File:  [local] / rpl / lapack / lapack / zgbtrf.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:08 2017 UTC (6 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b ZGBTRF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGBTRF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbtrf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbtrf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbtrf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, KL, KU, LDAB, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       INTEGER            IPIV( * )
   28: *       COMPLEX*16         AB( LDAB, * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZGBTRF computes an LU factorization of a complex m-by-n band matrix A
   38: *> using partial pivoting with row interchanges.
   39: *>
   40: *> This is the blocked version of the algorithm, calling Level 3 BLAS.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] M
   47: *> \verbatim
   48: *>          M is INTEGER
   49: *>          The number of rows of the matrix A.  M >= 0.
   50: *> \endverbatim
   51: *>
   52: *> \param[in] N
   53: *> \verbatim
   54: *>          N is INTEGER
   55: *>          The number of columns of the matrix A.  N >= 0.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] KL
   59: *> \verbatim
   60: *>          KL is INTEGER
   61: *>          The number of subdiagonals within the band of A.  KL >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] KU
   65: *> \verbatim
   66: *>          KU is INTEGER
   67: *>          The number of superdiagonals within the band of A.  KU >= 0.
   68: *> \endverbatim
   69: *>
   70: *> \param[in,out] AB
   71: *> \verbatim
   72: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
   73: *>          On entry, the matrix A in band storage, in rows KL+1 to
   74: *>          2*KL+KU+1; rows 1 to KL of the array need not be set.
   75: *>          The j-th column of A is stored in the j-th column of the
   76: *>          array AB as follows:
   77: *>          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
   78: *>
   79: *>          On exit, details of the factorization: U is stored as an
   80: *>          upper triangular band matrix with KL+KU superdiagonals in
   81: *>          rows 1 to KL+KU+1, and the multipliers used during the
   82: *>          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
   83: *>          See below for further details.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] LDAB
   87: *> \verbatim
   88: *>          LDAB is INTEGER
   89: *>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
   90: *> \endverbatim
   91: *>
   92: *> \param[out] IPIV
   93: *> \verbatim
   94: *>          IPIV is INTEGER array, dimension (min(M,N))
   95: *>          The pivot indices; for 1 <= i <= min(M,N), row i of the
   96: *>          matrix was interchanged with row IPIV(i).
   97: *> \endverbatim
   98: *>
   99: *> \param[out] INFO
  100: *> \verbatim
  101: *>          INFO is INTEGER
  102: *>          = 0: successful exit
  103: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  104: *>          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
  105: *>               has been completed, but the factor U is exactly
  106: *>               singular, and division by zero will occur if it is used
  107: *>               to solve a system of equations.
  108: *> \endverbatim
  109: *
  110: *  Authors:
  111: *  ========
  112: *
  113: *> \author Univ. of Tennessee
  114: *> \author Univ. of California Berkeley
  115: *> \author Univ. of Colorado Denver
  116: *> \author NAG Ltd.
  117: *
  118: *> \date December 2016
  119: *
  120: *> \ingroup complex16GBcomputational
  121: *
  122: *> \par Further Details:
  123: *  =====================
  124: *>
  125: *> \verbatim
  126: *>
  127: *>  The band storage scheme is illustrated by the following example, when
  128: *>  M = N = 6, KL = 2, KU = 1:
  129: *>
  130: *>  On entry:                       On exit:
  131: *>
  132: *>      *    *    *    +    +    +       *    *    *   u14  u25  u36
  133: *>      *    *    +    +    +    +       *    *   u13  u24  u35  u46
  134: *>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
  135: *>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
  136: *>     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
  137: *>     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
  138: *>
  139: *>  Array elements marked * are not used by the routine; elements marked
  140: *>  + need not be set on entry, but are required by the routine to store
  141: *>  elements of U because of fill-in resulting from the row interchanges.
  142: *> \endverbatim
  143: *>
  144: *  =====================================================================
  145:       SUBROUTINE ZGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
  146: *
  147: *  -- LAPACK computational routine (version 3.7.0) --
  148: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  149: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  150: *     December 2016
  151: *
  152: *     .. Scalar Arguments ..
  153:       INTEGER            INFO, KL, KU, LDAB, M, N
  154: *     ..
  155: *     .. Array Arguments ..
  156:       INTEGER            IPIV( * )
  157:       COMPLEX*16         AB( LDAB, * )
  158: *     ..
  159: *
  160: *  =====================================================================
  161: *
  162: *     .. Parameters ..
  163:       COMPLEX*16         ONE, ZERO
  164:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
  165:      $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
  166:       INTEGER            NBMAX, LDWORK
  167:       PARAMETER          ( NBMAX = 64, LDWORK = NBMAX+1 )
  168: *     ..
  169: *     .. Local Scalars ..
