File:  [local] / rpl / lapack / lapack / zgbsvxx.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:16 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> ZGBSVXX computes the solution to system of linear equations A * X = B for GB matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGBSVXX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbsvxx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbsvxx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbsvxx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGBSVXX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
   22: *                           LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
   23: *                           RCOND, RPVGRW, BERR, N_ERR_BNDS,
   24: *                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
   25: *                           WORK, RWORK, INFO )
   26: *
   27: *       .. Scalar Arguments ..
   28: *       CHARACTER          EQUED, FACT, TRANS
   29: *       INTEGER            INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
   30: *      $                   N_ERR_BNDS
   31: *       DOUBLE PRECISION   RCOND, RPVGRW
   32: *       ..
   33: *       .. Array Arguments ..
   34: *       INTEGER            IPIV( * )
   35: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   36: *      $                   X( LDX , * ),WORK( * )
   37: *       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
   38: *      $                   ERR_BNDS_NORM( NRHS, * ),
   39: *      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
   40: *       ..
   41: *
   42: *
   43: *> \par Purpose:
   44: *  =============
   45: *>
   46: *> \verbatim
   47: *>
   48: *>    ZGBSVXX uses the LU factorization to compute the solution to a
   49: *>    complex*16 system of linear equations  A * X = B,  where A is an
   50: *>    N-by-N matrix and X and B are N-by-NRHS matrices.
   51: *>
   52: *>    If requested, both normwise and maximum componentwise error bounds
   53: *>    are returned. ZGBSVXX will return a solution with a tiny
   54: *>    guaranteed error (O(eps) where eps is the working machine
   55: *>    precision) unless the matrix is very ill-conditioned, in which
   56: *>    case a warning is returned. Relevant condition numbers also are
   57: *>    calculated and returned.
   58: *>
   59: *>    ZGBSVXX accepts user-provided factorizations and equilibration
   60: *>    factors; see the definitions of the FACT and EQUED options.
   61: *>    Solving with refinement and using a factorization from a previous
   62: *>    ZGBSVXX call will also produce a solution with either O(eps)
   63: *>    errors or warnings, but we cannot make that claim for general
   64: *>    user-provided factorizations and equilibration factors if they
   65: *>    differ from what ZGBSVXX would itself produce.
   66: *> \endverbatim
   67: *
   68: *> \par Description:
   69: *  =================
   70: *>
   71: *> \verbatim
   72: *>
   73: *>    The following steps are performed:
   74: *>
   75: *>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
   76: *>    the system:
   77: *>
   78: *>      TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
   79: *>      TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
   80: *>      TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
   81: *>
   82: *>    Whether or not the system will be equilibrated depends on the
   83: *>    scaling of the matrix A, but if equilibration is used, A is
   84: *>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
   85: *>    or diag(C)*B (if TRANS = 'T' or 'C').
   86: *>
   87: *>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
   88: *>    the matrix A (after equilibration if FACT = 'E') as
   89: *>
   90: *>      A = P * L * U,
   91: *>
   92: *>    where P is a permutation matrix, L is a unit lower triangular
   93: *>    matrix, and U is upper triangular.
   94: *>
   95: *>    3. If some U(i,i)=0, so that U is exactly singular, then the
   96: *>    routine returns with INFO = i. Otherwise, the factored form of A
   97: *>    is used to estimate the condition number of the matrix A (see
   98: *>    argument RCOND). If the reciprocal of the condition number is less
   99: *>    than machine precision, the routine still goes on to solve for X
  100: *>    and compute error bounds as described below.
  101: *>
  102: *>    4. The system of equations is solved for X using the factored form
  103: *>    of A.
  104: *>
  105: *>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
  106: *>    the routine will use iterative refinement to try to get a small
  107: *>    error and error bounds.  Refinement calculates the residual to at
  108: *>    least twice the working precision.
  109: *>
  110: *>    6. If equilibration was used, the matrix X is premultiplied by
  111: *>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
  112: *>    that it solves the original system before equilibration.
