *  JOBVS   (input) CHARACTER*1
                     41: *          = 'N': Schur vectors are not computed;
                     42: *          = 'V': Schur vectors are computed.
                     43: *
                     44: *  SORT    (input) CHARACTER*1
                     45: *          Specifies whether or not to order the eigenvalues on the
                     46: *          diagonal of the Schur form.
                     47: *          = 'N': Eigenvalues are not ordered:
                     48: *          = 'S': Eigenvalues are ordered (see SELECT).
                     49: *
                     50: *  SELECT  (external procedure) LOGICAL FUNCTION of one COMPLEX*16 argument
                     51: *          SELECT must be declared EXTERNAL in the calling subroutine.
                     52: *          If SORT = 'S', SELECT is used to select eigenvalues to order
                     53: *          to the top left of the Schur form.
                     54: *          IF SORT = 'N', SELECT is not referenced.
                     55: *          The eigenvalue W(j) is selected if SELECT(W(j)) is true.
                     56: *
                     57: *  N       (input) INTEGER
                     58: *          The order of the matrix A. N >= 0.
                     59: *
                     60: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                     61: *          On entry, the N-by-N matrix A.
                     62: *          On exit, A has been overwritten by its Schur form T.
                     63: *
                     64: *  LDA     (input) INTEGER
                     65: *          The leading dimension of the array A.  LDA >= max(1,N).
                     66: *
                     67: *  SDIM    (output) INTEGER
                     68: *          If SORT = 'N', SDIM = 0.
                     69: *          If SORT = 'S', SDIM = number of eigenvalues for which
                     70: *                         SELECT is true.
                     71: *
                     72: *  W       (output) COMPLEX*16 array, dimension (N)
                     73: *          W contains the computed eigenvalues, in the same order that
                     74: *          they appear on the diagonal of the output Schur form T.
                     75: *
                     76: *  VS      (output) COMPLEX*16 array, dimension (LDVS,N)
                     77: *          If JOBVS = 'V', VS contains the unitary matrix Z of Schur
                     78: *          vectors.
                     79: *          If JOBVS = 'N', VS is not referenced.
                     80: *
                     81: *  LDVS    (input) INTEGER
                     82: *          The leading dimension of the array VS.  LDVS >= 1; if
                     83: *          JOBVS = 'V', LDVS >= N.
                     84: *
                     85: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                     86: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     87: *
                     88: *  LWORK   (input) INTEGER
                     89: *          The dimension of the array WORK.  LWORK >= max(1,2*N).
                     90: *          For good performance, LWORK must generally be larger.
                     91: *
                     92: *          If LWORK = -1, then a workspace query is assumed; the routine
                     93: *          only calculates the optimal size of the WORK array, returns
                     94: *          this value as the first entry of the WORK array, and no error
                     95: *          message related to LWORK is issued by XERBLA.
                     96: *
                     97: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                     98: *
                     99: *  BWORK   (workspace) LOGICAL array, dimension (N)
                    100: *          Not referenced if SORT = 'N'.
                    101: *
                    102: *  INFO    (output) INTEGER
                    103: *          = 0: successful exit
                    104: *          < 0: if INFO = -i, the i-th argument had an illegal value.
                    105: *          > 0: if INFO = i, and i is
                    106: *               <= N:  the QR algorithm failed to compute all the
                    107: *                      eigenvalues; elements 1:ILO-1 and i+1:N of W
                    108: *                      contain those eigenvalues which have converged;
                    109: *                      if JOBVS = 'V', VS contains the matrix which
                    110: *                      reduces A to its partially converged Schur form.
                    111: *               = N+1: the eigenvalues could not be reordered because
                    112: *                      some eigenvalues were too close to separate (the
                    113: *                      problem is very ill-conditioned);
                    114: *               = N+2: after reordering, roundoff changed values of
                    115: *                      some complex eigenvalues so that leading
                    116: *                      eigenvalues in the Schur form no longer satisfy
                    117: *                      SELECT = .TRUE..  This could also be caused by
                    118: *                      underflow due to scaling.
