File:  [local] / rpl / lapack / lapack / zgbsvx.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:44 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief <b> ZGBSVX computes the solution to system of linear equations A * X = B for GB matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGBSVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbsvx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbsvx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbsvx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
   22: *                          LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
   23: *                          RCOND, FERR, BERR, WORK, RWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          EQUED, FACT, TRANS
   27: *       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
   28: *       DOUBLE PRECISION   RCOND
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IPIV( * )
   32: *       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
   33: *      $                   RWORK( * )
   34: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   35: *      $                   WORK( * ), X( LDX, * )
   36: *       ..
   37: *  
   38: *
   39: *> \par Purpose:
   40: *  =============
   41: *>
   42: *> \verbatim
   43: *>
   44: *> ZGBSVX uses the LU factorization to compute the solution to a complex
   45: *> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
   46: *> where A is a band matrix of order N with KL subdiagonals and KU
   47: *> superdiagonals, and X and B are N-by-NRHS matrices.
   48: *>
   49: *> Error bounds on the solution and a condition estimate are also
   50: *> provided.
   51: *> \endverbatim
   52: *
   53: *> \par Description:
   54: *  =================
   55: *>
   56: *> \verbatim
   57: *>
   58: *> The following steps are performed by this subroutine:
   59: *>
   60: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
   61: *>    the system:
   62: *>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
   63: *>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
   64: *>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
   65: *>    Whether or not the system will be equilibrated depends on the
   66: *>    scaling of the matrix A, but if equilibration is used, A is
   67: *>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
   68: *>    or diag(C)*B (if TRANS = 'T' or 'C').
   69: *>
   70: *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
   71: *>    matrix A (after equilibration if FACT = 'E') as
   72: *>       A = L * U,
   73: *>    where L is a product of permutation and unit lower triangular
   74: *>    matrices with KL subdiagonals, and U is upper triangular with
   75: *>    KL+KU superdiagonals.
   76: *>
   77: *> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
   78: *>    returns with INFO = i. Otherwise, the factored form of A is used
   79: *>    to estimate the condition number of the matrix A.  If the
   80: *>    reciprocal of the condition number is less than machine precision,
   81: *>    INFO = N+1 is returned as a warning, but the routine still goes on
   82: *>    to solve for X and compute error bounds as described below.
   83: *>
   84: *> 4. The system of equations is solved for X using the factored form
   85: *>    of A.
   86: *>
   87: *> 5. Iterative refinement is applied to improve the computed solution
   88: *>    matrix and calculate error bounds and backward error estimates
   89: *>    for it.
   90: *>
   91: *> 6. If equilibration was used, the matrix X is premultiplied by
   92: *>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
   93: *>    that it solves the original system before equilibration.
   94: *> \endverbatim
   95: *
   96: *  Arguments:
   97: *  ==========
   98: *
   99: *> \param[in] FACT
  100: *> \verbatim
  101: *>          FACT is CHARACTER*1
  102: *>          Specifies whether or not the factored form of the matrix A is
  103: *>          supplied on entry, and if not, whether the matrix A should be
  104: *>          equilibrated before it is factored.
  105: *>          = 'F':  On entry, AFB and IPIV contain the factored form of
  106: *>                  A.  If EQUED is not 'N', the matrix A has been
  107: *>                  equilibrated with scaling factors given by R and C.
  108: *>                  AB, AFB, and IPIV are not modified.
  109: *>          = 'N':  The matrix A will be copied to AFB and factored.
  110: *>          = 'E':  The matrix A will be equilibrated if necessary, then
  111: *>                  copied to AFB and factored.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] TRANS
  115: *> \verbatim
  116: *>          TRANS is CHARACTER*1
  117: *>          Specifies the form of the system of equations.
  118: *>          = 'N':  A * X = B     (No transpose)
  119: *>          = 'T':  A**T * X = B  (Transpose)
  120: *>          = 'C':  A**H * X = B  (Conjugate transpose)
  121: *> \endverbatim
  122: *>
  123: *> \param[in] N
  124: *> \verbatim
  125: *>          N is INTEGER
  126: *>          The number of linear equations, i.e., the order of the
  127: *>          matrix A.  N >= 0.
