File:  [local] / rpl / lapack / lapack / zgbsvx.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:04:01 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
    2:      $                   LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
    3:      $                   RCOND, FERR, BERR, WORK, RWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          EQUED, FACT, TRANS
   12:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
   13:       DOUBLE PRECISION   RCOND
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IPIV( * )
   17:       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
   18:      $                   RWORK( * )
   19:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   20:      $                   WORK( * ), X( LDX, * )
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25: *
   26: *  ZGBSVX uses the LU factorization to compute the solution to a complex
   27: *  system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
   28: *  where A is a band matrix of order N with KL subdiagonals and KU
   29: *  superdiagonals, and X and B are N-by-NRHS matrices.
   30: *
   31: *  Error bounds on the solution and a condition estimate are also
   32: *  provided.
   33: *
   34: *  Description
   35: *  ===========
   36: *
   37: *  The following steps are performed by this subroutine:
   38: *
   39: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
   40: *     the system:
   41: *        TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
   42: *        TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
   43: *        TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
   44: *     Whether or not the system will be equilibrated depends on the
   45: *     scaling of the matrix A, but if equilibration is used, A is
   46: *     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
   47: *     or diag(C)*B (if TRANS = 'T' or 'C').
   48: *
   49: *  2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
   50: *     matrix A (after equilibration if FACT = 'E') as
   51: *        A = L * U,
   52: *     where L is a product of permutation and unit lower triangular
   53: *     matrices with KL subdiagonals, and U is upper triangular with
   54: *     KL+KU superdiagonals.
   55: *
   56: *  3. If some U(i,i)=0, so that U is exactly singular, then the routine
   57: *     returns with INFO = i. Otherwise, the factored form of A is used
   58: *     to estimate the condition number of the matrix A.  If the
   59: *     reciprocal of the condition number is less than machine precision,
   60: *     INFO = N+1 is returned as a warning, but the routine still goes on
   61: *     to solve for X and compute error bounds as described below.
   62: *
   63: *  4. The system of equations is solved for X using the factored form
   64: *     of A.
   65: *
   66: *  5. Iterative refinement is applied to improve the computed solution
   67: *     matrix and calculate error bounds and backward error estimates
   68: *     for it.
   69: *
   70: *  6. If equilibration was used, the matrix X is premultiplied by
   71: *     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
   72: *     that it solves the original system before equilibration.
   73: *
   74: *  Arguments
   75: *  =========
   76: *
   77: *  FACT    (input) CHARACTER*1
   78: *          Specifies whether or not the factored form of the matrix A is
   79: *          supplied on entry, and if not, whether the matrix A should be
   80: *          equilibrated before it is factored.
   81: *          = 'F':  On entry, AFB and IPIV contain the factored form of
   82: *                  A.  If EQUED is not 'N', the matrix A has been
   83: *                  equilibrated with scaling factors given by R and C.
   84: *                  AB, AFB, and IPIV are not modified.
   85: *          = 'N':  The matrix A will be copied to AFB and factored.
   86: *          = 'E':  The matrix A will be equilibrated if necessary, then
   87: *                  copied to AFB and factored.
   88: *
   89: *  TRANS   (input) CHARACTER*1
   90: *          Specifies the form of the system of equations.
   91: *          = 'N':  A * X = B     (No transpose)
   92: *          = 'T':  A**T * X = B  (Transpose)
   93: *          = 'C':  A**H * X = B  (Conjugate transpose)
   94: *
   95: *  N       (input) INTEGER
   96: *          The number of linear equations, i.e., the order of the
   97: *          matrix A.  N >= 0.
   98: *
   99: *  KL      (input) INTEGER
  100: *          The number of subdiagonals within the band of A.  KL >= 0.
  101: *
  102: *  KU      (input) INTEGER
  103: *          The number of superdiagonals within the band of A.  KU >= 0.
  104: *
  105: *  NRHS    (input) INTEGER
  106: *          The number of right hand sides, i.e., the number of columns
  107: *          of the matrices B and X.  NRHS >= 0.
  108: *
  109: *  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)
  110: *          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
  111: *          The j-th column of A is stored in the j-th column of the
  112: *          array AB as follows:
  113: *          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
  114: *
  115: *          If FACT = 'F' and EQUED is not 'N', then A must have been
  116: *          equilibrated by the scaling factors in R and/or C.  AB is not
  117: *          modified if FACT = 'F' or 'N', or if FACT = 'E' and
  118: *          EQUED = 'N' on exit.