  113: *> \endverbatim
  114: *
  115: *  Arguments:
  116: *  ==========
  117: *
  118: *> \verbatim
  119: *>     Some optional parameters are bundled in the PARAMS array.  These
  120: *>     settings determine how refinement is performed, but often the
  121: *>     defaults are acceptable.  If the defaults are acceptable, users
  122: *>     can pass NPARAMS = 0 which prevents the source code from accessing
  123: *>     the PARAMS argument.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] FACT
  127: *> \verbatim
  128: *>          FACT is CHARACTER*1
  129: *>     Specifies whether or not the factored form of the matrix A is
  130: *>     supplied on entry, and if not, whether the matrix A should be
  131: *>     equilibrated before it is factored.
  132: *>       = 'F':  On entry, AF and IPIV contain the factored form of A.
  133: *>               If EQUED is not 'N', the matrix A has been
  134: *>               equilibrated with scaling factors given by R and C.
  135: *>               A, AF, and IPIV are not modified.
  136: *>       = 'N':  The matrix A will be copied to AF and factored.
  137: *>       = 'E':  The matrix A will be equilibrated if necessary, then
  138: *>               copied to AF and factored.
  139: *> \endverbatim
  140: *>
  141: *> \param[in] TRANS
  142: *> \verbatim
  143: *>          TRANS is CHARACTER*1
  144: *>     Specifies the form of the system of equations:
  145: *>       = 'N':  A * X = B     (No transpose)
  146: *>       = 'T':  A**T * X = B  (Transpose)
  147: *>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
  148: *> \endverbatim
  149: *>
  150: *> \param[in] N
  151: *> \verbatim
  152: *>          N is INTEGER
  153: *>     The number of linear equations, i.e., the order of the
  154: *>     matrix A.  N >= 0.
  155: *> \endverbatim
  156: *>
  157: *> \param[in] KL
  158: *> \verbatim
  159: *>          KL is INTEGER
  160: *>     The number of subdiagonals within the band of A.  KL >= 0.
  161: *> \endverbatim
  162: *>
  163: *> \param[in] KU
  164: *> \verbatim
  165: *>          KU is INTEGER
  166: *>     The number of superdiagonals within the band of A.  KU >= 0.
  167: *> \endverbatim
  168: *>
  169: *> \param[in] NRHS
  170: *> \verbatim
  171: *>          NRHS is INTEGER
  172: *>     The number of right hand sides, i.e., the number of columns
  173: *>     of the matrices B and X.  NRHS >= 0.
  174: *> \endverbatim
  175: *>
  176: *> \param[in,out] AB
  177: *> \verbatim
  178: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
  179: *>     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
  180: *>     The j-th column of A is stored in the j-th column of the
  181: *>     array AB as follows:
  182: *>     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
  183: *>
  184: *>     If FACT = 'F' and EQUED is not 'N', then AB must have been
  185: *>     equilibrated by the scaling factors in R and/or C.  AB is not
  186: *>     modified if FACT = 'F' or 'N', or if FACT = 'E' and
  187: *>     EQUED = 'N' on exit.
  188: *>
  189: *>     On exit, if EQUED .ne. 'N', A is scaled as follows:
  190: *>     EQUED = 'R':  A := diag(R) * A
  191: *>     EQUED = 'C':  A := A * diag(C)
  192: *>     EQUED = 'B':  A := diag(R) * A * diag(C).
  193: *> \endverbatim
  194: *>
  195: *> \param[in] LDAB
  196: *> \verbatim
  197: *>          LDAB is INTEGER
  198: *>     The leading dimension of the array AB.  LDAB >= KL+KU+1.
  199: *> \endverbatim
  200: *>
  201: *> \param[in,out] AFB
  202: *> \verbatim
  203: *>          AFB is COMPLEX*16 array, dimension (LDAFB,N)
  204: *>     If FACT = 'F', then AFB is an input argument and on entry
  205: *>     contains details of the LU factorization of the band matrix
  206: *>     A, as computed by ZGBTRF.  U is stored as an upper triangular
  207: *>     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
  208: *>     and the multipliers used during the factorization are stored
  209: *>     in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
  210: *>     the factored form of the equilibrated matrix A.
