File:  [local] / rpl / lapack / lapack / zgebal.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:08 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b ZGEBAL
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGEBAL + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgebal.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgebal.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgebal.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          JOB
   25: *       INTEGER            IHI, ILO, INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   SCALE( * )
   29: *       COMPLEX*16         A( LDA, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZGEBAL balances a general complex matrix A.  This involves, first,
   39: *> permuting A by a similarity transformation to isolate eigenvalues
   40: *> in the first 1 to ILO-1 and last IHI+1 to N elements on the
   41: *> diagonal; and second, applying a diagonal similarity transformation
   42: *> to rows and columns ILO to IHI to make the rows and columns as
   43: *> close in norm as possible.  Both steps are optional.
   44: *>
   45: *> Balancing may reduce the 1-norm of the matrix, and improve the
   46: *> accuracy of the computed eigenvalues and/or eigenvectors.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] JOB
   53: *> \verbatim
   54: *>          JOB is CHARACTER*1
   55: *>          Specifies the operations to be performed on A:
   56: *>          = 'N':  none:  simply set ILO = 1, IHI = N, SCALE(I) = 1.0
   57: *>                  for i = 1,...,N;
   58: *>          = 'P':  permute only;
   59: *>          = 'S':  scale only;
   60: *>          = 'B':  both permute and scale.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] N
   64: *> \verbatim
   65: *>          N is INTEGER
   66: *>          The order of the matrix A.  N >= 0.
   67: *> \endverbatim
   68: *>
   69: *> \param[in,out] A
   70: *> \verbatim
   71: *>          A is COMPLEX*16 array, dimension (LDA,N)
   72: *>          On entry, the input matrix A.
   73: *>          On exit,  A is overwritten by the balanced matrix.
   74: *>          If JOB = 'N', A is not referenced.
   75: *>          See Further Details.
   76: *> \endverbatim
   77: *>
   78: *> \param[in] LDA
   79: *> \verbatim
   80: *>          LDA is INTEGER
   81: *>          The leading dimension of the array A.  LDA >= max(1,N).
   82: *> \endverbatim
   83: *>
   84: *> \param[out] ILO
   85: *> \verbatim
   86: *> \endverbatim
   87: *>
   88: *> \param[out] IHI
   89: *> \verbatim
   90: *>          ILO and IHI are set to INTEGER such that on exit
   91: *>          A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
   92: *>          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
   93: *> \endverbatim
   94: *>
   95: *> \param[out] SCALE
   96: *> \verbatim
   97: *>          SCALE is DOUBLE PRECISION array, dimension (N)
   98: *>          Details of the permutations and scaling factors applied to
   99: *>          A.  If P(j) is the index of the row and column interchanged
  100: *>          with row and column j and D(j) is the scaling factor
  101: *>          applied to row and column j, then
  102: *>          SCALE(j) = P(j)    for j = 1,...,ILO-1
  103: *>                   = D(j)    for j = ILO,...,IHI
  104: *>                   = P(j)    for j = IHI+1,...,N.
  105: *>          The order in which the interchanges are made is N to IHI+1,
  106: *>          then 1 to ILO-1.
  107: *> \endverbatim
  108: *>
  109: *> \param[out] INFO
  110: *> \verbatim
  111: *>          INFO is INTEGER
  112: *>          = 0:  successful exit.
  113: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  114: *> \endverbatim
  115: *
  116: *  Authors:
  117: *  ========
  118: *
  119: *> \author Univ. of Tennessee
  120: *> \author Univ. of California Berkeley
  121: *> \author Univ. of Colorado Denver
  122: *> \author NAG Ltd.
  123: *
  124: *> \date December 2016
  125: *
  126: *> \ingroup complex16GEcomputational
  127: *
  128: *> \par Further Details:
  129: *  =====================
  130: *>
  131: *> \verbatim
  132: *>
  133: *>  The permutations consist of row and column interchanges which put
  134: *>  the matrix in the form
  135: *>
  136: *>             ( T1   X   Y  )
  137: *>     P A P = (  0   B   Z  )
  138: *>             (  0   0   T2 )
  139: *>
  140: *>  where T1 and T2 are upper triangular matrices whose eigenvalues lie
  141: *>  along the diagonal.  The column indices ILO and IHI mark the starting
  142: *>  and ending columns of the submatrix B. Balancing consists of applying
  143: *>  a diagonal similarity transformation inv(D) * B * D to make the
  144: *>  1-norms of each row of B and its corresponding column nearly equal.
  145: *>  The output matrix is
  146: *>
  147: *>     ( T1     X*D          Y    )
  148: *>     (  0  inv(D)*B*D  inv(D)*Z ).