  128: *> \endverbatim
  129: *>
  130: *> \param[in] KL
  131: *> \verbatim
  132: *>          KL is INTEGER
  133: *>          The number of subdiagonals within the band of A.  KL >= 0.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] KU
  137: *> \verbatim
  138: *>          KU is INTEGER
  139: *>          The number of superdiagonals within the band of A.  KU >= 0.
  140: *> \endverbatim
  141: *>
  142: *> \param[in] NRHS
  143: *> \verbatim
  144: *>          NRHS is INTEGER
  145: *>          The number of right hand sides, i.e., the number of columns
  146: *>          of the matrices B and X.  NRHS >= 0.
  147: *> \endverbatim
  148: *>
  149: *> \param[in,out] AB
  150: *> \verbatim
  151: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
  152: *>          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
  153: *>          The j-th column of A is stored in the j-th column of the
  154: *>          array AB as follows:
  155: *>          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
  156: *>
  157: *>          If FACT = 'F' and EQUED is not 'N', then A must have been
  158: *>          equilibrated by the scaling factors in R and/or C.  AB is not
  159: *>          modified if FACT = 'F' or 'N', or if FACT = 'E' and
  160: *>          EQUED = 'N' on exit.
  161: *>
  162: *>          On exit, if EQUED .ne. 'N', A is scaled as follows:
  163: *>          EQUED = 'R':  A := diag(R) * A
  164: *>          EQUED = 'C':  A := A * diag(C)
  165: *>          EQUED = 'B':  A := diag(R) * A * diag(C).
  166: *> \endverbatim
  167: *>
  168: *> \param[in] LDAB
  169: *> \verbatim
  170: *>          LDAB is INTEGER
  171: *>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
  172: *> \endverbatim
  173: *>
  174: *> \param[in,out] AFB
  175: *> \verbatim
  176: *>          AFB is or output) COMPLEX*16 array, dimension (LDAFB,N)
  177: *>          If FACT = 'F', then AFB is an input argument and on entry
  178: *>          contains details of the LU factorization of the band matrix
  179: *>          A, as computed by ZGBTRF.  U is stored as an upper triangular
  180: *>          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
  181: *>          and the multipliers used during the factorization are stored
  182: *>          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
  183: *>          the factored form of the equilibrated matrix A.
  184: *>
  185: *>          If FACT = 'N', then AFB is an output argument and on exit
  186: *>          returns details of the LU factorization of A.
  187: *>
  188: *>          If FACT = 'E', then AFB is an output argument and on exit
  189: *>          returns details of the LU factorization of the equilibrated
  190: *>          matrix A (see the description of AB for the form of the
  191: *>          equilibrated matrix).
  192: *> \endverbatim
  193: *>
  194: *> \param[in] LDAFB
  195: *> \verbatim
  196: *>          LDAFB is INTEGER
  197: *>          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
  198: *> \endverbatim
  199: *>
  200: *> \param[in,out] IPIV
  201: *> \verbatim
  202: *>          IPIV is or output) INTEGER array, dimension (N)
  203: *>          If FACT = 'F', then IPIV is an input argument and on entry
  204: *>          contains the pivot indices from the factorization A = L*U
  205: *>          as computed by ZGBTRF; row i of the matrix was interchanged
  206: *>          with row IPIV(i).
  207: *>
  208: *>          If FACT = 'N', then IPIV is an output argument and on exit
  209: *>          contains the pivot indices from the factorization A = L*U
  210: *>          of the original matrix A.
  211: *>
  212: *>          If FACT = 'E', then IPIV is an output argument and on exit
  213: *>          contains the pivot indices from the factorization A = L*U
  214: *>          of the equilibrated matrix A.
  215: *> \endverbatim
  216: *>
  217: *> \param[in,out] EQUED
  218: *> \verbatim
  219: *>          EQUED is or output) CHARACTER*1
  220: *>          Specifies the form of equilibration that was done.