  211: *>
  212: *>     If FACT = 'N', then AF is an output argument and on exit
  213: *>     returns the factors L and U from the factorization A = P*L*U
  214: *>     of the original matrix A.
  215: *>
  216: *>     If FACT = 'E', then AF is an output argument and on exit
  217: *>     returns the factors L and U from the factorization A = P*L*U
  218: *>     of the equilibrated matrix A (see the description of A for
  219: *>     the form of the equilibrated matrix).
  220: *> \endverbatim
  221: *>
  222: *> \param[in] LDAFB
  223: *> \verbatim
  224: *>          LDAFB is INTEGER
  225: *>     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
  226: *> \endverbatim
  227: *>
  228: *> \param[in,out] IPIV
  229: *> \verbatim
  230: *>          IPIV is INTEGER array, dimension (N)
  231: *>     If FACT = 'F', then IPIV is an input argument and on entry
  232: *>     contains the pivot indices from the factorization A = P*L*U
  233: *>     as computed by ZGETRF; row i of the matrix was interchanged
  234: *>     with row IPIV(i).
  235: *>
  236: *>     If FACT = 'N', then IPIV is an output argument and on exit
  237: *>     contains the pivot indices from the factorization A = P*L*U
  238: *>     of the original matrix A.
  239: *>
  240: *>     If FACT = 'E', then IPIV is an output argument and on exit
  241: *>     contains the pivot indices from the factorization A = P*L*U
  242: *>     of the equilibrated matrix A.
  243: *> \endverbatim
  244: *>
  245: *> \param[in,out] EQUED
  246: *> \verbatim
  247: *>          EQUED is CHARACTER*1
  248: *>     Specifies the form of equilibration that was done.
  249: *>       = 'N':  No equilibration (always true if FACT = 'N').
  250: *>       = 'R':  Row equilibration, i.e., A has been premultiplied by
  251: *>               diag(R).
  252: *>       = 'C':  Column equilibration, i.e., A has been postmultiplied
  253: *>               by diag(C).
  254: *>       = 'B':  Both row and column equilibration, i.e., A has been
  255: *>               replaced by diag(R) * A * diag(C).
  256: *>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
  257: *>     output argument.
  258: *> \endverbatim
  259: *>
  260: *> \param[in,out] R
  261: *> \verbatim
  262: *>          R is DOUBLE PRECISION array, dimension (N)
  263: *>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
  264: *>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  265: *>     is not accessed.  R is an input argument if FACT = 'F';
  266: *>     otherwise, R is an output argument.  If FACT = 'F' and
  267: *>     EQUED = 'R' or 'B', each element of R must be positive.
  268: *>     If R is output, each element of R is a power of the radix.
  269: *>     If R is input, each element of R should be a power of the radix
  270: *>     to ensure a reliable solution and error estimates. Scaling by
  271: *>     powers of the radix does not cause rounding errors unless the
  272: *>     result underflows or overflows. Rounding errors during scaling
  273: *>     lead to refining with a matrix that is not equivalent to the
  274: *>     input matrix, producing error estimates that may not be
  275: *>     reliable.
  276: *> \endverbatim
  277: *>
  278: *> \param[in,out] C
  279: *> \verbatim
  280: *>          C is DOUBLE PRECISION array, dimension (N)
  281: *>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
  282: *>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  283: *>     is not accessed.  C is an input argument if FACT = 'F';
  284: *>     otherwise, C is an output argument.  If FACT = 'F' and
  285: *>     EQUED = 'C' or 'B', each element of C must be positive.
  286: *>     If C is output, each element of C is a power of the radix.
