File:  [local] / rpl / lapack / lapack / zgbtrf.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:16 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGBTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGBTRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbtrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbtrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbtrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, KL, KU, LDAB, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       INTEGER            IPIV( * )
   28: *       COMPLEX*16         AB( LDAB, * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZGBTRF computes an LU factorization of a complex m-by-n band matrix A
   38: *> using partial pivoting with row interchanges.
   39: *>
   40: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] M
   47: *> \verbatim
   48: *>          M is INTEGER
   49: *>          The number of rows of the matrix A.  M >= 0.
   50: *> \endverbatim
   51: *>
   52: *> \param[in] N
   53: *> \verbatim
   54: *>          N is INTEGER
   55: *>          The number of columns of the matrix A.  N >= 0.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] KL
   59: *> \verbatim
   60: *>          KL is INTEGER
   61: *>          The number of subdiagonals within the band of A.  KL >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] KU
   65: *> \verbatim
   66: *>          KU is INTEGER
   67: *>          The number of superdiagonals within the band of A.  KU >= 0.
   68: *> \endverbatim
   69: *>
   70: *> \param[in,out] AB
   71: *> \verbatim
   72: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
   73: *>          On entry, the matrix A in band storage, in rows KL+1 to
   74: *>          2*KL+KU+1; rows 1 to KL of the array need not be set.
   75: *>          The j-th column of A is stored in the j-th column of the
   76: *>          array AB as follows:
   77: *>          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
   78: *>
   79: *>          On exit, details of the factorization: U is stored as an
   80: *>          upper triangular band matrix with KL+KU superdiagonals in
   81: *>          rows 1 to KL+KU+1, and the multipliers used during the
   82: *>          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
   83: *>          See below for further details.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] LDAB
   87: *> \verbatim
   88: *>          LDAB is INTEGER
   89: *>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
   90: *> \endverbatim
   91: *>
   92: *> \param[out] IPIV
   93: *> \verbatim
   94: *>          IPIV is INTEGER array, dimension (min(M,N))
   95: *>          The pivot indices; for 1 <= i <= min(M,N), row i of the
   96: *>          matrix was interchanged with row IPIV(i).
   97: *> \endverbatim
   98: *>
   99: *> \param[out] INFO
  100: *> \verbatim
  101: *>          INFO is INTEGER
  102: *>          = 0: successful exit
  103: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  104: *>          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
  105: *>               has been completed, but the factor U is exactly
  106: *>               singular, and division by zero will occur if it is used
  107: *>               to solve a system of equations.
  108: *> \endverbatim
  109: *
  110: *  Authors:
  111: *  ========
  112: *
  113: *> \author Univ. of Tennessee
  114: *> \author Univ. of California Berkeley
  115: *> \author Univ. of Colorado Denver
  116: *> \author NAG Ltd.
  117: *
  118: *> \ingroup complex16GBcomputational
  119: *
  120: *> \par Further Details:
  121: *  =====================
  122: *>
  123: *> \verbatim
  124: *>
  125: *>  The band storage scheme is illustrated by the following example, when
  126: *>  M = N = 6, KL = 2, KU = 1:
  127: *>
  128: *>  On entry:                       On exit:
  129: *>
  130: *>      *    *    *    +    +    +       *    *    *   u14  u25  u36
  131: *>      *    *    +    +    +    +       *    *   u13  u24  u35  u46
  132: *>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
  133: *>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
  134: *>     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
  135: *>     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
  136: *>
  137: *>  Array elements marked * are not used by the routine; elements marked
  138: *>  + need not be set on entry, but are required by the routine to store
  139: *>  elements of U because of fill-in resulting from the row interchanges.
  140: *> \endverbatim
  141: *>
  142: *  =====================================================================
  143:       SUBROUTINE ZGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
  144: *
  145: *  -- LAPACK computational routine --
  146: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  147: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  148: *
  149: *     .. Scalar Arguments ..
  150:       INTEGER            INFO, KL, KU, LDAB, M, N
  151: *     ..
  152: *     .. Array Arguments ..
  153:       INTEGER            IPIV( * )
  154:       COMPLEX*16         AB( LDAB, * )
  155: *     ..
  156: *
  157: *  =====================================================================
  158: *
  159: *     .. Parameters ..
  160:       COMPLEX*16         ONE, ZERO
  161:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
  162:      $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
  163:       INTEGER            NBMAX, LDWORK
  164:       PARAMETER          ( NBMAX = 64, LDWORK = NBMAX+1 )
  165: *     ..
  166: *     .. Local Scalars ..
  167:       INTEGER            I, I2, I3, II, IP, J, J2, J3, JB, JJ, JM, JP,
  168:      $                   JU, K2, KM, KV, NB, NW
  169:       COMPLEX*16         TEMP
  170: *     ..