  149: *>     (  0      0           T2   )
  150: *>
  151: *>  Information about the permutations P and the diagonal matrix D is
  152: *>  returned in the vector SCALE.
  153: *>
  154: *>  This subroutine is based on the EISPACK routine CBAL.
  155: *>
  156: *>  Modified by Tzu-Yi Chen, Computer Science Division, University of
  157: *>    California at Berkeley, USA
  158: *> \endverbatim
  159: *>
  160: *  =====================================================================
  161:       SUBROUTINE ZGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
  162: *
  163: *  -- LAPACK computational routine (version 3.7.0) --
  164: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  165: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  166: *     December 2016
  167: *
  168: *     .. Scalar Arguments ..
  169:       CHARACTER          JOB
  170:       INTEGER            IHI, ILO, INFO, LDA, N
  171: *     ..
  172: *     .. Array Arguments ..
  173:       DOUBLE PRECISION   SCALE( * )
  174:       COMPLEX*16         A( LDA, * )
  175: *     ..
  176: *
  177: *  =====================================================================
  178: *
  179: *     .. Parameters ..
  180:       DOUBLE PRECISION   ZERO, ONE
  181:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  182:       DOUBLE PRECISION   SCLFAC
  183:       PARAMETER          ( SCLFAC = 2.0D+0 )
  184:       DOUBLE PRECISION   FACTOR
  185:       PARAMETER          ( FACTOR = 0.95D+0 )
  186: *     ..
  187: *     .. Local Scalars ..
  188:       LOGICAL            NOCONV
  189:       INTEGER            I, ICA, IEXC, IRA, J, K, L, M
  190:       DOUBLE PRECISION   C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1,
  191:      $                   SFMIN2
  192: *     ..
  193: *     .. External Functions ..
  194:       LOGICAL            DISNAN, LSAME
  195:       INTEGER            IZAMAX
  196:       DOUBLE PRECISION   DLAMCH, DZNRM2
  197:       EXTERNAL           DISNAN, LSAME, IZAMAX, DLAMCH, DZNRM2
  198: *     ..
  199: *     .. External Subroutines ..
  200:       EXTERNAL           XERBLA, ZDSCAL, ZSWAP
  201: *     ..
  202: *     .. Intrinsic Functions ..
  203:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  204: *
  205: *     Test the input parameters
  206: *
  207:       INFO = 0
  208:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
  209:      $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
  210:          INFO = -1
  211:       ELSE IF( N.LT.0 ) THEN
  212:          INFO = -2
  213:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  214:          INFO = -4
  215:       END IF
  216:       IF( INFO.NE.0 ) THEN
  217:          CALL XERBLA( 'ZGEBAL', -INFO )
  218:          RETURN
  219:       END IF
  220: *
  221:       K = 1
  222:       L = N
  223: *
  224:       IF( N.EQ.0 )
  225:      $   GO TO 210
  226: *
  227:       IF( LSAME( JOB, 'N' ) ) THEN
  228:          DO 10 I = 1, N
  229:             SCALE( I ) = ONE
  230:    10    CONTINUE
  231:          GO TO 210
  232:       END IF
  233: *
  234:       IF( LSAME( JOB, 'S' ) )
  235:      $   GO TO 120
  236: *
  237: *     Permutation to isolate eigenvalues if possible
  238: *
  239:       GO TO 50
  240: *
  241: *     Row and column exchange.
  242: *
  243:    20 CONTINUE
  244:       SCALE( M ) = J
  245:       IF( J.EQ.M )
  246:      $   GO TO 30
  247: *
  248:       CALL ZSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
  249:       CALL ZSWAP( N-K+1, A( J, K ), LDA, A( M, K ), LDA )
  250: *
  251:    30 CONTINUE
  252:       GO TO ( 40, 80 )IEXC
  253: *
  254: *     Search for rows isolating an eigenvalue and push them down.
  255: *
  256:    40 CONTINUE
  257:       IF( L.EQ.1 )
  258:      $   GO TO 210
  259:       L = L - 1
  260: *
  261:    50 CONTINUE
  262:       DO 70 J = L, 1, -1
  263: *
  264:          DO 60 I = 1, L
  265:             IF( I.EQ.J )
  266:      $         GO TO 60
  267:             IF( DBLE( A( J, I ) ).NE.ZERO .OR. DIMAG( A( J, I ) ).NE.
  268:      $          ZERO )GO TO 70
  269:    60    CONTINUE
  270: *
  271:          M = L
  272:          IEXC = 1
  273:          GO TO 20
  274:    70 CONTINUE
  275: *
  276:       GO TO 90
  277: *
  278: *     Search for columns isolating an eigenvalue and push them left.