  221: *>          = 'N':  No equilibration (always true if FACT = 'N').
  222: *>          = 'R':  Row equilibration, i.e., A has been premultiplied by
  223: *>                  diag(R).
  224: *>          = 'C':  Column equilibration, i.e., A has been postmultiplied
  225: *>                  by diag(C).
  226: *>          = 'B':  Both row and column equilibration, i.e., A has been
  227: *>                  replaced by diag(R) * A * diag(C).
  228: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  229: *>          output argument.
  230: *> \endverbatim
  231: *>
  232: *> \param[in,out] R
  233: *> \verbatim
  234: *>          R is or output) DOUBLE PRECISION array, dimension (N)
  235: *>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
  236: *>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  237: *>          is not accessed.  R is an input argument if FACT = 'F';
  238: *>          otherwise, R is an output argument.  If FACT = 'F' and
  239: *>          EQUED = 'R' or 'B', each element of R must be positive.
  240: *> \endverbatim
  241: *>
  242: *> \param[in,out] C
  243: *> \verbatim
  244: *>          C is or output) DOUBLE PRECISION array, dimension (N)
  245: *>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
  246: *>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  247: *>          is not accessed.  C is an input argument if FACT = 'F';
  248: *>          otherwise, C is an output argument.  If FACT = 'F' and
  249: *>          EQUED = 'C' or 'B', each element of C must be positive.
  250: *> \endverbatim
  251: *>
  252: *> \param[in,out] B
  253: *> \verbatim
  254: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  255: *>          On entry, the right hand side matrix B.
  256: *>          On exit,
  257: *>          if EQUED = 'N', B is not modified;
  258: *>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
  259: *>          diag(R)*B;
  260: *>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
  261: *>          overwritten by diag(C)*B.
  262: *> \endverbatim
  263: *>
  264: *> \param[in] LDB
  265: *> \verbatim
  266: *>          LDB is INTEGER
  267: *>          The leading dimension of the array B.  LDB >= max(1,N).
  268: *> \endverbatim
  269: *>
  270: *> \param[out] X
  271: *> \verbatim
  272: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  273: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
  274: *>          to the original system of equations.  Note that A and B are
  275: *>          modified on exit if EQUED .ne. 'N', and the solution to the
  276: *>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
  277: *>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
  278: *>          and EQUED = 'R' or 'B'.
  279: *> \endverbatim
  280: *>
  281: *> \param[in] LDX
  282: *> \verbatim
  283: *>          LDX is INTEGER
  284: *>          The leading dimension of the array X.  LDX >= max(1,N).
  285: *> \endverbatim
  286: *>
  287: *> \param[out] RCOND
  288: *> \verbatim
  289: *>          RCOND is DOUBLE PRECISION
  290: *>          The estimate of the reciprocal condition number of the matrix
  291: *>          A after equilibration (if done).  If RCOND is less than the
  292: *>          machine precision (in particular, if RCOND = 0), the matrix
  293: *>          is singular to working precision.  This condition is
  294: *>          indicated by a return code of INFO > 0.
  295: *> \endverbatim
  296: *>
  297: *> \param[out] FERR
  298: *> \verbatim
  299: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  300: *>          The estimated forward error bound for each solution vector
  301: *>          X(j) (the j-th column of the solution matrix X).
  302: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  303: *>          is an estimated upper bound for the magnitude of the largest
  304: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  305: *>          largest element in X(j).  The estimate is as reliable as
  306: *>          the estimate for RCOND, and is almost always a slight
  307: *>          overestimate of the true error.
  308: *> \endverbatim
  309: *>
  310: *> \param[out] BERR
  311: *> \verbatim
  312: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  313: *>          The componentwise relative backward error of each solution
  314: *>          vector X(j) (i.e., the smallest relative change in
  315: *>          any element of A or B that makes X(j) an exact solution).
