Annotation of rpl/lapack/lapack/zgbtf2.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE ZGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            INFO, KL, KU, LDAB, M, N
                     10: *     ..
                     11: *     .. Array Arguments ..
                     12:       INTEGER            IPIV( * )
                     13:       COMPLEX*16         AB( LDAB, * )
                     14: *     ..
                     15: *
                     16: *  Purpose
                     17: *  =======
                     18: *
                     19: *  ZGBTF2 computes an LU factorization of a complex m-by-n band matrix
                     20: *  A using partial pivoting with row interchanges.
                     21: *
                     22: *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
                     23: *
                     24: *  Arguments
                     25: *  =========
                     26: *
                     27: *  M       (input) INTEGER
                     28: *          The number of rows of the matrix A.  M >= 0.
                     29: *
                     30: *  N       (input) INTEGER
                     31: *          The number of columns of the matrix A.  N >= 0.
                     32: *
                     33: *  KL      (input) INTEGER
                     34: *          The number of subdiagonals within the band of A.  KL >= 0.
                     35: *
                     36: *  KU      (input) INTEGER
                     37: *          The number of superdiagonals within the band of A.  KU >= 0.
                     38: *
                     39: *  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)
                     40: *          On entry, the matrix A in band storage, in rows KL+1 to
                     41: *          2*KL+KU+1; rows 1 to KL of the array need not be set.
                     42: *          The j-th column of A is stored in the j-th column of the
                     43: *          array AB as follows:
                     44: *          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
                     45: *
                     46: *          On exit, details of the factorization: U is stored as an
                     47: *          upper triangular band matrix with KL+KU superdiagonals in
                     48: *          rows 1 to KL+KU+1, and the multipliers used during the
                     49: *          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
                     50: *          See below for further details.
                     51: *
                     52: *  LDAB    (input) INTEGER
                     53: *          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
                     54: *
                     55: *  IPIV    (output) INTEGER array, dimension (min(M,N))
                     56: *          The pivot indices; for 1 <= i <= min(M,N), row i of the
                     57: *          matrix was interchanged with row IPIV(i).
                     58: *
                     59: *  INFO    (output) INTEGER
                     60: *          = 0: successful exit
                     61: *          < 0: if INFO = -i, the i-th argument had an illegal value
                     62: *          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
                     63: *               has been completed, but the factor U is exactly
                     64: *               singular, and division by zero will occur if it is used
                     65: *               to solve a system of equations.
                     66: *
                     67: *  Further Details
                     68: *  ===============
                     69: *
                     70: *  The band storage scheme is illustrated by the following example, when
                     71: *  M = N = 6, KL = 2, KU = 1:
                     72: *
                     73: *  On entry:                       On exit:
                     74: *
                     75: *      *    *    *    +    +    +       *    *    *   u14  u25  u36
                     76: *      *    *    +    +    +    +       *    *   u13  u24  u35  u46
                     77: *      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
                     78: *     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
                     79: *     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
                     80: *     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
                     81: *
                     82: *  Array elements marked * are not used by the routine; elements marked
                     83: *  + need not be set on entry, but are required by the routine to store
                     84: *  elements of U, because of fill-in resulting from the row
                     85: *  interchanges.
                     86: *
                     87: *  =====================================================================
                     88: *
                     89: *     .. Parameters ..
                     90:       COMPLEX*16         ONE, ZERO
                     91:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
                     92:      $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
                     93: *     ..
                     94: *     .. Local Scalars ..
                     95:       INTEGER            I, J, JP, JU, KM, KV
                     96: *     ..
                     97: *     .. External Functions ..
                     98:       INTEGER            IZAMAX
                     99:       EXTERNAL           IZAMAX
                    100: *     ..
                    101: *     .. External Subroutines ..
                    102:       EXTERNAL           XERBLA, ZGERU, ZSCAL, ZSWAP
                    103: *     ..
                    104: *     .. Intrinsic Functions ..
                    105:       INTRINSIC          MAX, MIN
                    106: *     ..
                    107: *     .. Executable Statements ..