                    119: *
                    120: *  =====================================================================
                    121: *
                    122: *     .. Parameters ..
                    123:       DOUBLE PRECISION   ZERO, ONE
                    124:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    125: *     ..
                    126: *     .. Local Scalars ..
                    127:       LOGICAL            LQUERY, SCALEA, WANTST, WANTVS
                    128:       INTEGER            HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
                    129:      $                   ITAU, IWRK, MAXWRK, MINWRK
                    130:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
                    131: *     ..
                    132: *     .. Local Arrays ..
                    133:       DOUBLE PRECISION   DUM( 1 )
                    134: *     ..
                    135: *     .. External Subroutines ..
                    136:       EXTERNAL           DLABAD, XERBLA, ZCOPY, ZGEBAK, ZGEBAL, ZGEHRD,
                    137:      $                   ZHSEQR, ZLACPY, ZLASCL, ZTRSEN, ZUNGHR
                    138: *     ..
                    139: *     .. External Functions ..
                    140:       LOGICAL            LSAME
                    141:       INTEGER            ILAENV
                    142:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    143:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
                    144: *     ..
                    145: *     .. Intrinsic Functions ..
                    146:       INTRINSIC          MAX, SQRT
                    147: *     ..
                    148: *     .. Executable Statements ..
                    149: *
                    150: *     Test the input arguments
                    151: *
                    152:       INFO = 0
                    153:       LQUERY = ( LWORK.EQ.-1 )
                    154:       WANTVS = LSAME( JOBVS, 'V' )
                    155:       WANTST = LSAME( SORT, 'S' )
                    156:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
                    157:          INFO = -1
                    158:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    159:          INFO = -2
                    160:       ELSE IF( N.LT.0 ) THEN
                    161:          INFO = -4
                    162:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    163:          INFO = -6
                    164:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
                    165:          INFO = -10
                    166:       END IF
                    167: *
                    168: *     Compute workspace
                    169: *      (Note: Comments in the code beginning "Workspace:" describe the
                    170: *       minimal amount of workspace needed at that point in the code,
                    171: *       as well as the preferred amount for good performance.
                    172: *       CWorkspace refers to complex workspace, and RWorkspace to real
                    173: *       workspace. NB refers to the optimal block size for the
                    174: *       immediately following subroutine, as returned by ILAENV.
                    175: *       HSWORK refers to the workspace preferred by ZHSEQR, as
                    176: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    177: *       the worst case.)
                    178: *
                    179:       IF( INFO.EQ.0 ) THEN
                    180:          IF( N.EQ.0 ) THEN
                    181:             MINWRK = 1
                    182:             MAXWRK = 1
                    183:          ELSE
                    184:             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
                    185:             MINWRK = 2*N
                    186: *
                    187:             CALL ZHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS,
                    188:      $             WORK, -1, IEVAL )
                    189:             HSWORK = WORK( 1 )
                    190: *
                    191:             IF( .NOT.WANTVS ) THEN
                    192:                MAXWRK = MAX( MAXWRK, HSWORK )
                    193:             ELSE
                    194:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
                    195:      $                       ' ', N, 1, N, -1 ) )
                    196:                MAXWRK = MAX( MAXWRK, HSWORK )
                    197:             END IF
                    198:          END IF
                    199:          WORK( 1 ) = MAXWRK
                    200: *
                    201:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    202:             INFO = -12
                    203:          END IF
                    204:       END IF
                    205: *
                    206:       IF( INFO.NE.0 ) THEN
                    207:          CALL XERBLA( 'ZGEES ', -INFO )
                    208:          RETURN
                    209:       ELSE IF( LQUERY ) THEN
                    210:          RETURN
                    211:       END IF
                    212: *
                    213: *     Quick return if possible
                    214: *
                    215:       IF( N.EQ.0 ) THEN
                    216:          SDIM = 0
                    217:          RETURN
                    218:       END IF
                    219: *
                    220: *     Get machine constants
                    221: *
                    222:       EPS = DLAMCH( 'P' )
                    223:       SMLNUM = DLAMCH( 'S' )
                    224:       BIGNUM = ONE / SMLNUM
                    225:       CALL DLABAD( SMLNUM, BIGNUM )
                    226:       SMLNUM = SQRT( SMLNUM ) / EPS
                    227:       BIGNUM = ONE / SMLNUM
                    228: *
                    229: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    230: *
                    231:       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
                    232:       SCALEA = .FALSE.