  316: *> \endverbatim
  317: *>
  318: *> \param[out] WORK
  319: *> \verbatim
  320: *>          WORK is COMPLEX*16 array, dimension (2*N)
  321: *> \endverbatim
  322: *>
  323: *> \param[out] RWORK
  324: *> \verbatim
  325: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  326: *>          On exit, RWORK(1) contains the reciprocal pivot growth
  327: *>          factor norm(A)/norm(U). The "max absolute element" norm is
  328: *>          used. If RWORK(1) is much less than 1, then the stability
  329: *>          of the LU factorization of the (equilibrated) matrix A
  330: *>          could be poor. This also means that the solution X, condition
  331: *>          estimator RCOND, and forward error bound FERR could be
  332: *>          unreliable. If factorization fails with 0<INFO<=N, then
  333: *>          RWORK(1) contains the reciprocal pivot growth factor for the
  334: *>          leading INFO columns of A.
  335: *> \endverbatim
  336: *>
  337: *> \param[out] INFO
  338: *> \verbatim
  339: *>          INFO is INTEGER
  340: *>          = 0:  successful exit
  341: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  342: *>          > 0:  if INFO = i, and i is
  343: *>                <= N:  U(i,i) is exactly zero.  The factorization
  344: *>                       has been completed, but the factor U is exactly
  345: *>                       singular, so the solution and error bounds
  346: *>                       could not be computed. RCOND = 0 is returned.
  347: *>                = N+1: U is nonsingular, but RCOND is less than machine
  348: *>                       precision, meaning that the matrix is singular
  349: *>                       to working precision.  Nevertheless, the
  350: *>                       solution and error bounds are computed because
  351: *>                       there are a number of situations where the
  352: *>                       computed solution can be more accurate than the
  353: *>                       value of RCOND would suggest.
  354: *> \endverbatim
  355: *
  356: *  Authors:
  357: *  ========
  358: *
  359: *> \author Univ. of Tennessee 
  360: *> \author Univ. of California Berkeley 
  361: *> \author Univ. of Colorado Denver 
  362: *> \author NAG Ltd. 
  363: *
  364: *> \date November 2011
  365: *
  366: *> \ingroup complex16GBsolve
  367: *
  368: *  =====================================================================
  369:       SUBROUTINE ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
  370:      $                   LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
  371:      $                   RCOND, FERR, BERR, WORK, RWORK, INFO )
  372: *
  373: *  -- LAPACK driver routine (version 3.4.0) --
  374: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  375: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  376: *     November 2011
  377: *
  378: *     .. Scalar Arguments ..
  379:       CHARACTER          EQUED, FACT, TRANS
  380:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
  381:       DOUBLE PRECISION   RCOND
  382: *     ..
  383: *     .. Array Arguments ..
  384:       INTEGER            IPIV( * )
  385:       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
  386:      $                   RWORK( * )
  387:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  388:      $                   WORK( * ), X( LDX, * )
  389: *     ..
  390: *
  391: *  =====================================================================
  392: *  Moved setting of INFO = N+1 so INFO does not subsequently get
  393: *  overwritten.  Sven, 17 Mar 05. 
  394: *  =====================================================================
  395: *
  396: *     .. Parameters ..
  397:       DOUBLE PRECISION   ZERO, ONE
  398:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  399: *     ..
  400: *     .. Local Scalars ..
  401:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
  402:       CHARACTER          NORM
  403:       INTEGER            I, INFEQU, J, J1, J2
  404:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
  405:      $                   ROWCND, RPVGRW, SMLNUM
  406: *     ..
  407: *     .. External Functions ..
  408:       LOGICAL            LSAME
  409:       DOUBLE PRECISION   DLAMCH, ZLANGB, ZLANTB
  410:       EXTERNAL           LSAME, DLAMCH, ZLANGB, ZLANTB
  411: *     ..
  412: *     .. External Subroutines ..
  413:       EXTERNAL           XERBLA, ZCOPY, ZGBCON, ZGBEQU, ZGBRFS, ZGBTRF,
  414:      $                   ZGBTRS, ZLACPY, ZLAQGB
  415: *     ..
  416: *     .. Intrinsic Functions ..
  417:       INTRINSIC          ABS, MAX, MIN
  418: *     ..
  419: *     .. Executable Statements ..