  119: *
  120: *          On exit, if EQUED .ne. 'N', A is scaled as follows:
  121: *          EQUED = 'R':  A := diag(R) * A
  122: *          EQUED = 'C':  A := A * diag(C)
  123: *          EQUED = 'B':  A := diag(R) * A * diag(C).
  124: *
  125: *  LDAB    (input) INTEGER
  126: *          The leading dimension of the array AB.  LDAB >= KL+KU+1.
  127: *
  128: *  AFB     (input or output) COMPLEX*16 array, dimension (LDAFB,N)
  129: *          If FACT = 'F', then AFB is an input argument and on entry
  130: *          contains details of the LU factorization of the band matrix
  131: *          A, as computed by ZGBTRF.  U is stored as an upper triangular
  132: *          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
  133: *          and the multipliers used during the factorization are stored
  134: *          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
  135: *          the factored form of the equilibrated matrix A.
  136: *
  137: *          If FACT = 'N', then AFB is an output argument and on exit
  138: *          returns details of the LU factorization of A.
  139: *
  140: *          If FACT = 'E', then AFB is an output argument and on exit
  141: *          returns details of the LU factorization of the equilibrated
  142: *          matrix A (see the description of AB for the form of the
  143: *          equilibrated matrix).
  144: *
  145: *  LDAFB   (input) INTEGER
  146: *          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
  147: *
  148: *  IPIV    (input or output) INTEGER array, dimension (N)
  149: *          If FACT = 'F', then IPIV is an input argument and on entry
  150: *          contains the pivot indices from the factorization A = L*U
  151: *          as computed by ZGBTRF; row i of the matrix was interchanged
  152: *          with row IPIV(i).
  153: *
  154: *          If FACT = 'N', then IPIV is an output argument and on exit
  155: *          contains the pivot indices from the factorization A = L*U
  156: *          of the original matrix A.
  157: *
  158: *          If FACT = 'E', then IPIV is an output argument and on exit
  159: *          contains the pivot indices from the factorization A = L*U
  160: *          of the equilibrated matrix A.
  161: *
  162: *  EQUED   (input or output) CHARACTER*1
  163: *          Specifies the form of equilibration that was done.
  164: *          = 'N':  No equilibration (always true if FACT = 'N').
  165: *          = 'R':  Row equilibration, i.e., A has been premultiplied by
  166: *                  diag(R).
  167: *          = 'C':  Column equilibration, i.e., A has been postmultiplied
  168: *                  by diag(C).
  169: *          = 'B':  Both row and column equilibration, i.e., A has been
  170: *                  replaced by diag(R) * A * diag(C).
  171: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  172: *          output argument.
  173: *
  174: *  R       (input or output) DOUBLE PRECISION array, dimension (N)
  175: *          The row scale factors for A.  If EQUED = 'R' or 'B', A is
  176: *          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  177: *          is not accessed.  R is an input argument if FACT = 'F';
  178: *          otherwise, R is an output argument.  If FACT = 'F' and
  179: *          EQUED = 'R' or 'B', each element of R must be positive.
  180: *
  181: *  C       (input or output) DOUBLE PRECISION array, dimension (N)
  182: *          The column scale factors for A.  If EQUED = 'C' or 'B', A is
  183: *          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  184: *          is not accessed.  C is an input argument if FACT = 'F';
  185: *          otherwise, C is an output argument.  If FACT = 'F' and
  186: *          EQUED = 'C' or 'B', each element of C must be positive.
  187: *
  188: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
  189: *          On entry, the right hand side matrix B.
  190: *          On exit,
  191: *          if EQUED = 'N', B is not modified;
  192: *          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
  193: *          diag(R)*B;
  194: *          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
  195: *          overwritten by diag(C)*B.
  196: *
  197: *  LDB     (input) INTEGER
  198: *          The leading dimension of the array B.  LDB >= max(1,N).
  199: *
  200: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
  201: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
  202: *          to the original system of equations.  Note that A and B are
  203: *          modified on exit if EQUED .ne. 'N', and the solution to the
  204: *          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
  205: *          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
  206: *          and EQUED = 'R' or 'B'.
  207: *
  208: *  LDX     (input) INTEGER
  209: *          The leading dimension of the array X.  LDX >= max(1,N).