  170:       INTEGER            I, I2, I3, II, IP, J, J2, J3, JB, JJ, JM, JP,
  171:      $                   JU, K2, KM, KV, NB, NW
  172:       COMPLEX*16         TEMP
  173: *     ..
  174: *     .. Local Arrays ..
  175:       COMPLEX*16         WORK13( LDWORK, NBMAX ),
  176:      $                   WORK31( LDWORK, NBMAX )
  177: *     ..
  178: *     .. External Functions ..
  179:       INTEGER            ILAENV, IZAMAX
  180:       EXTERNAL           ILAENV, IZAMAX
  181: *     ..
  182: *     .. External Subroutines ..
  183:       EXTERNAL           XERBLA, ZCOPY, ZGBTF2, ZGEMM, ZGERU, ZLASWP,
  184:      $                   ZSCAL, ZSWAP, ZTRSM
  185: *     ..
  186: *     .. Intrinsic Functions ..
  187:       INTRINSIC          MAX, MIN
  188: *     ..
  189: *     .. Executable Statements ..
  190: *
  191: *     KV is the number of superdiagonals in the factor U, allowing for
  192: *     fill-in
  193: *
  194:       KV = KU + KL
  195: *
  196: *     Test the input parameters.
  197: *
  198:       INFO = 0
  199:       IF( M.LT.0 ) THEN
  200:          INFO = -1
  201:       ELSE IF( N.LT.0 ) THEN
  202:          INFO = -2
  203:       ELSE IF( KL.LT.0 ) THEN
  204:          INFO = -3
  205:       ELSE IF( KU.LT.0 ) THEN
  206:          INFO = -4
  207:       ELSE IF( LDAB.LT.KL+KV+1 ) THEN
  208:          INFO = -6
  209:       END IF
  210:       IF( INFO.NE.0 ) THEN
  211:          CALL XERBLA( 'ZGBTRF', -INFO )
  212:          RETURN
  213:       END IF
  214: *
  215: *     Quick return if possible
  216: *
  217:       IF( M.EQ.0 .OR. N.EQ.0 )
  218:      $   RETURN
  219: *
  220: *     Determine the block size for this environment
  221: *
  222:       NB = ILAENV( 1, 'ZGBTRF', ' ', M, N, KL, KU )
  223: *
  224: *     The block size must not exceed the limit set by the size of the
  225: *     local arrays WORK13 and WORK31.
  226: *
  227:       NB = MIN( NB, NBMAX )
  228: *
  229:       IF( NB.LE.1 .OR. NB.GT.KL ) THEN
  230: *
  231: *        Use unblocked code
  232: *
  233:          CALL ZGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
  234:       ELSE
  235: *
  236: *        Use blocked code
  237: *
  238: *        Zero the superdiagonal elements of the work array WORK13
  239: *
  240:          DO 20 J = 1, NB
  241:             DO 10 I = 1, J - 1
  242:                WORK13( I, J ) = ZERO
  243:    10       CONTINUE
  244:    20    CONTINUE
  245: *
  246: *        Zero the subdiagonal elements of the work array WORK31
  247: *
  248:          DO 40 J = 1, NB
  249:             DO 30 I = J + 1, NB
  250:                WORK31( I, J ) = ZERO
  251:    30       CONTINUE
  252:    40    CONTINUE
  253: *
  254: *        Gaussian elimination with partial pivoting
  255: *
  256: *        Set fill-in elements in columns KU+2 to KV to zero
  257: *
  258:          DO 60 J = KU + 2, MIN( KV, N )
  259:             DO 50 I = KV - J + 2, KL
  260:                AB( I, J ) = ZERO
  261:    50       CONTINUE
  262:    60    CONTINUE
  263: *
  264: *        JU is the index of the last column affected by the current
  265: *        stage of the factorization
  266: *
  267:          JU = 1
  268: *
  269:          DO 180 J = 1, MIN( M, N ), NB
  270:             JB = MIN( NB, MIN( M, N )-J+1 )
  271: *
  272: *           The active part of the matrix is partitioned
  273: *
  274: *              A11   A12   A13
  275: *              A21   A22   A23
  276: *              A31   A32   A33
  277: *
  278: *           Here A11, A21 and A31 denote the current block of JB columns
  279: *           which is about to be factorized. The number of rows in the
  280: *           partitioning are JB, I2, I3 respectively, and the numbers
  281: *           of columns are JB, J2, J3. The superdiagonal elements of A13
  282: *           and the subdiagonal elements of A31 lie outside the band.
  283: *
  284:             I2 = MIN( KL-JB, M-J-JB+1 )
  285:             I3 = MIN( JB, M-J-KL+1 )
  286: *
  287: *           J2 and J3 are computed after JU has been updated.