  171: *     .. Local Arrays ..
  172:       COMPLEX*16         WORK13( LDWORK, NBMAX ),
  173:      $                   WORK31( LDWORK, NBMAX )
  174: *     ..
  175: *     .. External Functions ..
  176:       INTEGER            ILAENV, IZAMAX
  177:       EXTERNAL           ILAENV, IZAMAX
  178: *     ..
  179: *     .. External Subroutines ..
  180:       EXTERNAL           XERBLA, ZCOPY, ZGBTF2, ZGEMM, ZGERU, ZLASWP,
  181:      $                   ZSCAL, ZSWAP, ZTRSM
  182: *     ..
  183: *     .. Intrinsic Functions ..
  184:       INTRINSIC          MAX, MIN
  185: *     ..
  186: *     .. Executable Statements ..
  187: *
  188: *     KV is the number of superdiagonals in the factor U, allowing for
  189: *     fill-in
  190: *
  191:       KV = KU + KL
  192: *
  193: *     Test the input parameters.
  194: *
  195:       INFO = 0
  196:       IF( M.LT.0 ) THEN
  197:          INFO = -1
  198:       ELSE IF( N.LT.0 ) THEN
  199:          INFO = -2
  200:       ELSE IF( KL.LT.0 ) THEN
  201:          INFO = -3
  202:       ELSE IF( KU.LT.0 ) THEN
  203:          INFO = -4
  204:       ELSE IF( LDAB.LT.KL+KV+1 ) THEN
  205:          INFO = -6
  206:       END IF
  207:       IF( INFO.NE.0 ) THEN
  208:          CALL XERBLA( 'ZGBTRF', -INFO )
  209:          RETURN
  210:       END IF
  211: *
  212: *     Quick return if possible
  213: *
  214:       IF( M.EQ.0 .OR. N.EQ.0 )
  215:      $   RETURN
  216: *
  217: *     Determine the block size for this environment
  218: *
  219:       NB = ILAENV( 1, 'ZGBTRF', ' ', M, N, KL, KU )
  220: *
  221: *     The block size must not exceed the limit set by the size of the
  222: *     local arrays WORK13 and WORK31.
  223: *
  224:       NB = MIN( NB, NBMAX )
  225: *
  226:       IF( NB.LE.1 .OR. NB.GT.KL ) THEN
  227: *
  228: *        Use unblocked code
  229: *
  230:          CALL ZGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
  231:       ELSE
  232: *
  233: *        Use blocked code
  234: *
  235: *        Zero the superdiagonal elements of the work array WORK13
  236: *
  237:          DO 20 J = 1, NB
  238:             DO 10 I = 1, J - 1
  239:                WORK13( I, J ) = ZERO
  240:    10       CONTINUE
  241:    20    CONTINUE
  242: *
  243: *        Zero the subdiagonal elements of the work array WORK31
  244: *
  245:          DO 40 J = 1, NB
  246:             DO 30 I = J + 1, NB
  247:                WORK31( I, J ) = ZERO
  248:    30       CONTINUE
  249:    40    CONTINUE
  250: *
  251: *        Gaussian elimination with partial pivoting
  252: *
  253: *        Set fill-in elements in columns KU+2 to KV to zero
  254: *
  255:          DO 60 J = KU + 2, MIN( KV, N )
  256:             DO 50 I = KV - J + 2, KL
  257:                AB( I, J ) = ZERO
  258:    50       CONTINUE
  259:    60    CONTINUE
  260: *
  261: *        JU is the index of the last column affected by the current
  262: *        stage of the factorization
  263: *
  264:          JU = 1
  265: *
  266:          DO 180 J = 1, MIN( M, N ), NB
  267:             JB = MIN( NB, MIN( M, N )-J+1 )
  268: *
  269: *           The active part of the matrix is partitioned
  270: *
  271: *              A11   A12   A13
  272: *              A21   A22   A23
  273: *              A31   A32   A33
  274: *
  275: *           Here A11, A21 and A31 denote the current block of JB columns
  276: *           which is about to be factorized. The number of rows in the
  277: *           partitioning are JB, I2, I3 respectively, and the numbers
  278: *           of columns are JB, J2, J3. The superdiagonal elements of A13
  279: *           and the subdiagonal elements of A31 lie outside the band.
  280: *
  281:             I2 = MIN( KL-JB, M-J-JB+1 )
  282:             I3 = MIN( JB, M-J-KL+1 )
  283: *
  284: *           J2 and J3 are computed after JU has been updated.
