Annotation of rpl/lapack/lapack/zgees.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS,
        !             2:      $                  LDVS, WORK, LWORK, RWORK, BWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBVS, SORT
        !            11:       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       LOGICAL            BWORK( * )
        !            15:       DOUBLE PRECISION   RWORK( * )
        !            16:       COMPLEX*16         A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
        !            17: *     ..
        !            18: *     .. Function Arguments ..
        !            19:       LOGICAL            SELECT
        !            20:       EXTERNAL           SELECT
        !            21: *     ..
        !            22: *
        !            23: *  Purpose
        !            24: *  =======
        !            25: *
        !            26: *  ZGEES computes for an N-by-N complex nonsymmetric matrix A, the
        !            27: *  eigenvalues, the Schur form T, and, optionally, the matrix of Schur
        !            28: *  vectors Z.  This gives the Schur factorization A = Z*T*(Z**H).
        !            29: *
        !            30: *  Optionally, it also orders the eigenvalues on the diagonal of the
        !            31: *  Schur form so that selected eigenvalues are at the top left.
        !            32: *  The leading columns of Z then form an orthonormal basis for the
        !            33: *  invariant subspace corresponding to the selected eigenvalues.
        !            34: *
        !            35: *  A complex matrix is in Schur form if it is upper triangular.
        !            36: *
        !            37: *  Arguments
        !            38: *  =========
        !            39: *
        !            40: *  JOBVS   (input) CHARACTER*1
        !            41: *          = 'N': Schur vectors are not computed;
        !            42: *          = 'V': Schur vectors are computed.
        !            43: *
        !            44: *  SORT    (input) CHARACTER*1
        !            45: *          Specifies whether or not to order the eigenvalues on the
        !            46: *          diagonal of the Schur form.
        !            47: *          = 'N': Eigenvalues are not ordered:
        !            48: *          = 'S': Eigenvalues are ordered (see SELECT).
        !            49: *
        !            50: *  SELECT  (external procedure) LOGICAL FUNCTION of one COMPLEX*16 argument
        !            51: *          SELECT must be declared EXTERNAL in the calling subroutine.
        !            52: *          If SORT = 'S', SELECT is used to select eigenvalues to order
        !            53: *          to the top left of the Schur form.
        !            54: *          IF SORT = 'N', SELECT is not referenced.
        !            55: *          The eigenvalue W(j) is selected if SELECT(W(j)) is true.
        !            56: *
        !            57: *  N       (input) INTEGER
        !            58: *          The order of the matrix A. N >= 0.
        !            59: *
        !            60: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            61: *          On entry, the N-by-N matrix A.
        !            62: *          On exit, A has been overwritten by its Schur form T.
        !            63: *
        !            64: *  LDA     (input) INTEGER
        !            65: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            66: *
        !            67: *  SDIM    (output) INTEGER
        !            68: *          If SORT = 'N', SDIM = 0.
        !            69: *          If SORT = 'S', SDIM = number of eigenvalues for which
        !            70: *                         SELECT is true.
        !            71: *
        !            72: *  W       (output) COMPLEX*16 array, dimension (N)
        !            73: *          W contains the computed eigenvalues, in the same order that
        !            74: *          they appear on the diagonal of the output Schur form T.
        !            75: *
        !            76: *  VS      (output) COMPLEX*16 array, dimension (LDVS,N)
        !            77: *          If JOBVS = 'V', VS contains the unitary matrix Z of Schur
        !            78: *          vectors.
        !            79: *          If JOBVS = 'N', VS is not referenced.
        !            80: *
        !            81: *  LDVS    (input) INTEGER
        !            82: *          The leading dimension of the array VS.  LDVS >= 1; if
        !            83: *          JOBVS = 'V', LDVS >= N.
        !            84: *
        !            85: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !            86: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            87: *
        !            88: *  LWORK   (input) INTEGER
        !            89: *          The dimension of the array WORK.  LWORK >= max(1,2*N).
        !            90: *          For good performance, LWORK must generally be larger.
        !            91: *
        !            92: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            93: *          only calculates the optimal size of the WORK array, returns
        !            94: *          this value as the first entry of the WORK array, and no error
        !            95: *          message related to LWORK is issued by XERBLA.
        !            96: *
        !            97: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
        !            98: *
        !            99: *  BWORK   (workspace) LOGICAL array, dimension (N)
        !           100: *          Not referenced if SORT = 'N'.
        !           101: *
        !           102: *  INFO    (output) INTEGER
        !           103: *          = 0: successful exit
        !           104: *          < 0: if INFO = -i, the i-th argument had an illegal value.