  288: *
  289: *           Factorize the current block of JB columns
  290: *
  291:             DO 80 JJ = J, J + JB - 1
  292: *
  293: *              Set fill-in elements in column JJ+KV to zero
  294: *
  295:                IF( JJ+KV.LE.N ) THEN
  296:                   DO 70 I = 1, KL
  297:                      AB( I, JJ+KV ) = ZERO
  298:    70             CONTINUE
  299:                END IF
  300: *
  301: *              Find pivot and test for singularity. KM is the number of
  302: *              subdiagonal elements in the current column.
  303: *
  304:                KM = MIN( KL, M-JJ )
  305:                JP = IZAMAX( KM+1, AB( KV+1, JJ ), 1 )
  306:                IPIV( JJ ) = JP + JJ - J
  307:                IF( AB( KV+JP, JJ ).NE.ZERO ) THEN
  308:                   JU = MAX( JU, MIN( JJ+KU+JP-1, N ) )
  309:                   IF( JP.NE.1 ) THEN
  310: *
  311: *                    Apply interchange to columns J to J+JB-1
  312: *
  313:                      IF( JP+JJ-1.LT.J+KL ) THEN
  314: *
  315:                         CALL ZSWAP( JB, AB( KV+1+JJ-J, J ), LDAB-1,
  316:      $                              AB( KV+JP+JJ-J, J ), LDAB-1 )
  317:                      ELSE
  318: *
  319: *                       The interchange affects columns J to JJ-1 of A31
  320: *                       which are stored in the work array WORK31
  321: *
  322:                         CALL ZSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
  323:      $                              WORK31( JP+JJ-J-KL, 1 ), LDWORK )
  324:                         CALL ZSWAP( J+JB-JJ, AB( KV+1, JJ ), LDAB-1,
  325:      $                              AB( KV+JP, JJ ), LDAB-1 )
  326:                      END IF
  327:                   END IF
  328: *
  329: *                 Compute multipliers
  330: *
  331:                   CALL ZSCAL( KM, ONE / AB( KV+1, JJ ), AB( KV+2, JJ ),
  332:      $                        1 )
  333: *
  334: *                 Update trailing submatrix within the band and within
  335: *                 the current block. JM is the index of the last column
  336: *                 which needs to be updated.
  337: *
  338:                   JM = MIN( JU, J+JB-1 )
  339:                   IF( JM.GT.JJ )
  340:      $               CALL ZGERU( KM, JM-JJ, -ONE, AB( KV+2, JJ ), 1,
  341:      $                           AB( KV, JJ+1 ), LDAB-1,
  342:      $                           AB( KV+1, JJ+1 ), LDAB-1 )
  343:                ELSE
  344: *
  345: *                 If pivot is zero, set INFO to the index of the pivot
  346: *                 unless a zero pivot has already been found.
  347: *
  348:                   IF( INFO.EQ.0 )
  349:      $               INFO = JJ
  350:                END IF
  351: *
  352: *              Copy current column of A31 into the work array WORK31
  353: *
  354:                NW = MIN( JJ-J+1, I3 )
  355:                IF( NW.GT.0 )
  356:      $            CALL ZCOPY( NW, AB( KV+KL+1-JJ+J, JJ ), 1,
  357:      $                        WORK31( 1, JJ-J+1 ), 1 )
  358:    80       CONTINUE
  359:             IF( J+JB.LE.N ) THEN
  360: *
  361: *              Apply the row interchanges to the other blocks.
  362: *
  363:                J2 = MIN( JU-J+1, KV ) - JB
  364:                J3 = MAX( 0, JU-J-KV+1 )
  365: *
  366: *              Use ZLASWP to apply the row interchanges to A12, A22, and
  367: *              A32.
  368: *
  369:                CALL ZLASWP( J2, AB( KV+1-JB, J+JB ), LDAB-1, 1, JB,
  370:      $                      IPIV( J ), 1 )
  371: *
  372: *              Adjust the pivot indices.
  373: *
  374:                DO 90 I = J, J + JB - 1
  375:                   IPIV( I ) = IPIV( I ) + J - 1
  376:    90          CONTINUE
  377: *
  378: *              Apply the row interchanges to A13, A23, and A33
  379: *              columnwise.