  420: *
  421:       INFO = 0
  422:       NOFACT = LSAME( FACT, 'N' )
  423:       EQUIL = LSAME( FACT, 'E' )
  424:       NOTRAN = LSAME( TRANS, 'N' )
  425:       IF( NOFACT .OR. EQUIL ) THEN
  426:          EQUED = 'N'
  427:          ROWEQU = .FALSE.
  428:          COLEQU = .FALSE.
  429:       ELSE
  430:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  431:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  432:          SMLNUM = DLAMCH( 'Safe minimum' )
  433:          BIGNUM = ONE / SMLNUM
  434:       END IF
  435: *
  436: *     Test the input parameters.
  437: *
  438:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  439:      $     THEN
  440:          INFO = -1
  441:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  442:      $         LSAME( TRANS, 'C' ) ) THEN
  443:          INFO = -2
  444:       ELSE IF( N.LT.0 ) THEN
  445:          INFO = -3
  446:       ELSE IF( KL.LT.0 ) THEN
  447:          INFO = -4
  448:       ELSE IF( KU.LT.0 ) THEN
  449:          INFO = -5
  450:       ELSE IF( NRHS.LT.0 ) THEN
  451:          INFO = -6
  452:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  453:          INFO = -8
  454:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  455:          INFO = -10
  456:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  457:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  458:          INFO = -12
  459:       ELSE
  460:          IF( ROWEQU ) THEN
  461:             RCMIN = BIGNUM
  462:             RCMAX = ZERO
  463:             DO 10 J = 1, N
  464:                RCMIN = MIN( RCMIN, R( J ) )
  465:                RCMAX = MAX( RCMAX, R( J ) )
  466:    10       CONTINUE
  467:             IF( RCMIN.LE.ZERO ) THEN
  468:                INFO = -13
  469:             ELSE IF( N.GT.0 ) THEN
  470:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  471:             ELSE
  472:                ROWCND = ONE
  473:             END IF
  474:          END IF
  475:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
  476:             RCMIN = BIGNUM
  477:             RCMAX = ZERO
  478:             DO 20 J = 1, N
  479:                RCMIN = MIN( RCMIN, C( J ) )
  480:                RCMAX = MAX( RCMAX, C( J ) )
  481:    20       CONTINUE
  482:             IF( RCMIN.LE.ZERO ) THEN
  483:                INFO = -14
  484:             ELSE IF( N.GT.0 ) THEN
  485:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  486:             ELSE
  487:                COLCND = ONE
  488:             END IF
  489:          END IF
  490:          IF( INFO.EQ.0 ) THEN
  491:             IF( LDB.LT.MAX( 1, N ) ) THEN
  492:                INFO = -16
  493:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  494:                INFO = -18
  495:             END IF
  496:          END IF
  497:       END IF
  498: *
  499:       IF( INFO.NE.0 ) THEN
  500:          CALL XERBLA( 'ZGBSVX', -INFO )
  501:          RETURN
  502:       END IF
  503: *
  504:       IF( EQUIL ) THEN
  505: *
  506: *        Compute row and column scalings to equilibrate the matrix A.
  507: *
  508:          CALL ZGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  509:      $                AMAX, INFEQU )
  510:          IF( INFEQU.EQ.0 ) THEN
  511: *
  512: *           Equilibrate the matrix.
  513: *
  514:             CALL ZLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  515:      $                   AMAX, EQUED )
  516:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  517:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  518:          END IF
  519:       END IF
  520: *
  521: *     Scale the right hand side.
  522: *
  523:       IF( NOTRAN ) THEN
  524:          IF( ROWEQU ) THEN
  525:             DO 40 J = 1, NRHS
  526:                DO 30 I = 1, N
  527:                   B( I, J ) = R( I )*B( I, J )
  528:    30          CONTINUE
  529:    40       CONTINUE
  530:          END IF
  531:       ELSE IF( COLEQU ) THEN
  532:          DO 60 J = 1, NRHS
  533:             DO 50 I = 1, N
  534:                B( I, J ) = C( I )*B( I, J )
  535:    50       CONTINUE
  536:    60    CONTINUE
  537:       END IF
  538: *
  539:       IF( NOFACT .OR. EQUIL ) THEN
  540: *
  541: *        Compute the LU factorization of the band matrix A.