  287: *>     If C is input, each element of C should be a power of the radix
  288: *>     to ensure a reliable solution and error estimates. Scaling by
  289: *>     powers of the radix does not cause rounding errors unless the
  290: *>     result underflows or overflows. Rounding errors during scaling
  291: *>     lead to refining with a matrix that is not equivalent to the
  292: *>     input matrix, producing error estimates that may not be
  293: *>     reliable.
  294: *> \endverbatim
  295: *>
  296: *> \param[in,out] B
  297: *> \verbatim
  298: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  299: *>     On entry, the N-by-NRHS right hand side matrix B.
  300: *>     On exit,
  301: *>     if EQUED = 'N', B is not modified;
  302: *>     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
  303: *>        diag(R)*B;
  304: *>     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
  305: *>        overwritten by diag(C)*B.
  306: *> \endverbatim
  307: *>
  308: *> \param[in] LDB
  309: *> \verbatim
  310: *>          LDB is INTEGER
  311: *>     The leading dimension of the array B.  LDB >= max(1,N).
  312: *> \endverbatim
  313: *>
  314: *> \param[out] X
  315: *> \verbatim
  316: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  317: *>     If INFO = 0, the N-by-NRHS solution matrix X to the original
  318: *>     system of equations.  Note that A and B are modified on exit
  319: *>     if EQUED .ne. 'N', and the solution to the equilibrated system is
  320: *>     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
  321: *>     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
  322: *> \endverbatim
  323: *>
  324: *> \param[in] LDX
  325: *> \verbatim
  326: *>          LDX is INTEGER
  327: *>     The leading dimension of the array X.  LDX >= max(1,N).
  328: *> \endverbatim
  329: *>
  330: *> \param[out] RCOND
  331: *> \verbatim
  332: *>          RCOND is DOUBLE PRECISION
  333: *>     Reciprocal scaled condition number.  This is an estimate of the
  334: *>     reciprocal Skeel condition number of the matrix A after
  335: *>     equilibration (if done).  If this is less than the machine
  336: *>     precision (in particular, if it is zero), the matrix is singular
  337: *>     to working precision.  Note that the error may still be small even
  338: *>     if this number is very small and the matrix appears ill-
  339: *>     conditioned.
  340: *> \endverbatim
  341: *>
  342: *> \param[out] RPVGRW
  343: *> \verbatim
  344: *>          RPVGRW is DOUBLE PRECISION
  345: *>     Reciprocal pivot growth.  On exit, this contains the reciprocal
  346: *>     pivot growth factor norm(A)/norm(U). The "max absolute element"
  347: *>     norm is used.  If this is much less than 1, then the stability of
  348: *>     the LU factorization of the (equilibrated) matrix A could be poor.
  349: *>     This also means that the solution X, estimated condition numbers,
  350: *>     and error bounds could be unreliable. If factorization fails with
  351: *>     0<INFO<=N, then this contains the reciprocal pivot growth factor
  352: *>     for the leading INFO columns of A.  In ZGESVX, this quantity is
  353: *>     returned in RWORK(1).
  354: *> \endverbatim
  355: *>
  356: *> \param[out] BERR
  357: *> \verbatim
  358: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  359: *>     Componentwise relative backward error.  This is the
  360: *>     componentwise relative backward error of each solution vector X(j)
  361: *>     (i.e., the smallest relative change in any element of A or B that
  362: *>     makes X(j) an exact solution).
  363: *> \endverbatim
  364: *>
  365: *> \param[in] N_ERR_BNDS
  366: *> \verbatim
  367: *>          N_ERR_BNDS is INTEGER
  368: *>     Number of error bounds to return for each right hand side
  369: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  370: *>     ERR_BNDS_COMP below.
  371: *> \endverbatim
  372: *>
  373: *> \param[out] ERR_BNDS_NORM
  374: *> \verbatim
  375: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  376: *>     For each right-hand side, this array contains information about
  377: *>     various error bounds and condition numbers corresponding to the
  378: *>     normwise relative error, which is defined as follows:
  379: *>
  380: *>     Normwise relative error in the ith solution vector:
  381: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
  382: *>            ------------------------------
  383: *>                  max_j abs(X(j,i))
  384: *>
  385: *>     The array is indexed by the type of error information as described
  386: *>     below. There currently are up to three pieces of information
  387: *>     returned.
