Annotation of rpl/lapack/lapack/zgebd2.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZGEBD2
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGEBD2 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgebd2.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgebd2.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgebd2.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       INTEGER            INFO, LDA, M, N
        !            25: *       ..
        !            26: *       .. Array Arguments ..
        !            27: *       DOUBLE PRECISION   D( * ), E( * )
        !            28: *       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
        !            29: *       ..
        !            30: *  
        !            31: *
        !            32: *> \par Purpose:
        !            33: *  =============
        !            34: *>
        !            35: *> \verbatim
        !            36: *>
        !            37: *> ZGEBD2 reduces a complex general m by n matrix A to upper or lower
        !            38: *> real bidiagonal form B by a unitary transformation: Q**H * A * P = B.
        !            39: *>
        !            40: *> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
        !            41: *> \endverbatim
        !            42: *
        !            43: *  Arguments:
        !            44: *  ==========
        !            45: *
        !            46: *> \param[in] M
        !            47: *> \verbatim
        !            48: *>          M is INTEGER
        !            49: *>          The number of rows in the matrix A.  M >= 0.
        !            50: *> \endverbatim
        !            51: *>
        !            52: *> \param[in] N
        !            53: *> \verbatim
        !            54: *>          N is INTEGER
        !            55: *>          The number of columns in the matrix A.  N >= 0.
        !            56: *> \endverbatim
        !            57: *>
        !            58: *> \param[in,out] A
        !            59: *> \verbatim
        !            60: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            61: *>          On entry, the m by n general matrix to be reduced.
        !            62: *>          On exit,
        !            63: *>          if m >= n, the diagonal and the first superdiagonal are
        !            64: *>            overwritten with the upper bidiagonal matrix B; the
        !            65: *>            elements below the diagonal, with the array TAUQ, represent
        !            66: *>            the unitary matrix Q as a product of elementary
        !            67: *>            reflectors, and the elements above the first superdiagonal,
        !            68: *>            with the array TAUP, represent the unitary matrix P as
        !            69: *>            a product of elementary reflectors;
        !            70: *>          if m < n, the diagonal and the first subdiagonal are
        !            71: *>            overwritten with the lower bidiagonal matrix B; the
        !            72: *>            elements below the first subdiagonal, with the array TAUQ,
        !            73: *>            represent the unitary matrix Q as a product of
        !            74: *>            elementary reflectors, and the elements above the diagonal,
        !            75: *>            with the array TAUP, represent the unitary matrix P as
        !            76: *>            a product of elementary reflectors.
        !            77: *>          See Further Details.
        !            78: *> \endverbatim
        !            79: *>
        !            80: *> \param[in] LDA
        !            81: *> \verbatim
        !            82: *>          LDA is INTEGER
        !            83: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !            84: *> \endverbatim
        !            85: *>
        !            86: *> \param[out] D
        !            87: *> \verbatim
        !            88: *>          D is DOUBLE PRECISION array, dimension (min(M,N))
        !            89: *>          The diagonal elements of the bidiagonal matrix B:
        !            90: *>          D(i) = A(i,i).
        !            91: *> \endverbatim
        !            92: *>
        !            93: *> \param[out] E
        !            94: *> \verbatim
        !            95: *>          E is DOUBLE PRECISION array, dimension (min(M,N)-1)
        !            96: *>          The off-diagonal elements of the bidiagonal matrix B:
        !            97: *>          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
        !            98: *>          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
        !            99: *> \endverbatim
        !           100: *>
        !           101: *> \param[out] TAUQ
        !           102: *> \verbatim
        !           103: *>          TAUQ is COMPLEX*16 array dimension (min(M,N))
        !           104: *>          The scalar factors of the elementary reflectors which
        !           105: *>          represent the unitary matrix Q. See Further Details.
