File:  [local] / rpl / lapack / lapack / zgebd2.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:44 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b ZGEBD2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGEBD2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgebd2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgebd2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgebd2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   D( * ), E( * )
   28: *       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZGEBD2 reduces a complex general m by n matrix A to upper or lower
   38: *> real bidiagonal form B by a unitary transformation: Q**H * A * P = B.
   39: *>
   40: *> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] M
   47: *> \verbatim
   48: *>          M is INTEGER
   49: *>          The number of rows in the matrix A.  M >= 0.
   50: *> \endverbatim
   51: *>
   52: *> \param[in] N
   53: *> \verbatim
   54: *>          N is INTEGER
   55: *>          The number of columns in the matrix A.  N >= 0.
   56: *> \endverbatim
   57: *>
   58: *> \param[in,out] A
   59: *> \verbatim
   60: *>          A is COMPLEX*16 array, dimension (LDA,N)
   61: *>          On entry, the m by n general matrix to be reduced.
   62: *>          On exit,
   63: *>          if m >= n, the diagonal and the first superdiagonal are
   64: *>            overwritten with the upper bidiagonal matrix B; the
   65: *>            elements below the diagonal, with the array TAUQ, represent
   66: *>            the unitary matrix Q as a product of elementary
   67: *>            reflectors, and the elements above the first superdiagonal,
   68: *>            with the array TAUP, represent the unitary matrix P as
   69: *>            a product of elementary reflectors;
   70: *>          if m < n, the diagonal and the first subdiagonal are
   71: *>            overwritten with the lower bidiagonal matrix B; the
   72: *>            elements below the first subdiagonal, with the array TAUQ,
   73: *>            represent the unitary matrix Q as a product of
   74: *>            elementary reflectors, and the elements above the diagonal,
   75: *>            with the array TAUP, represent the unitary matrix P as
   76: *>            a product of elementary reflectors.
   77: *>          See Further Details.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] LDA
   81: *> \verbatim
   82: *>          LDA is INTEGER
   83: *>          The leading dimension of the array A.  LDA >= max(1,M).
   84: *> \endverbatim
   85: *>
   86: *> \param[out] D
   87: *> \verbatim
   88: *>          D is DOUBLE PRECISION array, dimension (min(M,N))
   89: *>          The diagonal elements of the bidiagonal matrix B:
   90: *>          D(i) = A(i,i).
   91: *> \endverbatim
   92: *>
   93: *> \param[out] E
   94: *> \verbatim
   95: *>          E is DOUBLE PRECISION array, dimension (min(M,N)-1)
   96: *>          The off-diagonal elements of the bidiagonal matrix B:
   97: *>          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
   98: *>          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
   99: *> \endverbatim
  100: *>
  101: *> \param[out] TAUQ
  102: *> \verbatim
  103: *>          TAUQ is COMPLEX*16 array dimension (min(M,N))
  104: *>          The scalar factors of the elementary reflectors which
  105: *>          represent the unitary matrix Q. See Further Details.
  106: *> \endverbatim
  107: *>
  108: *> \param[out] TAUP
  109: *> \verbatim
  110: *>          TAUP is COMPLEX*16 array, dimension (min(M,N))
  111: *>          The scalar factors of the elementary reflectors which
  112: *>          represent the unitary matrix P. See Further Details.
  113: *> \endverbatim
  114: *>
  115: *> \param[out] WORK
  116: *> \verbatim
  117: *>          WORK is COMPLEX*16 array, dimension (max(M,N))
  118: *> \endverbatim
  119: *>
  120: *> \param[out] INFO
  121: *> \verbatim
  122: *>          INFO is INTEGER
  123: *>          = 0: successful exit
  124: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
  125: *> \endverbatim
  126: *
  127: *  Authors:
  128: *  ========
  129: *
  130: *> \author Univ. of Tennessee 
  131: *> \author Univ. of California Berkeley 
  132: *> \author Univ. of Colorado Denver 
  133: *> \author NAG Ltd. 
  134: *
  135: *> \date November 2011
  136: *
  137: *> \ingroup complex16GEcomputational
  138: *
  139: *> \par Further Details:
  140: *  =====================
  141: *>
  142: *> \verbatim
  143: *>
  144: *>  The matrices Q and P are represented as products of elementary
  145: *>  reflectors:
  146: *>
  147: *>  If m >= n,
  148: *>
  149: *>     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
  150: *>
  151: *>  Each H(i) and G(i) has the form:
  152: *>
  153: *>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
  154: *>
  155: *>  where tauq and taup are complex scalars, and v and u are complex
  156: *>  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
  157: *>  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
  158: *>  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
  159: *>
  160: *>  If m < n,
  161: *>
  162: *>     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
  163: *>
  164: *>  Each H(i) and G(i) has the form:
  165: *>
  166: *>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
  167: *>
  168: *>  where tauq and taup are complex scalars, v and u are complex vectors;
  169: *>  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
  170: *>  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
  171: *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
  172: *>
  173: *>  The contents of A on exit are illustrated by the following examples:
  174: *>
  175: *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
  176: *>
  177: *>    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
  178: *>    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
  179: *>    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
  180: *>    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
  181: *>    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
  182: *>    (  v1  v2  v3  v4  v5 )
  183: *>
  184: *>  where d and e denote diagonal and off-diagonal elements of B, vi
  185: *>  denotes an element of the vector defining H(i), and ui an element of
  186: *>  the vector defining G(i).