  388: *>
  389: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  390: *>     right-hand side.
  391: *>
  392: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
  393: *>     three fields:
  394: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  395: *>              reciprocal condition number is less than the threshold
  396: *>              sqrt(n) * dlamch('Epsilon').
  397: *>
  398: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  399: *>              almost certainly within a factor of 10 of the true error
  400: *>              so long as the next entry is greater than the threshold
  401: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  402: *>              be trusted if the previous boolean is true.
  403: *>
  404: *>     err = 3  Reciprocal condition number: Estimated normwise
  405: *>              reciprocal condition number.  Compared with the threshold
  406: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  407: *>              estimate is "guaranteed". These reciprocal condition
  408: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  409: *>              appropriately scaled matrix Z.
  410: *>              Let Z = S*A, where S scales each row by a power of the
  411: *>              radix so all absolute row sums of Z are approximately 1.
  412: *>
  413: *>     See Lapack Working Note 165 for further details and extra
  414: *>     cautions.
  415: *> \endverbatim
  416: *>
  417: *> \param[out] ERR_BNDS_COMP
  418: *> \verbatim
  419: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  420: *>     For each right-hand side, this array contains information about
  421: *>     various error bounds and condition numbers corresponding to the
  422: *>     componentwise relative error, which is defined as follows:
  423: *>
  424: *>     Componentwise relative error in the ith solution vector:
  425: *>                    abs(XTRUE(j,i) - X(j,i))
  426: *>             max_j ----------------------
  427: *>                         abs(X(j,i))
  428: *>
  429: *>     The array is indexed by the right-hand side i (on which the
  430: *>     componentwise relative error depends), and the type of error
  431: *>     information as described below. There currently are up to three
  432: *>     pieces of information returned for each right-hand side. If
  433: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  434: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
  435: *>     the first (:,N_ERR_BNDS) entries are returned.
  436: *>
  437: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  438: *>     right-hand side.
  439: *>
  440: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
  441: *>     three fields:
  442: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  443: *>              reciprocal condition number is less than the threshold
  444: *>              sqrt(n) * dlamch('Epsilon').
  445: *>
  446: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
  447: *>              almost certainly within a factor of 10 of the true error
  448: *>              so long as the next entry is greater than the threshold
  449: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
  450: *>              be trusted if the previous boolean is true.
  451: *>
  452: *>     err = 3  Reciprocal condition number: Estimated componentwise
  453: *>              reciprocal condition number.  Compared with the threshold
  454: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
  455: *>              estimate is "guaranteed". These reciprocal condition
  456: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  457: *>              appropriately scaled matrix Z.
  458: *>              Let Z = S*(A*diag(x)), where x is the solution for the
  459: *>              current right-hand side and S scales each row of
  460: *>              A*diag(x) by a power of the radix so all absolute row
  461: *>              sums of Z are approximately 1.
  462: *>
  463: *>     See Lapack Working Note 165 for further details and extra
  464: *>     cautions.
  465: *> \endverbatim
  466: *>
  467: *> \param[in] NPARAMS
  468: *> \verbatim
  469: *>          NPARAMS is INTEGER
  470: *>     Specifies the number of parameters set in PARAMS.  If <= 0, the
  471: *>     PARAMS array is never referenced and default values are used.
  472: *> \endverbatim
  473: *>
  474: *> \param[in,out] PARAMS
  475: *> \verbatim
  476: *>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
  477: *>     Specifies algorithm parameters.  If an entry is < 0.0, then
  478: *>     that entry will be filled with default value used for that
  479: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
  480: *>     are used for higher-numbered parameters.
  481: *>
  482: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  483: *>            refinement or not.