        !           105: *          > 0: if INFO = i, and i is
        !           106: *               <= N:  the QR algorithm failed to compute all the
        !           107: *                      eigenvalues; elements 1:ILO-1 and i+1:N of W
        !           108: *                      contain those eigenvalues which have converged;
        !           109: *                      if JOBVS = 'V', VS contains the matrix which
        !           110: *                      reduces A to its partially converged Schur form.
        !           111: *               = N+1: the eigenvalues could not be reordered because
        !           112: *                      some eigenvalues were too close to separate (the
        !           113: *                      problem is very ill-conditioned);
        !           114: *               = N+2: after reordering, roundoff changed values of
        !           115: *                      some complex eigenvalues so that leading
        !           116: *                      eigenvalues in the Schur form no longer satisfy
        !           117: *                      SELECT = .TRUE..  This could also be caused by
        !           118: *                      underflow due to scaling.
        !           119: *
        !           120: *  =====================================================================
        !           121: *
        !           122: *     .. Parameters ..
        !           123:       DOUBLE PRECISION   ZERO, ONE
        !           124:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           125: *     ..
        !           126: *     .. Local Scalars ..
        !           127:       LOGICAL            LQUERY, SCALEA, WANTST, WANTVS
        !           128:       INTEGER            HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
        !           129:      $                   ITAU, IWRK, MAXWRK, MINWRK
        !           130:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
        !           131: *     ..
        !           132: *     .. Local Arrays ..
        !           133:       DOUBLE PRECISION   DUM( 1 )
        !           134: *     ..
        !           135: *     .. External Subroutines ..
        !           136:       EXTERNAL           DLABAD, XERBLA, ZCOPY, ZGEBAK, ZGEBAL, ZGEHRD,
        !           137:      $                   ZHSEQR, ZLACPY, ZLASCL, ZTRSEN, ZUNGHR
        !           138: *     ..
        !           139: *     .. External Functions ..
        !           140:       LOGICAL            LSAME
        !           141:       INTEGER            ILAENV
        !           142:       DOUBLE PRECISION   DLAMCH, ZLANGE
        !           143:       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
        !           144: *     ..
        !           145: *     .. Intrinsic Functions ..
        !           146:       INTRINSIC          MAX, SQRT
        !           147: *     ..
        !           148: *     .. Executable Statements ..
        !           149: *
        !           150: *     Test the input arguments
        !           151: *
        !           152:       INFO = 0
        !           153:       LQUERY = ( LWORK.EQ.-1 )
        !           154:       WANTVS = LSAME( JOBVS, 'V' )
        !           155:       WANTST = LSAME( SORT, 'S' )
        !           156:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
        !           157:          INFO = -1
        !           158:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
        !           159:          INFO = -2
        !           160:       ELSE IF( N.LT.0 ) THEN
        !           161:          INFO = -4
        !           162:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           163:          INFO = -6
        !           164:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
        !           165:          INFO = -10
        !           166:       END IF
        !           167: *
        !           168: *     Compute workspace
        !           169: *      (Note: Comments in the code beginning "Workspace:" describe the
        !           170: *       minimal amount of workspace needed at that point in the code,
        !           171: *       as well as the preferred amount for good performance.
        !           172: *       CWorkspace refers to complex workspace, and RWorkspace to real
        !           173: *       workspace. NB refers to the optimal block size for the
        !           174: *       immediately following subroutine, as returned by ILAENV.
        !           175: *       HSWORK refers to the workspace preferred by ZHSEQR, as
        !           176: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
        !           177: *       the worst case.)
        !           178: *
        !           179:       IF( INFO.EQ.0 ) THEN
        !           180:          IF( N.EQ.0 ) THEN
        !           181:             MINWRK = 1
        !           182:             MAXWRK = 1
        !           183:          ELSE
        !           184:             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
        !           185:             MINWRK = 2*N
        !           186: *
        !           187:             CALL ZHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS,
        !           188:      $             WORK, -1, IEVAL )
        !           189:             HSWORK = WORK( 1 )
        !           190: *
        !           191:             IF( .NOT.WANTVS ) THEN
        !           192:                MAXWRK = MAX( MAXWRK, HSWORK )
        !           193:             ELSE
        !           194:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
        !           195:      $                       ' ', N, 1, N, -1 ) )
        !           196:                MAXWRK = MAX( MAXWRK, HSWORK )
        !           197:             END IF
        !           198:          END IF
        !           199:          WORK( 1 ) = MAXWRK
        !           200: *
        !           201:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
        !           202:             INFO = -12
        !           203:          END IF
        !           204:       END IF
        !           205: *
        !           206:       IF( INFO.NE.0 ) THEN
        !           207:          CALL XERBLA( 'ZGEES ', -INFO )
        !           208:          RETURN
        !           209:       ELSE IF( LQUERY ) THEN
        !           210:          RETURN
        !           211:       END IF
        !           212: *
        !           213: *     Quick return if possible
        !           214: *
        !           215:       IF( N.EQ.0 ) THEN
        !           216:          SDIM = 0
        !           217:          RETURN
        !           218:       END IF
        !           219: *
        !           220: *     Get machine constants
        !           221: *
        !           222:       EPS = DLAMCH( 'P' )
        !           223:       SMLNUM = DLAMCH( 'S' )
        !           224:       BIGNUM = ONE / SMLNUM
        !           225:       CALL DLABAD( SMLNUM, BIGNUM )
        !           226:       SMLNUM = SQRT( SMLNUM ) / EPS
        !           227:       BIGNUM = ONE / SMLNUM
        !           228: *
        !           229: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           230: *
        !           231:       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
        !           232:       SCALEA = .FALSE.
