File:  [local] / rpl / lapack / lapack / zgebd2.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:16 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGEBD2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgebd2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgebd2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgebd2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   D( * ), E( * )
   28: *       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZGEBD2 reduces a complex general m by n matrix A to upper or lower
   38: *> real bidiagonal form B by a unitary transformation: Q**H * A * P = B.
   39: *>
   40: *> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] M
   47: *> \verbatim
   48: *>          M is INTEGER
   49: *>          The number of rows in the matrix A.  M >= 0.
   50: *> \endverbatim
   51: *>
   52: *> \param[in] N
   53: *> \verbatim
   54: *>          N is INTEGER
   55: *>          The number of columns in the matrix A.  N >= 0.
   56: *> \endverbatim
   57: *>
   58: *> \param[in,out] A
   59: *> \verbatim
   60: *>          A is COMPLEX*16 array, dimension (LDA,N)
   61: *>          On entry, the m by n general matrix to be reduced.
   62: *>          On exit,
   63: *>          if m >= n, the diagonal and the first superdiagonal are
   64: *>            overwritten with the upper bidiagonal matrix B; the
   65: *>            elements below the diagonal, with the array TAUQ, represent
   66: *>            the unitary matrix Q as a product of elementary
   67: *>            reflectors, and the elements above the first superdiagonal,
   68: *>            with the array TAUP, represent the unitary matrix P as
   69: *>            a product of elementary reflectors;
   70: *>          if m < n, the diagonal and the first subdiagonal are
   71: *>            overwritten with the lower bidiagonal matrix B; the
   72: *>            elements below the first subdiagonal, with the array TAUQ,
   73: *>            represent the unitary matrix Q as a product of
   74: *>            elementary reflectors, and the elements above the diagonal,
   75: *>            with the array TAUP, represent the unitary matrix P as
   76: *>            a product of elementary reflectors.
   77: *>          See Further Details.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] LDA
   81: *> \verbatim
   82: *>          LDA is INTEGER
   83: *>          The leading dimension of the array A.  LDA >= max(1,M).
   84: *> \endverbatim
   85: *>
   86: *> \param[out] D
   87: *> \verbatim
   88: *>          D is DOUBLE PRECISION array, dimension (min(M,N))
   89: *>          The diagonal elements of the bidiagonal matrix B:
   90: *>          D(i) = A(i,i).
   91: *> \endverbatim
   92: *>
   93: *> \param[out] E
   94: *> \verbatim
   95: *>          E is DOUBLE PRECISION array, dimension (min(M,N)-1)
   96: *>          The off-diagonal elements of the bidiagonal matrix B:
   97: *>          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
   98: *>          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
   99: *> \endverbatim
  100: *>
  101: *> \param[out] TAUQ
  102: *> \verbatim
  103: *>          TAUQ is COMPLEX*16 array, dimension (min(M,N))
  104: *>          The scalar factors of the elementary reflectors which
  105: *>          represent the unitary matrix Q. See Further Details.
  106: *> \endverbatim
  107: *>
  108: *> \param[out] TAUP
  109: *> \verbatim
  110: *>          TAUP is COMPLEX*16 array, dimension (min(M,N))
  111: *>          The scalar factors of the elementary reflectors which
  112: *>          represent the unitary matrix P. See Further Details.
  113: *> \endverbatim
  114: *>
  115: *> \param[out] WORK
  116: *> \verbatim
  117: *>          WORK is COMPLEX*16 array, dimension (max(M,N))
  118: *> \endverbatim
  119: *>
  120: *> \param[out] INFO
  121: *> \verbatim
  122: *>          INFO is INTEGER
  123: *>          = 0: successful exit
  124: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
  125: *> \endverbatim
  126: *
  127: *  Authors:
  128: *  ========
  129: *
  130: *> \author Univ. of Tennessee
  131: *> \author Univ. of California Berkeley
  132: *> \author Univ. of Colorado Denver
  133: *> \author NAG Ltd.
  134: *
  135: *> \ingroup complex16GEcomputational
  136: *
  137: *> \par Further Details:
  138: *  =====================
  139: *>
  140: *> \verbatim
  141: *>
  142: *>  The matrices Q and P are represented as products of elementary
  143: *>  reflectors:
  144: *>
  145: *>  If m >= n,
  146: *>
  147: *>     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
  148: *>
  149: *>  Each H(i) and G(i) has the form:
  150: *>
  151: *>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
  152: *>
  153: *>  where tauq and taup are complex scalars, and v and u are complex
  154: *>  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
  155: *>  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
  156: *>  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
  157: *>
  158: *>  If m < n,
  159: *>
  160: *>     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
  161: *>
  162: *>  Each H(i) and G(i) has the form:
  163: *>
  164: *>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
  165: *>
  166: *>  where tauq and taup are complex scalars, v and u are complex vectors;
  167: *>  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
  168: *>  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
  169: *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
  170: *>
  171: *>  The contents of A on exit are illustrated by the following examples:
  172: *>
  173: *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
  174: *>
  175: *>    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
  176: *>    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
  177: *>    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
  178: *>    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
  179: *>    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
  180: *>    (  v1  v2  v3  v4  v5 )
  181: *>
  182: *>  where d and e denote diagonal and off-diagonal elements of B, vi
  183: *>  denotes an element of the vector defining H(i), and ui an element of
  184: *>  the vector defining G(i).