  484: *>         Default: 1.0D+0
  485: *>            = 0.0:  No refinement is performed, and no error bounds are
  486: *>                    computed.
  487: *>            = 1.0:  Use the extra-precise refinement algorithm.
  488: *>              (other values are reserved for future use)
  489: *>
  490: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  491: *>            computations allowed for refinement.
  492: *>         Default: 10
  493: *>         Aggressive: Set to 100 to permit convergence using approximate
  494: *>                     factorizations or factorizations other than LU. If
  495: *>                     the factorization uses a technique other than
  496: *>                     Gaussian elimination, the guarantees in
  497: *>                     err_bnds_norm and err_bnds_comp may no longer be
  498: *>                     trustworthy.
  499: *>
  500: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  501: *>            will attempt to find a solution with small componentwise
  502: *>            relative error in the double-precision algorithm.  Positive
  503: *>            is true, 0.0 is false.
  504: *>         Default: 1.0 (attempt componentwise convergence)
  505: *> \endverbatim
  506: *>
  507: *> \param[out] WORK
  508: *> \verbatim
  509: *>          WORK is COMPLEX*16 array, dimension (2*N)
  510: *> \endverbatim
  511: *>
  512: *> \param[out] RWORK
  513: *> \verbatim
  514: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  515: *> \endverbatim
  516: *>
  517: *> \param[out] INFO
  518: *> \verbatim
  519: *>          INFO is INTEGER
  520: *>       = 0:  Successful exit. The solution to every right-hand side is
  521: *>         guaranteed.
  522: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
  523: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  524: *>         has been completed, but the factor U is exactly singular, so
  525: *>         the solution and error bounds could not be computed. RCOND = 0
  526: *>         is returned.
  527: *>       = N+J: The solution corresponding to the Jth right-hand side is
  528: *>         not guaranteed. The solutions corresponding to other right-
  529: *>         hand sides K with K > J may not be guaranteed as well, but
  530: *>         only the first such right-hand side is reported. If a small
  531: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
  532: *>         the Jth right-hand side is the first with a normwise error
  533: *>         bound that is not guaranteed (the smallest J such
  534: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  535: *>         the Jth right-hand side is the first with either a normwise or
  536: *>         componentwise error bound that is not guaranteed (the smallest
  537: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  538: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  539: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  540: *>         about all of the right-hand sides check ERR_BNDS_NORM or
  541: *>         ERR_BNDS_COMP.
  542: *> \endverbatim
  543: *
  544: *  Authors:
  545: *  ========
  546: *
  547: *> \author Univ. of Tennessee
  548: *> \author Univ. of California Berkeley
  549: *> \author Univ. of Colorado Denver
  550: *> \author NAG Ltd.
  551: *
  552: *> \ingroup complex16GBsolve
  553: *
  554: *  =====================================================================
  555:       SUBROUTINE ZGBSVXX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
  556:      $                    LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
  557:      $                    RCOND, RPVGRW, BERR, N_ERR_BNDS,
  558:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
  559:      $                    WORK, RWORK, INFO )
  560: *
  561: *  -- LAPACK driver routine --
  562: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  563: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  564: *
  565: *     .. Scalar Arguments ..
  566:       CHARACTER          EQUED, FACT, TRANS
  567:       INTEGER            INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
  568:      $                   N_ERR_BNDS
  569:       DOUBLE PRECISION   RCOND, RPVGRW
  570: *     ..
  571: *     .. Array Arguments ..
  572:       INTEGER            IPIV( * )
  573:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  574:      $                   X( LDX , * ),WORK( * )
  575:       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
  576:      $                   ERR_BNDS_NORM( NRHS, * ),
  577:      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
  578: *     ..
  579: *
  580: *  ==================================================================
  581: *
  582: *     .. Parameters ..
  583:       DOUBLE PRECISION   ZERO, ONE
  584:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  585:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  586:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  587:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  588:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  589:      $                   BERR_I = 3 )
  590:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  591:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  592:      $                   PIV_GROWTH_I = 9 )
  593: *     ..