        !           233:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           234:          SCALEA = .TRUE.
        !           235:          CSCALE = SMLNUM
        !           236:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           237:          SCALEA = .TRUE.
        !           238:          CSCALE = BIGNUM
        !           239:       END IF
        !           240:       IF( SCALEA )
        !           241:      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
        !           242: *
        !           243: *     Permute the matrix to make it more nearly triangular
        !           244: *     (CWorkspace: none)
        !           245: *     (RWorkspace: need N)
        !           246: *
        !           247:       IBAL = 1
        !           248:       CALL ZGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
        !           249: *
        !           250: *     Reduce to upper Hessenberg form
        !           251: *     (CWorkspace: need 2*N, prefer N+N*NB)
        !           252: *     (RWorkspace: none)
        !           253: *
        !           254:       ITAU = 1
        !           255:       IWRK = N + ITAU
        !           256:       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
        !           257:      $             LWORK-IWRK+1, IERR )
        !           258: *
        !           259:       IF( WANTVS ) THEN
        !           260: *
        !           261: *        Copy Householder vectors to VS
        !           262: *
        !           263:          CALL ZLACPY( 'L', N, N, A, LDA, VS, LDVS )
        !           264: *
        !           265: *        Generate unitary matrix in VS
        !           266: *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
        !           267: *        (RWorkspace: none)
        !           268: *
        !           269:          CALL ZUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
        !           270:      $                LWORK-IWRK+1, IERR )
        !           271:       END IF
        !           272: *
        !           273:       SDIM = 0
        !           274: *
        !           275: *     Perform QR iteration, accumulating Schur vectors in VS if desired
        !           276: *     (CWorkspace: need 1, prefer HSWORK (see comments) )
        !           277: *     (RWorkspace: none)
        !           278: *
        !           279:       IWRK = ITAU
        !           280:       CALL ZHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS,
        !           281:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
        !           282:       IF( IEVAL.GT.0 )
        !           283:      $   INFO = IEVAL
        !           284: *
        !           285: *     Sort eigenvalues if desired
        !           286: *
        !           287:       IF( WANTST .AND. INFO.EQ.0 ) THEN
        !           288:          IF( SCALEA )
        !           289:      $      CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR )
        !           290:          DO 10 I = 1, N
        !           291:             BWORK( I ) = SELECT( W( I ) )
        !           292:    10    CONTINUE
        !           293: *
        !           294: *        Reorder eigenvalues and transform Schur vectors
        !           295: *        (CWorkspace: none)
        !           296: *        (RWorkspace: none)
        !           297: *
        !           298:          CALL ZTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM,
        !           299:      $                S, SEP, WORK( IWRK ), LWORK-IWRK+1, ICOND )
        !           300:       END IF
        !           301: *
        !           302:       IF( WANTVS ) THEN
        !           303: *
        !           304: *        Undo balancing
        !           305: *        (CWorkspace: none)
        !           306: *        (RWorkspace: need N)
        !           307: *
        !           308:          CALL ZGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS,
        !           309:      $                IERR )
        !           310:       END IF
        !           311: *
        !           312:       IF( SCALEA ) THEN
        !           313: *
        !           314: *        Undo scaling for the Schur form of A
        !           315: *
        !           316:          CALL ZLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
        !           317:          CALL ZCOPY( N, A, LDA+1, W, 1 )
        !           318:       END IF
        !           319: *
        !           320:       WORK( 1 ) = MAXWRK
        !           321:       RETURN
        !           322: *
        !           323: *     End of ZGEES
        !           324: *
        !           325:       END

CVSweb interface <joel.bertrand@systella.fr>