        !           106: *> \endverbatim
        !           107: *>
        !           108: *> \param[out] TAUP
        !           109: *> \verbatim
        !           110: *>          TAUP is COMPLEX*16 array, dimension (min(M,N))
        !           111: *>          The scalar factors of the elementary reflectors which
        !           112: *>          represent the unitary matrix P. See Further Details.
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[out] WORK
        !           116: *> \verbatim
        !           117: *>          WORK is COMPLEX*16 array, dimension (max(M,N))
        !           118: *> \endverbatim
        !           119: *>
        !           120: *> \param[out] INFO
        !           121: *> \verbatim
        !           122: *>          INFO is INTEGER
        !           123: *>          = 0: successful exit
        !           124: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
        !           125: *> \endverbatim
        !           126: *
        !           127: *  Authors:
        !           128: *  ========
        !           129: *
        !           130: *> \author Univ. of Tennessee 
        !           131: *> \author Univ. of California Berkeley 
        !           132: *> \author Univ. of Colorado Denver 
        !           133: *> \author NAG Ltd. 
        !           134: *
        !           135: *> \date November 2011
        !           136: *
        !           137: *> \ingroup complex16GEcomputational
        !           138: *
        !           139: *> \par Further Details:
        !           140: *  =====================
        !           141: *>
        !           142: *> \verbatim
        !           143: *>
        !           144: *>  The matrices Q and P are represented as products of elementary
        !           145: *>  reflectors:
        !           146: *>
        !           147: *>  If m >= n,
        !           148: *>
        !           149: *>     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
        !           150: *>
        !           151: *>  Each H(i) and G(i) has the form:
        !           152: *>
        !           153: *>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
        !           154: *>
        !           155: *>  where tauq and taup are complex scalars, and v and u are complex
        !           156: *>  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
        !           157: *>  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
        !           158: *>  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
        !           159: *>
        !           160: *>  If m < n,
        !           161: *>
        !           162: *>     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
        !           163: *>
        !           164: *>  Each H(i) and G(i) has the form:
        !           165: *>
        !           166: *>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
        !           167: *>
        !           168: *>  where tauq and taup are complex scalars, v and u are complex vectors;
        !           169: *>  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
        !           170: *>  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
        !           171: *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
        !           172: *>
        !           173: *>  The contents of A on exit are illustrated by the following examples:
        !           174: *>
        !           175: *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
        !           176: *>
        !           177: *>    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
        !           178: *>    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
        !           179: *>    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
        !           180: *>    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
        !           181: *>    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
        !           182: *>    (  v1  v2  v3  v4  v5 )
        !           183: *>
        !           184: *>  where d and e denote diagonal and off-diagonal elements of B, vi
        !           185: *>  denotes an element of the vector defining H(i), and ui an element of
        !           186: *>  the vector defining G(i).
        !           187: *> \endverbatim
        !           188: *>
        !           189: *  =====================================================================
1.1       bertrand  190:       SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
                    191: *
1.9     ! bertrand  192: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  193: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    194: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  195: *     November 2011
1.1       bertrand  196: *
                    197: *     .. Scalar Arguments ..
                    198:       INTEGER            INFO, LDA, M, N
                    199: *     ..
                    200: *     .. Array Arguments ..
                    201:       DOUBLE PRECISION   D( * ), E( * )
                    202:       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
                    203: *     ..
                    204: *
                    205: *  =====================================================================
                    206: *
                    207: *     .. Parameters ..
                    208:       COMPLEX*16         ZERO, ONE
                    209:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
                    210:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
                    211: *     ..
                    212: *     .. Local Scalars ..
                    213:       INTEGER            I
                    214:       COMPLEX*16         ALPHA
                    215: *     ..
                    216: *     .. External Subroutines ..
                    217:       EXTERNAL           XERBLA, ZLACGV, ZLARF, ZLARFG
                    218: *     ..
                    219: *     .. Intrinsic Functions ..
                    220:       INTRINSIC          DCONJG, MAX, MIN
                    221: *     ..
                    222: *     .. Executable Statements ..