  594: *     .. Local Scalars ..
  595:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
  596:       INTEGER            INFEQU, I, J, KL, KU
  597:       DOUBLE PRECISION   AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
  598:      $                   ROWCND, SMLNUM
  599: *     ..
  600: *     .. External Functions ..
  601:       EXTERNAL           LSAME, DLAMCH, ZLA_GBRPVGRW
  602:       LOGICAL            LSAME
  603:       DOUBLE PRECISION   DLAMCH, ZLA_GBRPVGRW
  604: *     ..
  605: *     .. External Subroutines ..
  606:       EXTERNAL           ZGBEQUB, ZGBTRF, ZGBTRS, ZLACPY, ZLAQGB,
  607:      $                   XERBLA, ZLASCL2, ZGBRFSX
  608: *     ..
  609: *     .. Intrinsic Functions ..
  610:       INTRINSIC          MAX, MIN
  611: *     ..
  612: *     .. Executable Statements ..
  613: *
  614:       INFO = 0
  615:       NOFACT = LSAME( FACT, 'N' )
  616:       EQUIL = LSAME( FACT, 'E' )
  617:       NOTRAN = LSAME( TRANS, 'N' )
  618:       SMLNUM = DLAMCH( 'Safe minimum' )
  619:       BIGNUM = ONE / SMLNUM
  620:       IF( NOFACT .OR. EQUIL ) THEN
  621:          EQUED = 'N'
  622:          ROWEQU = .FALSE.
  623:          COLEQU = .FALSE.
  624:       ELSE
  625:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  626:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  627:       END IF
  628: *
  629: *     Default is failure.  If an input parameter is wrong or
  630: *     factorization fails, make everything look horrible.  Only the
  631: *     pivot growth is set here, the rest is initialized in ZGBRFSX.
  632: *
  633:       RPVGRW = ZERO
  634: *
  635: *     Test the input parameters.  PARAMS is not tested until ZGERFSX.
  636: *
  637:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
  638:      $     LSAME( FACT, 'F' ) ) THEN
  639:          INFO = -1
  640:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  641:      $        LSAME( TRANS, 'C' ) ) THEN
  642:          INFO = -2
  643:       ELSE IF( N.LT.0 ) THEN
  644:          INFO = -3
  645:       ELSE IF( KL.LT.0 ) THEN
  646:          INFO = -4
  647:       ELSE IF( KU.LT.0 ) THEN
  648:          INFO = -5
  649:       ELSE IF( NRHS.LT.0 ) THEN
  650:          INFO = -6
  651:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  652:          INFO = -8
  653:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  654:          INFO = -10
  655:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  656:      $        ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  657:          INFO = -12
  658:       ELSE
  659:          IF( ROWEQU ) THEN
  660:             RCMIN = BIGNUM
  661:             RCMAX = ZERO
  662:             DO 10 J = 1, N
  663:                RCMIN = MIN( RCMIN, R( J ) )
  664:                RCMAX = MAX( RCMAX, R( J ) )
  665:  10         CONTINUE
  666:             IF( RCMIN.LE.ZERO ) THEN
  667:                INFO = -13
  668:             ELSE IF( N.GT.0 ) THEN
  669:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  670:             ELSE
  671:                ROWCND = ONE
  672:             END IF
  673:          END IF
  674:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
  675:             RCMIN = BIGNUM
  676:             RCMAX = ZERO
  677:             DO 20 J = 1, N
  678:                RCMIN = MIN( RCMIN, C( J ) )
  679:                RCMAX = MAX( RCMAX, C( J ) )
  680:  20         CONTINUE
  681:             IF( RCMIN.LE.ZERO ) THEN
  682:                INFO = -14
  683:             ELSE IF( N.GT.0 ) THEN
  684:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  685:             ELSE
  686:                COLCND = ONE
  687:             END IF
  688:          END IF
  689:          IF( INFO.EQ.0 ) THEN
  690:             IF( LDB.LT.MAX( 1, N ) ) THEN
  691:                INFO = -15
  692:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  693:                INFO = -16
  694:             END IF
  695:          END IF
  696:       END IF
  697: *
  698:       IF( INFO.NE.0 ) THEN
  699:          CALL XERBLA( 'ZGBSVXX', -INFO )
  700:          RETURN
  701:       END IF
  702: *
  703:       IF( EQUIL ) THEN
  704: *
  705: *     Compute row and column scalings to equilibrate the matrix A.