                    108: *
                    109: *     KV is the number of superdiagonals in the factor U, allowing for
                    110: *     fill-in.
                    111: *
                    112:       KV = KU + KL
                    113: *
                    114: *     Test the input parameters.
                    115: *
                    116:       INFO = 0
                    117:       IF( M.LT.0 ) THEN
                    118:          INFO = -1
                    119:       ELSE IF( N.LT.0 ) THEN
                    120:          INFO = -2
                    121:       ELSE IF( KL.LT.0 ) THEN
                    122:          INFO = -3
                    123:       ELSE IF( KU.LT.0 ) THEN
                    124:          INFO = -4
                    125:       ELSE IF( LDAB.LT.KL+KV+1 ) THEN
                    126:          INFO = -6
                    127:       END IF
                    128:       IF( INFO.NE.0 ) THEN
                    129:          CALL XERBLA( 'ZGBTF2', -INFO )
                    130:          RETURN
                    131:       END IF
                    132: *
                    133: *     Quick return if possible
                    134: *
                    135:       IF( M.EQ.0 .OR. N.EQ.0 )
                    136:      $   RETURN
                    137: *
                    138: *     Gaussian elimination with partial pivoting
                    139: *
                    140: *     Set fill-in elements in columns KU+2 to KV to zero.
                    141: *
                    142:       DO 20 J = KU + 2, MIN( KV, N )
                    143:          DO 10 I = KV - J + 2, KL
                    144:             AB( I, J ) = ZERO
                    145:    10    CONTINUE
                    146:    20 CONTINUE
                    147: *
                    148: *     JU is the index of the last column affected by the current stage
                    149: *     of the factorization.
                    150: *
                    151:       JU = 1
                    152: *
                    153:       DO 40 J = 1, MIN( M, N )
                    154: *
                    155: *        Set fill-in elements in column J+KV to zero.
                    156: *
                    157:          IF( J+KV.LE.N ) THEN
                    158:             DO 30 I = 1, KL
                    159:                AB( I, J+KV ) = ZERO
                    160:    30       CONTINUE
                    161:          END IF
                    162: *
                    163: *        Find pivot and test for singularity. KM is the number of
                    164: *        subdiagonal elements in the current column.
                    165: *
                    166:          KM = MIN( KL, M-J )
                    167:          JP = IZAMAX( KM+1, AB( KV+1, J ), 1 )
                    168:          IPIV( J ) = JP + J - 1
                    169:          IF( AB( KV+JP, J ).NE.ZERO ) THEN
                    170:             JU = MAX( JU, MIN( J+KU+JP-1, N ) )
                    171: *
                    172: *           Apply interchange to columns J to JU.
                    173: *
                    174:             IF( JP.NE.1 )
                    175:      $         CALL ZSWAP( JU-J+1, AB( KV+JP, J ), LDAB-1,
                    176:      $                     AB( KV+1, J ), LDAB-1 )
                    177:             IF( KM.GT.0 ) THEN
                    178: *
                    179: *              Compute multipliers.
                    180: *
                    181:                CALL ZSCAL( KM, ONE / AB( KV+1, J ), AB( KV+2, J ), 1 )
                    182: *
                    183: *              Update trailing submatrix within the band.
                    184: *
                    185:                IF( JU.GT.J )
                    186:      $            CALL ZGERU( KM, JU-J, -ONE, AB( KV+2, J ), 1,
                    187:      $                        AB( KV, J+1 ), LDAB-1, AB( KV+1, J+1 ),
                    188:      $                        LDAB-1 )
                    189:             END IF
                    190:          ELSE
                    191: *
                    192: *           If pivot is zero, set INFO to the index of the pivot
                    193: *           unless a zero pivot has already been found.
                    194: *
                    195:             IF( INFO.EQ.0 )
                    196:      $         INFO = J
                    197:          END IF
                    198:    40 CONTINUE
                    199:       RETURN
                    200: *
                    201: *     End of ZGBTF2
                    202: *
                    203:       END

CVSweb interface <joel.bertrand@systella.fr>