Annotation of rpl/lapack/lapack/zgebd2.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            INFO, LDA, M, N
        !            10: *     ..
        !            11: *     .. Array Arguments ..
        !            12:       DOUBLE PRECISION   D( * ), E( * )
        !            13:       COMPLEX*16         A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
        !            14: *     ..
        !            15: *
        !            16: *  Purpose
        !            17: *  =======
        !            18: *
        !            19: *  ZGEBD2 reduces a complex general m by n matrix A to upper or lower
        !            20: *  real bidiagonal form B by a unitary transformation: Q' * A * P = B.
        !            21: *
        !            22: *  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
        !            23: *
        !            24: *  Arguments
        !            25: *  =========
        !            26: *
        !            27: *  M       (input) INTEGER
        !            28: *          The number of rows in the matrix A.  M >= 0.
        !            29: *
        !            30: *  N       (input) INTEGER
        !            31: *          The number of columns in the matrix A.  N >= 0.
        !            32: *
        !            33: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            34: *          On entry, the m by n general matrix to be reduced.
        !            35: *          On exit,
        !            36: *          if m >= n, the diagonal and the first superdiagonal are
        !            37: *            overwritten with the upper bidiagonal matrix B; the
        !            38: *            elements below the diagonal, with the array TAUQ, represent
        !            39: *            the unitary matrix Q as a product of elementary
        !            40: *            reflectors, and the elements above the first superdiagonal,
        !            41: *            with the array TAUP, represent the unitary matrix P as
        !            42: *            a product of elementary reflectors;
        !            43: *          if m < n, the diagonal and the first subdiagonal are
        !            44: *            overwritten with the lower bidiagonal matrix B; the
        !            45: *            elements below the first subdiagonal, with the array TAUQ,
        !            46: *            represent the unitary matrix Q as a product of
        !            47: *            elementary reflectors, and the elements above the diagonal,
        !            48: *            with the array TAUP, represent the unitary matrix P as
        !            49: *            a product of elementary reflectors.
        !            50: *          See Further Details.
        !            51: *
        !            52: *  LDA     (input) INTEGER
        !            53: *          The leading dimension of the array A.  LDA >= max(1,M).
        !            54: *
        !            55: *  D       (output) DOUBLE PRECISION array, dimension (min(M,N))
        !            56: *          The diagonal elements of the bidiagonal matrix B:
        !            57: *          D(i) = A(i,i).
        !            58: *
        !            59: *  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
        !            60: *          The off-diagonal elements of the bidiagonal matrix B:
        !            61: *          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
        !            62: *          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
        !            63: *
        !            64: *  TAUQ    (output) COMPLEX*16 array dimension (min(M,N))
        !            65: *          The scalar factors of the elementary reflectors which
        !            66: *          represent the unitary matrix Q. See Further Details.
        !            67: *
        !            68: *  TAUP    (output) COMPLEX*16 array, dimension (min(M,N))
        !            69: *          The scalar factors of the elementary reflectors which
        !            70: *          represent the unitary matrix P. See Further Details.
        !            71: *
        !            72: *  WORK    (workspace) COMPLEX*16 array, dimension (max(M,N))
        !            73: *
        !            74: *  INFO    (output) INTEGER
        !            75: *          = 0: successful exit
        !            76: *          < 0: if INFO = -i, the i-th argument had an illegal value.
        !            77: *
        !            78: *  Further Details
        !            79: *  ===============
        !            80: *
        !            81: *  The matrices Q and P are represented as products of elementary
        !            82: *  reflectors:
        !            83: *
        !            84: *  If m >= n,
        !            85: *
        !            86: *     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
        !            87: *
        !            88: *  Each H(i) and G(i) has the form:
        !            89: *
        !            90: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
        !            91: *
        !            92: *  where tauq and taup are complex scalars, and v and u are complex
        !            93: *  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
        !            94: *  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
        !            95: *  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
        !            96: *
        !            97: *  If m < n,
        !            98: *
        !            99: *     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
        !           100: *
        !           101: *  Each H(i) and G(i) has the form:
        !           102: *
        !           103: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
        !           104: *
        !           105: *  where tauq and taup are complex scalars, v and u are complex vectors;
        !           106: *  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
        !           107: *  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
        !           108: *  tauq is stored in TAUQ(i) and taup in TAUP(i).
        !           109: *
        !           110: *  The contents of A on exit are illustrated by the following examples:
        !           111: *
        !           112: *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
        !           113: *
        !           114: *    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
        !           115: *    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
        !           116: *    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
        !           117: *    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
        !           118: *    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
        !           119: *    (  v1  v2  v3  v4  v5 )
        !           120: *
        !           121: *  where d and e denote diagonal and off-diagonal elements of B, vi
        !           122: *  denotes an element of the vector defining H(i), and ui an element of
        !           123: *  the vector defining G(i).
        !           124: *
        !           125: *  =====================================================================
        !           126: *
        !           127: *     .. Parameters ..