  187: *> \endverbatim
  188: *>
  189: *  =====================================================================
  190:       SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
  191: *
  192: *  -- LAPACK computational routine (version 3.4.0) --
  193: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  194: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  195: *     November 2011
  196: *
  197: *     .. Scalar Arguments ..
  198:       INTEGER            INFO, LDA, M, N
  199: *     ..
  200: *     .. Array Arguments ..
  201:       DOUBLE PRECISION   D( * ), E( * )
  202:       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
  203: *     ..
  204: *
  205: *  =====================================================================
  206: *
  207: *     .. Parameters ..
  208:       COMPLEX*16         ZERO, ONE
  209:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
  210:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
  211: *     ..
  212: *     .. Local Scalars ..
  213:       INTEGER            I
  214:       COMPLEX*16         ALPHA
  215: *     ..
  216: *     .. External Subroutines ..
  217:       EXTERNAL           XERBLA, ZLACGV, ZLARF, ZLARFG
  218: *     ..
  219: *     .. Intrinsic Functions ..
  220:       INTRINSIC          DCONJG, MAX, MIN
  221: *     ..
  222: *     .. Executable Statements ..
  223: *
  224: *     Test the input parameters
  225: *
  226:       INFO = 0
  227:       IF( M.LT.0 ) THEN
  228:          INFO = -1
  229:       ELSE IF( N.LT.0 ) THEN
  230:          INFO = -2
  231:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  232:          INFO = -4
  233:       END IF
  234:       IF( INFO.LT.0 ) THEN
  235:          CALL XERBLA( 'ZGEBD2', -INFO )
  236:          RETURN
  237:       END IF
  238: *
  239:       IF( M.GE.N ) THEN
  240: *
  241: *        Reduce to upper bidiagonal form
  242: *
  243:          DO 10 I = 1, N
  244: *
  245: *           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
  246: *
  247:             ALPHA = A( I, I )
  248:             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
  249:      $                   TAUQ( I ) )
  250:             D( I ) = ALPHA
  251:             A( I, I ) = ONE
  252: *
  253: *           Apply H(i)**H to A(i:m,i+1:n) from the left
  254: *
  255:             IF( I.LT.N )
  256:      $         CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
  257:      $                     DCONJG( TAUQ( I ) ), A( I, I+1 ), LDA, WORK )
  258:             A( I, I ) = D( I )
  259: *
  260:             IF( I.LT.N ) THEN
  261: *
  262: *              Generate elementary reflector G(i) to annihilate
  263: *              A(i,i+2:n)
  264: *
  265:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  266:                ALPHA = A( I, I+1 )
  267:                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
  268:      $                      TAUP( I ) )
  269:                E( I ) = ALPHA
  270:                A( I, I+1 ) = ONE
  271: *
  272: *              Apply G(i) to A(i+1:m,i+1:n) from the right
  273: *
  274:                CALL ZLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
  275:      $                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
  276:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  277:                A( I, I+1 ) = E( I )
  278:             ELSE
  279:                TAUP( I ) = ZERO
  280:             END IF
  281:    10    CONTINUE
  282:       ELSE
  283: *
  284: *        Reduce to lower bidiagonal form
  285: *
  286:          DO 20 I = 1, M
  287: *
  288: *           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
  289: *
  290:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
  291:             ALPHA = A( I, I )
  292:             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
  293:      $                   TAUP( I ) )
  294:             D( I ) = ALPHA
  295:             A( I, I ) = ONE
  296: *
  297: *           Apply G(i) to A(i+1:m,i:n) from the right
  298: *
  299:             IF( I.LT.M )
  300:      $         CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
  301:      $                     TAUP( I ), A( I+1, I ), LDA, WORK )
  302:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
  303:             A( I, I ) = D( I )
  304: *
  305:             IF( I.LT.M ) THEN
  306: *
  307: *              Generate elementary reflector H(i) to annihilate
  308: *              A(i+2:m,i)
  309: *
  310:                ALPHA = A( I+1, I )
  311:                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
  312:      $                      TAUQ( I ) )
  313:                E( I ) = ALPHA
  314:                A( I+1, I ) = ONE
  315: *
  316: *              Apply H(i)**H to A(i+1:m,i+1:n) from the left
  317: *
  318:                CALL ZLARF( 'Left', M-I, N-I, A( I+1, I ), 1,
  319:      $                     DCONJG( TAUQ( I ) ), A( I+1, I+1 ), LDA,
  320:      $                     WORK )
  321:                A( I+1, I ) = E( I )
  322:             ELSE
  323:                TAUQ( I ) = ZERO
  324:             END IF
  325:    20    CONTINUE
  326:       END IF
  327:       RETURN
  328: *
  329: *     End of ZGEBD2
  330: *
  331:       END

CVSweb interface <joel.bertrand@systella.fr>