  285: *
  286: *           Factorize the current block of JB columns
  287: *
  288:             DO 80 JJ = J, J + JB - 1
  289: *
  290: *              Set fill-in elements in column JJ+KV to zero
  291: *
  292:                IF( JJ+KV.LE.N ) THEN
  293:                   DO 70 I = 1, KL
  294:                      AB( I, JJ+KV ) = ZERO
  295:    70             CONTINUE
  296:                END IF
  297: *
  298: *              Find pivot and test for singularity. KM is the number of
  299: *              subdiagonal elements in the current column.
  300: *
  301:                KM = MIN( KL, M-JJ )
  302:                JP = IZAMAX( KM+1, AB( KV+1, JJ ), 1 )
  303:                IPIV( JJ ) = JP + JJ - J
  304:                IF( AB( KV+JP, JJ ).NE.ZERO ) THEN
  305:                   JU = MAX( JU, MIN( JJ+KU+JP-1, N ) )
  306:                   IF( JP.NE.1 ) THEN
  307: *
  308: *                    Apply interchange to columns J to J+JB-1
  309: *
  310:                      IF( JP+JJ-1.LT.J+KL ) THEN
  311: *
  312:                         CALL ZSWAP( JB, AB( KV+1+JJ-J, J ), LDAB-1,
  313:      $                              AB( KV+JP+JJ-J, J ), LDAB-1 )
  314:                      ELSE
  315: *
  316: *                       The interchange affects columns J to JJ-1 of A31
  317: *                       which are stored in the work array WORK31
  318: *
  319:                         CALL ZSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
  320:      $                              WORK31( JP+JJ-J-KL, 1 ), LDWORK )
  321:                         CALL ZSWAP( J+JB-JJ, AB( KV+1, JJ ), LDAB-1,
  322:      $                              AB( KV+JP, JJ ), LDAB-1 )
  323:                      END IF
  324:                   END IF
  325: *
  326: *                 Compute multipliers
  327: *
  328:                   CALL ZSCAL( KM, ONE / AB( KV+1, JJ ), AB( KV+2, JJ ),
  329:      $                        1 )
  330: *
  331: *                 Update trailing submatrix within the band and within
  332: *                 the current block. JM is the index of the last column
  333: *                 which needs to be updated.
  334: *
  335:                   JM = MIN( JU, J+JB-1 )
  336:                   IF( JM.GT.JJ )
  337:      $               CALL ZGERU( KM, JM-JJ, -ONE, AB( KV+2, JJ ), 1,
  338:      $                           AB( KV, JJ+1 ), LDAB-1,
  339:      $                           AB( KV+1, JJ+1 ), LDAB-1 )
  340:                ELSE
  341: *
  342: *                 If pivot is zero, set INFO to the index of the pivot
  343: *                 unless a zero pivot has already been found.
  344: *
  345:                   IF( INFO.EQ.0 )
  346:      $               INFO = JJ
  347:                END IF
  348: *
  349: *              Copy current column of A31 into the work array WORK31
  350: *
  351:                NW = MIN( JJ-J+1, I3 )
  352:                IF( NW.GT.0 )
  353:      $            CALL ZCOPY( NW, AB( KV+KL+1-JJ+J, JJ ), 1,
  354:      $                        WORK31( 1, JJ-J+1 ), 1 )
  355:    80       CONTINUE
  356:             IF( J+JB.LE.N ) THEN
  357: *
  358: *              Apply the row interchanges to the other blocks.
  359: *
  360:                J2 = MIN( JU-J+1, KV ) - JB
  361:                J3 = MAX( 0, JU-J-KV+1 )
  362: *
  363: *              Use ZLASWP to apply the row interchanges to A12, A22, and
  364: *              A32.
  365: *
  366:                CALL ZLASWP( J2, AB( KV+1-JB, J+JB ), LDAB-1, 1, JB,
  367:      $                      IPIV( J ), 1 )
  368: *
  369: *              Adjust the pivot indices.
  370: *
  371:                DO 90 I = J, J + JB - 1
  372:                   IPIV( I ) = IPIV( I ) + J - 1
  373:    90          CONTINUE
  374: *
  375: *              Apply the row interchanges to A13, A23, and A33
  376: *              columnwise.