  380: *
  381:                K2 = J - 1 + JB + J2
  382:                DO 110 I = 1, J3
  383:                   JJ = K2 + I
  384:                   DO 100 II = J + I - 1, J + JB - 1
  385:                      IP = IPIV( II )
  386:                      IF( IP.NE.II ) THEN
  387:                         TEMP = AB( KV+1+II-JJ, JJ )
  388:                         AB( KV+1+II-JJ, JJ ) = AB( KV+1+IP-JJ, JJ )
  389:                         AB( KV+1+IP-JJ, JJ ) = TEMP
  390:                      END IF
  391:   100             CONTINUE
  392:   110          CONTINUE
  393: *
  394: *              Update the relevant part of the trailing submatrix
  395: *
  396:                IF( J2.GT.0 ) THEN
  397: *
  398: *                 Update A12
  399: *
  400:                   CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
  401:      $                        JB, J2, ONE, AB( KV+1, J ), LDAB-1,
  402:      $                        AB( KV+1-JB, J+JB ), LDAB-1 )
  403: *
  404:                   IF( I2.GT.0 ) THEN
  405: *
  406: *                    Update A22
  407: *
  408:                      CALL ZGEMM( 'No transpose', 'No transpose', I2, J2,
  409:      $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
  410:      $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
  411:      $                           AB( KV+1, J+JB ), LDAB-1 )
  412:                   END IF
  413: *
  414:                   IF( I3.GT.0 ) THEN
  415: *
  416: *                    Update A32
  417: *
  418:                      CALL ZGEMM( 'No transpose', 'No transpose', I3, J2,
  419:      $                           JB, -ONE, WORK31, LDWORK,
  420:      $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
  421:      $                           AB( KV+KL+1-JB, J+JB ), LDAB-1 )
  422:                   END IF
  423:                END IF
  424: *
  425:                IF( J3.GT.0 ) THEN
  426: *
  427: *                 Copy the lower triangle of A13 into the work array
  428: *                 WORK13
  429: *
  430:                   DO 130 JJ = 1, J3
  431:                      DO 120 II = JJ, JB
  432:                         WORK13( II, JJ ) = AB( II-JJ+1, JJ+J+KV-1 )
  433:   120                CONTINUE
  434:   130             CONTINUE
  435: *
  436: *                 Update A13 in the work array
  437: *
  438:                   CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
  439:      $                        JB, J3, ONE, AB( KV+1, J ), LDAB-1,
  440:      $                        WORK13, LDWORK )
  441: *
  442:                   IF( I2.GT.0 ) THEN
  443: *
  444: *                    Update A23
  445: *
  446:                      CALL ZGEMM( 'No transpose', 'No transpose', I2, J3,
  447:      $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
  448:      $                           WORK13, LDWORK, ONE, AB( 1+JB, J+KV ),
  449:      $                           LDAB-1 )
  450:                   END IF
  451: *
  452:                   IF( I3.GT.0 ) THEN
  453: *
  454: *                    Update A33
  455: *
  456:                      CALL ZGEMM( 'No transpose', 'No transpose', I3, J3,
  457:      $                           JB, -ONE, WORK31, LDWORK, WORK13,
  458:      $                           LDWORK, ONE, AB( 1+KL, J+KV ), LDAB-1 )
  459:                   END IF
  460: *
  461: *                 Copy the lower triangle of A13 back into place
  462: *
  463:                   DO 150 JJ = 1, J3
  464:                      DO 140 II = JJ, JB
  465:                         AB( II-JJ+1, JJ+J+KV-1 ) = WORK13( II, JJ )
  466:   140                CONTINUE
  467:   150             CONTINUE
  468:                END IF
  469:             ELSE
  470: *
  471: *              Adjust the pivot indices.
  472: *
  473:                DO 160 I = J, J + JB - 1
  474:                   IPIV( I ) = IPIV( I ) + J - 1
  475:   160          CONTINUE
  476:             END IF
  477: *
  478: *           Partially undo the interchanges in the current block to
  479: *           restore the upper triangular form of A31 and copy the upper
  480: *           triangle of A31 back into place
  481: *
  482:             DO 170 JJ = J + JB - 1, J, -1
  483:                JP = IPIV( JJ ) - JJ + 1
  484:                IF( JP.NE.1 ) THEN
  485: *
  486: *                 Apply interchange to columns J to JJ-1
  487: *
  488:                   IF( JP+JJ-1.LT.J+KL ) THEN
  489: *
  490: *                    The interchange does not affect A31
  491: *
  492:                      CALL ZSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
  493:      $                           AB( KV+JP+JJ-J, J ), LDAB-1 )
  494:                   ELSE
  495: *
  496: *                    The interchange does affect A31
  497: *
  498:                      CALL ZSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
  499:      $                           WORK31( JP+JJ-J-KL, 1 ), LDWORK )
  500:                   END IF
  501:                END IF
  502: *
  503: *              Copy the current column of A31 back into place
  504: *
  505:                NW = MIN( I3, JJ-J+1 )
  506:                IF( NW.GT.0 )
  507:      $            CALL ZCOPY( NW, WORK31( 1, JJ-J+1 ), 1,
  508:      $                        AB( KV+KL+1-JJ+J, JJ ), 1 )
  509:   170       CONTINUE
  510:   180    CONTINUE
  511:       END IF
  512: *
  513:       RETURN
  514: *
  515: *     End of ZGBTRF
  516: *
  517:       END

CVSweb interface <joel.bertrand@systella.fr>