                    233:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    234:          SCALEA = .TRUE.
                    235:          CSCALE = SMLNUM
                    236:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    237:          SCALEA = .TRUE.
                    238:          CSCALE = BIGNUM
                    239:       END IF
                    240:       IF( SCALEA )
                    241:      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    242: *
                    243: *     Permute the matrix to make it more nearly triangular
                    244: *     (CWorkspace: none)
                    245: *     (RWorkspace: need N)
                    246: *
                    247:       IBAL = 1
                    248:       CALL ZGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
                    249: *
                    250: *     Reduce to upper Hessenberg form
                    251: *     (CWorkspace: need 2*N, prefer N+N*NB)
                    252: *     (RWorkspace: none)
                    253: *
                    254:       ITAU = 1
                    255:       IWRK = N + ITAU
                    256:       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    257:      $             LWORK-IWRK+1, IERR )
                    258: *
                    259:       IF( WANTVS ) THEN
                    260: *
                    261: *        Copy Householder vectors to VS
                    262: *
                    263:          CALL ZLACPY( 'L', N, N, A, LDA, VS, LDVS )
                    264: *
                    265: *        Generate unitary matrix in VS
                    266: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
                    267: *        (RWorkspace: none)
                    268: *
                    269:          CALL ZUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
                    270:      $                LWORK-IWRK+1, IERR )
                    271:       END IF
                    272: *
                    273:       SDIM = 0
                    274: *
                    275: *     Perform QR iteration, accumulating Schur vectors in VS if desired
                    276: *     (CWorkspace: need 1, prefer HSWORK (see comments) )
                    277: *     (RWorkspace: none)
                    278: *
                    279:       IWRK = ITAU
                    280:       CALL ZHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS,
                    281:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
                    282:       IF( IEVAL.GT.0 )
                    283:      $   INFO = IEVAL
                    284: *
                    285: *     Sort eigenvalues if desired
                    286: *
                    287:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    288:          IF( SCALEA )
                    289:      $      CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR )
                    290:          DO 10 I = 1, N
                    291:             BWORK( I ) = SELECT( W( I ) )
                    292:    10    CONTINUE
                    293: *
                    294: *        Reorder eigenvalues and transform Schur vectors
                    295: *        (CWorkspace: none)
                    296: *        (RWorkspace: none)
                    297: *
                    298:          CALL ZTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM,
                    299:      $                S, SEP, WORK( IWRK ), LWORK-IWRK+1, ICOND )
                    300:       END IF
                    301: *
                    302:       IF( WANTVS ) THEN
                    303: *
                    304: *        Undo balancing
                    305: *        (CWorkspace: none)
                    306: *        (RWorkspace: need N)
                    307: *
                    308:          CALL ZGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS,
                    309:      $                IERR )
                    310:       END IF
                    311: *
                    312:       IF( SCALEA ) THEN
                    313: *
                    314: *        Undo scaling for the Schur form of A
                    315: *
                    316:          CALL ZLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
                    317:          CALL ZCOPY( N, A, LDA+1, W, 1 )
                    318:       END IF
                    319: *
                    320:       WORK( 1 ) = MAXWRK
                    321:       RETURN
                    322: *
                    323: *     End of ZGEES
                    324: *
                    325:       END

CVSweb interface <joel.bertrand@systella.fr>