  377: *
  378:                K2 = J - 1 + JB + J2
  379:                DO 110 I = 1, J3
  380:                   JJ = K2 + I
  381:                   DO 100 II = J + I - 1, J + JB - 1
  382:                      IP = IPIV( II )
  383:                      IF( IP.NE.II ) THEN
  384:                         TEMP = AB( KV+1+II-JJ, JJ )
  385:                         AB( KV+1+II-JJ, JJ ) = AB( KV+1+IP-JJ, JJ )
  386:                         AB( KV+1+IP-JJ, JJ ) = TEMP
  387:                      END IF
  388:   100             CONTINUE
  389:   110          CONTINUE
  390: *
  391: *              Update the relevant part of the trailing submatrix
  392: *
  393:                IF( J2.GT.0 ) THEN
  394: *
  395: *                 Update A12
  396: *
  397:                   CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
  398:      $                        JB, J2, ONE, AB( KV+1, J ), LDAB-1,
  399:      $                        AB( KV+1-JB, J+JB ), LDAB-1 )
  400: *
  401:                   IF( I2.GT.0 ) THEN
  402: *
  403: *                    Update A22
  404: *
  405:                      CALL ZGEMM( 'No transpose', 'No transpose', I2, J2,
  406:      $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
  407:      $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
  408:      $                           AB( KV+1, J+JB ), LDAB-1 )
  409:                   END IF
  410: *
  411:                   IF( I3.GT.0 ) THEN
  412: *
  413: *                    Update A32
  414: *
  415:                      CALL ZGEMM( 'No transpose', 'No transpose', I3, J2,
  416:      $                           JB, -ONE, WORK31, LDWORK,
  417:      $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
  418:      $                           AB( KV+KL+1-JB, J+JB ), LDAB-1 )
  419:                   END IF
  420:                END IF
  421: *
  422:                IF( J3.GT.0 ) THEN
  423: *
  424: *                 Copy the lower triangle of A13 into the work array
  425: *                 WORK13
  426: *
  427:                   DO 130 JJ = 1, J3
  428:                      DO 120 II = JJ, JB
  429:                         WORK13( II, JJ ) = AB( II-JJ+1, JJ+J+KV-1 )
  430:   120                CONTINUE
  431:   130             CONTINUE
  432: *
  433: *                 Update A13 in the work array
  434: *
  435:                   CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
  436:      $                        JB, J3, ONE, AB( KV+1, J ), LDAB-1,
  437:      $                        WORK13, LDWORK )
  438: *
  439:                   IF( I2.GT.0 ) THEN
  440: *
  441: *                    Update A23
  442: *
  443:                      CALL ZGEMM( 'No transpose', 'No transpose', I2, J3,
  444:      $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
  445:      $                           WORK13, LDWORK, ONE, AB( 1+JB, J+KV ),
  446:      $                           LDAB-1 )
  447:                   END IF
  448: *
  449:                   IF( I3.GT.0 ) THEN
  450: *
  451: *                    Update A33
  452: *
  453:                      CALL ZGEMM( 'No transpose', 'No transpose', I3, J3,
  454:      $                           JB, -ONE, WORK31, LDWORK, WORK13,
  455:      $                           LDWORK, ONE, AB( 1+KL, J+KV ), LDAB-1 )
  456:                   END IF
  457: *
  458: *                 Copy the lower triangle of A13 back into place
  459: *
  460:                   DO 150 JJ = 1, J3
  461:                      DO 140 II = JJ, JB
  462:                         AB( II-JJ+1, JJ+J+KV-1 ) = WORK13( II, JJ )
  463:   140                CONTINUE
  464:   150             CONTINUE
  465:                END IF
  466:             ELSE
  467: *
  468: *              Adjust the pivot indices.
  469: *
  470:                DO 160 I = J, J + JB - 1
  471:                   IPIV( I ) = IPIV( I ) + J - 1
  472:   160          CONTINUE
  473:             END IF
  474: *
  475: *           Partially undo the interchanges in the current block to
  476: *           restore the upper triangular form of A31 and copy the upper
  477: *           triangle of A31 back into place
  478: *
  479:             DO 170 JJ = J + JB - 1, J, -1
  480:                JP = IPIV( JJ ) - JJ + 1
  481:                IF( JP.NE.1 ) THEN
  482: *
  483: *                 Apply interchange to columns J to JJ-1
  484: *
  485:                   IF( JP+JJ-1.LT.J+KL ) THEN
  486: *
  487: *                    The interchange does not affect A31
  488: *
  489:                      CALL ZSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
  490:      $                           AB( KV+JP+JJ-J, J ), LDAB-1 )
  491:                   ELSE
  492: *
  493: *                    The interchange does affect A31
  494: *
  495:                      CALL ZSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
  496:      $                           WORK31( JP+JJ-J-KL, 1 ), LDWORK )
  497:                   END IF
  498:                END IF
  499: *
  500: *              Copy the current column of A31 back into place
  501: *
  502:                NW = MIN( I3, JJ-J+1 )
  503:                IF( NW.GT.0 )
  504:      $            CALL ZCOPY( NW, WORK31( 1, JJ-J+1 ), 1,
  505:      $                        AB( KV+KL+1-JJ+J, JJ ), 1 )
  506:   170       CONTINUE
  507:   180    CONTINUE
  508:       END IF
  509: *
  510:       RETURN
  511: *
  512: *     End of ZGBTRF
  513: *
  514:       END

CVSweb interface <joel.bertrand@systella.fr>