  185: *> \endverbatim
  186: *>
  187: *  =====================================================================
  188:       SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
  189: *
  190: *  -- LAPACK computational routine --
  191: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  192: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  193: *
  194: *     .. Scalar Arguments ..
  195:       INTEGER            INFO, LDA, M, N
  196: *     ..
  197: *     .. Array Arguments ..
  198:       DOUBLE PRECISION   D( * ), E( * )
  199:       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
  200: *     ..
  201: *
  202: *  =====================================================================
  203: *
  204: *     .. Parameters ..
  205:       COMPLEX*16         ZERO, ONE
  206:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
  207:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
  208: *     ..
  209: *     .. Local Scalars ..
  210:       INTEGER            I
  211:       COMPLEX*16         ALPHA
  212: *     ..
  213: *     .. External Subroutines ..
  214:       EXTERNAL           XERBLA, ZLACGV, ZLARF, ZLARFG
  215: *     ..
  216: *     .. Intrinsic Functions ..
  217:       INTRINSIC          DCONJG, MAX, MIN
  218: *     ..
  219: *     .. Executable Statements ..
  220: *
  221: *     Test the input parameters
  222: *
  223:       INFO = 0
  224:       IF( M.LT.0 ) THEN
  225:          INFO = -1
  226:       ELSE IF( N.LT.0 ) THEN
  227:          INFO = -2
  228:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  229:          INFO = -4
  230:       END IF
  231:       IF( INFO.LT.0 ) THEN
  232:          CALL XERBLA( 'ZGEBD2', -INFO )
  233:          RETURN
  234:       END IF
  235: *
  236:       IF( M.GE.N ) THEN
  237: *
  238: *        Reduce to upper bidiagonal form
  239: *
  240:          DO 10 I = 1, N
  241: *
  242: *           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
  243: *
  244:             ALPHA = A( I, I )
  245:             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
  246:      $                   TAUQ( I ) )
  247:             D( I ) = DBLE( ALPHA )
  248:             A( I, I ) = ONE
  249: *
  250: *           Apply H(i)**H to A(i:m,i+1:n) from the left
  251: *
  252:             IF( I.LT.N )
  253:      $         CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
  254:      $                     DCONJG( TAUQ( I ) ), A( I, I+1 ), LDA, WORK )
  255:             A( I, I ) = D( I )
  256: *
  257:             IF( I.LT.N ) THEN
  258: *
  259: *              Generate elementary reflector G(i) to annihilate
  260: *              A(i,i+2:n)
  261: *
  262:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  263:                ALPHA = A( I, I+1 )
  264:                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
  265:      $                      TAUP( I ) )
  266:                E( I ) = DBLE( ALPHA )
  267:                A( I, I+1 ) = ONE
  268: *
  269: *              Apply G(i) to A(i+1:m,i+1:n) from the right
  270: *
  271:                CALL ZLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
  272:      $                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
  273:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  274:                A( I, I+1 ) = E( I )
  275:             ELSE
  276:                TAUP( I ) = ZERO
  277:             END IF
  278:    10    CONTINUE
  279:       ELSE
  280: *
  281: *        Reduce to lower bidiagonal form
  282: *
  283:          DO 20 I = 1, M
  284: *
  285: *           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
  286: *
  287:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
  288:             ALPHA = A( I, I )
  289:             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
  290:      $                   TAUP( I ) )
  291:             D( I ) = DBLE( ALPHA )
  292:             A( I, I ) = ONE
  293: *
  294: *           Apply G(i) to A(i+1:m,i:n) from the right
  295: *
  296:             IF( I.LT.M )
  297:      $         CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
  298:      $                     TAUP( I ), A( I+1, I ), LDA, WORK )
  299:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
  300:             A( I, I ) = D( I )
  301: *
  302:             IF( I.LT.M ) THEN
  303: *
  304: *              Generate elementary reflector H(i) to annihilate
  305: *              A(i+2:m,i)
  306: *
  307:                ALPHA = A( I+1, I )
  308:                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
  309:      $                      TAUQ( I ) )
  310:                E( I ) = DBLE( ALPHA )
  311:                A( I+1, I ) = ONE
  312: *
  313: *              Apply H(i)**H to A(i+1:m,i+1:n) from the left
  314: *
  315:                CALL ZLARF( 'Left', M-I, N-I, A( I+1, I ), 1,
  316:      $                     DCONJG( TAUQ( I ) ), A( I+1, I+1 ), LDA,
  317:      $                     WORK )
  318:                A( I+1, I ) = E( I )
  319:             ELSE
  320:                TAUQ( I ) = ZERO
  321:             END IF
  322:    20    CONTINUE
  323:       END IF
  324:       RETURN
  325: *
  326: *     End of ZGEBD2
  327: *
  328:       END

CVSweb interface <joel.bertrand@systella.fr>