        !           128:       COMPLEX*16         ZERO, ONE
        !           129:       PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
        !           130:      $                   ONE = ( 1.0D+0, 0.0D+0 ) )
        !           131: *     ..
        !           132: *     .. Local Scalars ..
        !           133:       INTEGER            I
        !           134:       COMPLEX*16         ALPHA
        !           135: *     ..
        !           136: *     .. External Subroutines ..
        !           137:       EXTERNAL           XERBLA, ZLACGV, ZLARF, ZLARFG
        !           138: *     ..
        !           139: *     .. Intrinsic Functions ..
        !           140:       INTRINSIC          DCONJG, MAX, MIN
        !           141: *     ..
        !           142: *     .. Executable Statements ..
        !           143: *
        !           144: *     Test the input parameters
        !           145: *
        !           146:       INFO = 0
        !           147:       IF( M.LT.0 ) THEN
        !           148:          INFO = -1
        !           149:       ELSE IF( N.LT.0 ) THEN
        !           150:          INFO = -2
        !           151:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           152:          INFO = -4
        !           153:       END IF
        !           154:       IF( INFO.LT.0 ) THEN
        !           155:          CALL XERBLA( 'ZGEBD2', -INFO )
        !           156:          RETURN
        !           157:       END IF
        !           158: *
        !           159:       IF( M.GE.N ) THEN
        !           160: *
        !           161: *        Reduce to upper bidiagonal form
        !           162: *
        !           163:          DO 10 I = 1, N
        !           164: *
        !           165: *           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
        !           166: *
        !           167:             ALPHA = A( I, I )
        !           168:             CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
        !           169:      $                   TAUQ( I ) )
        !           170:             D( I ) = ALPHA
        !           171:             A( I, I ) = ONE
        !           172: *
        !           173: *           Apply H(i)' to A(i:m,i+1:n) from the left
        !           174: *
        !           175:             IF( I.LT.N )
        !           176:      $         CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
        !           177:      $                     DCONJG( TAUQ( I ) ), A( I, I+1 ), LDA, WORK )
        !           178:             A( I, I ) = D( I )
        !           179: *
        !           180:             IF( I.LT.N ) THEN
        !           181: *
        !           182: *              Generate elementary reflector G(i) to annihilate
        !           183: *              A(i,i+2:n)
        !           184: *
        !           185:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
        !           186:                ALPHA = A( I, I+1 )
        !           187:                CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
        !           188:      $                      TAUP( I ) )
        !           189:                E( I ) = ALPHA
        !           190:                A( I, I+1 ) = ONE
        !           191: *
        !           192: *              Apply G(i) to A(i+1:m,i+1:n) from the right
        !           193: *
        !           194:                CALL ZLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
        !           195:      $                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
        !           196:                CALL ZLACGV( N-I, A( I, I+1 ), LDA )
        !           197:                A( I, I+1 ) = E( I )
        !           198:             ELSE
        !           199:                TAUP( I ) = ZERO
        !           200:             END IF
        !           201:    10    CONTINUE
        !           202:       ELSE
        !           203: *
        !           204: *        Reduce to lower bidiagonal form
        !           205: *
        !           206:          DO 20 I = 1, M
        !           207: *
        !           208: *           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
        !           209: *
        !           210:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
        !           211:             ALPHA = A( I, I )
        !           212:             CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
        !           213:      $                   TAUP( I ) )
        !           214:             D( I ) = ALPHA
        !           215:             A( I, I ) = ONE
        !           216: *
        !           217: *           Apply G(i) to A(i+1:m,i:n) from the right
        !           218: *
        !           219:             IF( I.LT.M )
        !           220:      $         CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
        !           221:      $                     TAUP( I ), A( I+1, I ), LDA, WORK )
        !           222:             CALL ZLACGV( N-I+1, A( I, I ), LDA )
        !           223:             A( I, I ) = D( I )
        !           224: *
        !           225:             IF( I.LT.M ) THEN
        !           226: *
        !           227: *              Generate elementary reflector H(i) to annihilate
        !           228: *              A(i+2:m,i)
        !           229: *
        !           230:                ALPHA = A( I+1, I )
        !           231:                CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
        !           232:      $                      TAUQ( I ) )
        !           233:                E( I ) = ALPHA
        !           234:                A( I+1, I ) = ONE
        !           235: *
        !           236: *              Apply H(i)' to A(i+1:m,i+1:n) from the left
        !           237: *
        !           238:                CALL ZLARF( 'Left', M-I, N-I, A( I+1, I ), 1,
        !           239:      $                     DCONJG( TAUQ( I ) ), A( I+1, I+1 ), LDA,
        !           240:      $                     WORK )
        !           241:                A( I+1, I ) = E( I )
        !           242:             ELSE
        !           243:                TAUQ( I ) = ZERO
        !           244:             END IF
        !           245:    20    CONTINUE
        !           246:       END IF
        !           247:       RETURN
        !           248: *
        !           249: *     End of ZGEBD2
        !           250: *
        !           251:       END

CVSweb interface <joel.bertrand@systella.fr>