  706: *
  707:          CALL ZGBEQUB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  708:      $        AMAX, INFEQU )
  709:          IF( INFEQU.EQ.0 ) THEN
  710: *
  711: *     Equilibrate the matrix.
  712: *
  713:             CALL ZLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  714:      $           AMAX, EQUED )
  715:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  716:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  717:          END IF
  718: *
  719: *     If the scaling factors are not applied, set them to 1.0.
  720: *
  721:          IF ( .NOT.ROWEQU ) THEN
  722:             DO J = 1, N
  723:                R( J ) = 1.0D+0
  724:             END DO
  725:          END IF
  726:          IF ( .NOT.COLEQU ) THEN
  727:             DO J = 1, N
  728:                C( J ) = 1.0D+0
  729:             END DO
  730:          END IF
  731:       END IF
  732: *
  733: *     Scale the right-hand side.
  734: *
  735:       IF( NOTRAN ) THEN
  736:          IF( ROWEQU ) CALL ZLASCL2( N, NRHS, R, B, LDB )
  737:       ELSE
  738:          IF( COLEQU ) CALL ZLASCL2( N, NRHS, C, B, LDB )
  739:       END IF
  740: *
  741:       IF( NOFACT .OR. EQUIL ) THEN
  742: *
  743: *        Compute the LU factorization of A.
  744: *
  745:          DO 40, J = 1, N
  746:             DO 30, I = KL+1, 2*KL+KU+1
  747:                AFB( I, J ) = AB( I-KL, J )
  748:  30         CONTINUE
  749:  40      CONTINUE
  750:          CALL ZGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
  751: *
  752: *        Return if INFO is non-zero.
  753: *
  754:          IF( INFO.GT.0 ) THEN
  755: *
  756: *           Pivot in column INFO is exactly 0
  757: *           Compute the reciprocal pivot growth factor of the
  758: *           leading rank-deficient INFO columns of A.
  759: *
  760:             RPVGRW = ZLA_GBRPVGRW( N, KL, KU, INFO, AB, LDAB, AFB,
  761:      $           LDAFB )
  762:             RETURN
  763:          END IF
  764:       END IF
  765: *
  766: *     Compute the reciprocal pivot growth factor RPVGRW.
  767: *
  768:       RPVGRW = ZLA_GBRPVGRW( N, KL, KU, N, AB, LDAB, AFB, LDAFB )
  769: *
  770: *     Compute the solution matrix X.
  771: *
  772:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  773:       CALL ZGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
  774:      $     INFO )
  775: *
  776: *     Use iterative refinement to improve the computed solution and
  777: *     compute error bounds and backward error estimates for it.
  778: *
  779:       CALL ZGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
  780:      $     IPIV, R, C, B, LDB, X, LDX, RCOND, BERR,
  781:      $     N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
  782:      $     WORK, RWORK, INFO )
  783: 
  784: *
  785: *     Scale solutions.
  786: *
  787:       IF ( COLEQU .AND. NOTRAN ) THEN
  788:          CALL ZLASCL2( N, NRHS, C, X, LDX )
  789:       ELSE IF ( ROWEQU .AND. .NOT.NOTRAN ) THEN
  790:          CALL ZLASCL2( N, NRHS, R, X, LDX )
  791:       END IF
  792: *
  793:       RETURN
  794: *
  795: *     End of ZGBSVXX
  796: *
  797:       END

CVSweb interface <joel.bertrand@systella.fr>