                    223: *
                    224: *     Test the input parameters
                    225: *
                    226:       INFO = 0
                    227:       IF( M.LT.0 ) THEN
                    228:          INFO = -1
                    229:       ELSE IF( N.LT.0 ) THEN
                    230:          INFO = -2
                    231:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    232:          INFO = -4
                    233:       END IF
                    234:       IF( INFO.LT.0 ) THEN
                    235:          CALL XERBLA( 'ZGEBD2', -INFO )
                    236:          RETURN
                    237:       END IF
                    238: *
                    239:       IF( M.GE.N ) THEN
                    240: *
                    241: *        Reduce to upper bidiagonal form
                    242: *
                    243:          DO 10 I = 1, N
                    244: *
                    245: *           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
                    246: *
                    247:             ALPHA = A( I, I )
                    248:             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
                    249:      $                   TAUQ( I ) )
                    250:             D( I ) = ALPHA
                    251:             A( I, I ) = ONE
                    252: *
1.8       bertrand  253: *           Apply H(i)**H to A(i:m,i+1:n) from the left
1.1       bertrand  254: *
                    255:             IF( I.LT.N )
                    256:      $         CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
                    257:      $                     DCONJG( TAUQ( I ) ), A( I, I+1 ), LDA, WORK )
                    258:             A( I, I ) = D( I )
                    259: *
                    260:             IF( I.LT.N ) THEN
                    261: *
                    262: *              Generate elementary reflector G(i) to annihilate
                    263: *              A(i,i+2:n)
                    264: *
                    265:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    266:                ALPHA = A( I, I+1 )
                    267:                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
                    268:      $                      TAUP( I ) )
                    269:                E( I ) = ALPHA
                    270:                A( I, I+1 ) = ONE
                    271: *
                    272: *              Apply G(i) to A(i+1:m,i+1:n) from the right
                    273: *
                    274:                CALL ZLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
                    275:      $                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
                    276:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
                    277:                A( I, I+1 ) = E( I )
                    278:             ELSE
                    279:                TAUP( I ) = ZERO
                    280:             END IF
                    281:    10    CONTINUE
                    282:       ELSE
                    283: *
                    284: *        Reduce to lower bidiagonal form
                    285: *
                    286:          DO 20 I = 1, M
                    287: *
                    288: *           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
                    289: *
                    290:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    291:             ALPHA = A( I, I )
                    292:             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
                    293:      $                   TAUP( I ) )
                    294:             D( I ) = ALPHA
                    295:             A( I, I ) = ONE
                    296: *
                    297: *           Apply G(i) to A(i+1:m,i:n) from the right
                    298: *
                    299:             IF( I.LT.M )
                    300:      $         CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
                    301:      $                     TAUP( I ), A( I+1, I ), LDA, WORK )
                    302:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
                    303:             A( I, I ) = D( I )
                    304: *
                    305:             IF( I.LT.M ) THEN
                    306: *
                    307: *              Generate elementary reflector H(i) to annihilate
                    308: *              A(i+2:m,i)
                    309: *
                    310:                ALPHA = A( I+1, I )
                    311:                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
                    312:      $                      TAUQ( I ) )
                    313:                E( I ) = ALPHA
                    314:                A( I+1, I ) = ONE
                    315: *
1.8       bertrand  316: *              Apply H(i)**H to A(i+1:m,i+1:n) from the left
1.1       bertrand  317: *
                    318:                CALL ZLARF( 'Left', M-I, N-I, A( I+1, I ), 1,
                    319:      $                     DCONJG( TAUQ( I ) ), A( I+1, I+1 ), LDA,
                    320:      $                     WORK )
                    321:                A( I+1, I ) = E( I )
                    322:             ELSE
                    323:                TAUQ( I ) = ZERO
                    324:             END IF
                    325:    20    CONTINUE
                    326:       END IF
                    327:       RETURN
                    328: *
                    329: *     End of ZGEBD2
                    330: *
                    331:       END

CVSweb interface <joel.bertrand@systella.fr>