  279: *
  280:    80 CONTINUE
  281:       K = K + 1
  282: *
  283:    90 CONTINUE
  284:       DO 110 J = K, L
  285: *
  286:          DO 100 I = K, L
  287:             IF( I.EQ.J )
  288:      $         GO TO 100
  289:             IF( DBLE( A( I, J ) ).NE.ZERO .OR. DIMAG( A( I, J ) ).NE.
  290:      $          ZERO )GO TO 110
  291:   100    CONTINUE
  292: *
  293:          M = K
  294:          IEXC = 2
  295:          GO TO 20
  296:   110 CONTINUE
  297: *
  298:   120 CONTINUE
  299:       DO 130 I = K, L
  300:          SCALE( I ) = ONE
  301:   130 CONTINUE
  302: *
  303:       IF( LSAME( JOB, 'P' ) )
  304:      $   GO TO 210
  305: *
  306: *     Balance the submatrix in rows K to L.
  307: *
  308: *     Iterative loop for norm reduction
  309: *
  310:       SFMIN1 = DLAMCH( 'S' ) / DLAMCH( 'P' )
  311:       SFMAX1 = ONE / SFMIN1
  312:       SFMIN2 = SFMIN1*SCLFAC
  313:       SFMAX2 = ONE / SFMIN2
  314:   140 CONTINUE
  315:       NOCONV = .FALSE.
  316: *
  317:       DO 200 I = K, L
  318: *
  319:          C = DZNRM2( L-K+1, A( K, I ), 1 )
  320:          R = DZNRM2( L-K+1, A( I, K ), LDA )
  321:          ICA = IZAMAX( L, A( 1, I ), 1 )
  322:          CA = ABS( A( ICA, I ) )
  323:          IRA = IZAMAX( N-K+1, A( I, K ), LDA )
  324:          RA = ABS( A( I, IRA+K-1 ) )
  325: *
  326: *        Guard against zero C or R due to underflow.
  327: *
  328:          IF( C.EQ.ZERO .OR. R.EQ.ZERO )
  329:      $      GO TO 200
  330:          G = R / SCLFAC
  331:          F = ONE
  332:          S = C + R
  333:   160    CONTINUE
  334:          IF( C.GE.G .OR. MAX( F, C, CA ).GE.SFMAX2 .OR.
  335:      $       MIN( R, G, RA ).LE.SFMIN2 )GO TO 170
  336:             IF( DISNAN( C+F+CA+R+G+RA ) ) THEN
  337: *
  338: *           Exit if NaN to avoid infinite loop
  339: *
  340:             INFO = -3
  341:             CALL XERBLA( 'ZGEBAL', -INFO )
  342:             RETURN
  343:          END IF
  344:          F = F*SCLFAC
  345:          C = C*SCLFAC
  346:          CA = CA*SCLFAC
  347:          R = R / SCLFAC
  348:          G = G / SCLFAC
  349:          RA = RA / SCLFAC
  350:          GO TO 160
  351: *
  352:   170    CONTINUE
  353:          G = C / SCLFAC
  354:   180    CONTINUE
  355:          IF( G.LT.R .OR. MAX( R, RA ).GE.SFMAX2 .OR.
  356:      $       MIN( F, C, G, CA ).LE.SFMIN2 )GO TO 190
  357:          F = F / SCLFAC
  358:          C = C / SCLFAC
  359:          G = G / SCLFAC
  360:          CA = CA / SCLFAC
  361:          R = R*SCLFAC
  362:          RA = RA*SCLFAC
  363:          GO TO 180
  364: *
  365: *        Now balance.
  366: *
  367:   190    CONTINUE
  368:          IF( ( C+R ).GE.FACTOR*S )
  369:      $      GO TO 200
  370:          IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN
  371:             IF( F*SCALE( I ).LE.SFMIN1 )
  372:      $         GO TO 200
  373:          END IF
  374:          IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN
  375:             IF( SCALE( I ).GE.SFMAX1 / F )
  376:      $         GO TO 200
  377:          END IF
  378:          G = ONE / F
  379:          SCALE( I ) = SCALE( I )*F
  380:          NOCONV = .TRUE.
  381: *
  382:          CALL ZDSCAL( N-K+1, G, A( I, K ), LDA )
  383:          CALL ZDSCAL( L, F, A( 1, I ), 1 )
  384: *
  385:   200 CONTINUE
  386: *
  387:       IF( NOCONV )
  388:      $   GO TO 140
  389: *
  390:   210 CONTINUE
  391:       ILO = K
  392:       IHI = L
  393: *
  394:       RETURN
  395: *
  396: *     End of ZGEBAL
  397: *
  398:       END

CVSweb interface <joel.bertrand@systella.fr>