  542: *
  543:          DO 70 J = 1, N
  544:             J1 = MAX( J-KU, 1 )
  545:             J2 = MIN( J+KL, N )
  546:             CALL ZCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
  547:      $                  AFB( KL+KU+1-J+J1, J ), 1 )
  548:    70    CONTINUE
  549: *
  550:          CALL ZGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
  551: *
  552: *        Return if INFO is non-zero.
  553: *
  554:          IF( INFO.GT.0 ) THEN
  555: *
  556: *           Compute the reciprocal pivot growth factor of the
  557: *           leading rank-deficient INFO columns of A.
  558: *
  559:             ANORM = ZERO
  560:             DO 90 J = 1, INFO
  561:                DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
  562:                   ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
  563:    80          CONTINUE
  564:    90       CONTINUE
  565:             RPVGRW = ZLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
  566:      $                       AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
  567:      $                       RWORK )
  568:             IF( RPVGRW.EQ.ZERO ) THEN
  569:                RPVGRW = ONE
  570:             ELSE
  571:                RPVGRW = ANORM / RPVGRW
  572:             END IF
  573:             RWORK( 1 ) = RPVGRW
  574:             RCOND = ZERO
  575:             RETURN
  576:          END IF
  577:       END IF
  578: *
  579: *     Compute the norm of the matrix A and the
  580: *     reciprocal pivot growth factor RPVGRW.
  581: *
  582:       IF( NOTRAN ) THEN
  583:          NORM = '1'
  584:       ELSE
  585:          NORM = 'I'
  586:       END IF
  587:       ANORM = ZLANGB( NORM, N, KL, KU, AB, LDAB, RWORK )
  588:       RPVGRW = ZLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, RWORK )
  589:       IF( RPVGRW.EQ.ZERO ) THEN
  590:          RPVGRW = ONE
  591:       ELSE
  592:          RPVGRW = ZLANGB( 'M', N, KL, KU, AB, LDAB, RWORK ) / RPVGRW
  593:       END IF
  594: *
  595: *     Compute the reciprocal of the condition number of A.
  596: *
  597:       CALL ZGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
  598:      $             WORK, RWORK, INFO )
  599: *
  600: *     Compute the solution matrix X.
  601: *
  602:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  603:       CALL ZGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
  604:      $             INFO )
  605: *
  606: *     Use iterative refinement to improve the computed solution and
  607: *     compute error bounds and backward error estimates for it.
  608: *
  609:       CALL ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
  610:      $             B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
  611: *
  612: *     Transform the solution matrix X to a solution of the original
  613: *     system.
  614: *
  615:       IF( NOTRAN ) THEN
  616:          IF( COLEQU ) THEN
  617:             DO 110 J = 1, NRHS
  618:                DO 100 I = 1, N
  619:                   X( I, J ) = C( I )*X( I, J )
  620:   100          CONTINUE
  621:   110       CONTINUE
  622:             DO 120 J = 1, NRHS
  623:                FERR( J ) = FERR( J ) / COLCND
  624:   120       CONTINUE
  625:          END IF
  626:       ELSE IF( ROWEQU ) THEN
  627:          DO 140 J = 1, NRHS
  628:             DO 130 I = 1, N
  629:                X( I, J ) = R( I )*X( I, J )
  630:   130       CONTINUE
  631:   140    CONTINUE
  632:          DO 150 J = 1, NRHS
  633:             FERR( J ) = FERR( J ) / ROWCND
  634:   150    CONTINUE
  635:       END IF
  636: *
  637: *     Set INFO = N+1 if the matrix is singular to working precision.
  638: *
  639:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  640:      $   INFO = N + 1
  641: *
  642:       RWORK( 1 ) = RPVGRW
  643:       RETURN
  644: *
  645: *     End of ZGBSVX
  646: *
  647:       END

CVSweb interface <joel.bertrand@systella.fr>