  210: *
  211: *  RCOND   (output) DOUBLE PRECISION
  212: *          The estimate of the reciprocal condition number of the matrix
  213: *          A after equilibration (if done).  If RCOND is less than the
  214: *          machine precision (in particular, if RCOND = 0), the matrix
  215: *          is singular to working precision.  This condition is
  216: *          indicated by a return code of INFO > 0.
  217: *
  218: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  219: *          The estimated forward error bound for each solution vector
  220: *          X(j) (the j-th column of the solution matrix X).
  221: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
  222: *          is an estimated upper bound for the magnitude of the largest
  223: *          element in (X(j) - XTRUE) divided by the magnitude of the
  224: *          largest element in X(j).  The estimate is as reliable as
  225: *          the estimate for RCOND, and is almost always a slight
  226: *          overestimate of the true error.
  227: *
  228: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  229: *          The componentwise relative backward error of each solution
  230: *          vector X(j) (i.e., the smallest relative change in
  231: *          any element of A or B that makes X(j) an exact solution).
  232: *
  233: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
  234: *
  235: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (N)
  236: *          On exit, RWORK(1) contains the reciprocal pivot growth
  237: *          factor norm(A)/norm(U). The "max absolute element" norm is
  238: *          used. If RWORK(1) is much less than 1, then the stability
  239: *          of the LU factorization of the (equilibrated) matrix A
  240: *          could be poor. This also means that the solution X, condition
  241: *          estimator RCOND, and forward error bound FERR could be
  242: *          unreliable. If factorization fails with 0<INFO<=N, then
  243: *          RWORK(1) contains the reciprocal pivot growth factor for the
  244: *          leading INFO columns of A.
  245: *
  246: *  INFO    (output) INTEGER
  247: *          = 0:  successful exit
  248: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  249: *          > 0:  if INFO = i, and i is
  250: *                <= N:  U(i,i) is exactly zero.  The factorization
  251: *                       has been completed, but the factor U is exactly
  252: *                       singular, so the solution and error bounds
  253: *                       could not be computed. RCOND = 0 is returned.
  254: *                = N+1: U is nonsingular, but RCOND is less than machine
  255: *                       precision, meaning that the matrix is singular
  256: *                       to working precision.  Nevertheless, the
  257: *                       solution and error bounds are computed because
  258: *                       there are a number of situations where the
  259: *                       computed solution can be more accurate than the
  260: *                       value of RCOND would suggest.
  261: *
  262: *  =====================================================================
  263: *  Moved setting of INFO = N+1 so INFO does not subsequently get
  264: *  overwritten.  Sven, 17 Mar 05. 
  265: *  =====================================================================
  266: *
  267: *     .. Parameters ..
  268:       DOUBLE PRECISION   ZERO, ONE
  269:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  270: *     ..
  271: *     .. Local Scalars ..
  272:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
  273:       CHARACTER          NORM
  274:       INTEGER            I, INFEQU, J, J1, J2
  275:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
  276:      $                   ROWCND, RPVGRW, SMLNUM
  277: *     ..
  278: *     .. External Functions ..
  279:       LOGICAL            LSAME
  280:       DOUBLE PRECISION   DLAMCH, ZLANGB, ZLANTB
  281:       EXTERNAL           LSAME, DLAMCH, ZLANGB, ZLANTB
  282: *     ..
  283: *     .. External Subroutines ..
  284:       EXTERNAL           XERBLA, ZCOPY, ZGBCON, ZGBEQU, ZGBRFS, ZGBTRF,
  285:      $                   ZGBTRS, ZLACPY, ZLAQGB
  286: *     ..
  287: *     .. Intrinsic Functions ..
  288:       INTRINSIC          ABS, MAX, MIN
  289: *     ..
  290: *     .. Executable Statements ..
  291: *
  292:       INFO = 0
  293:       NOFACT = LSAME( FACT, 'N' )
  294:       EQUIL = LSAME( FACT, 'E' )
  295:       NOTRAN = LSAME( TRANS, 'N' )
  296:       IF( NOFACT .OR. EQUIL ) THEN
  297:          EQUED = 'N'
  298:          ROWEQU = .FALSE.
  299:          COLEQU = .FALSE.
  300:       ELSE
  301:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  302:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  303:          SMLNUM = DLAMCH( 'Safe minimum' )
  304:          BIGNUM = ONE / SMLNUM
  305:       END IF
  306: *
  307: *     Test the input parameters.
  308: *
  309:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  310:      $     THEN
  311:          INFO = -1
  312:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  313:      $         LSAME( TRANS, 'C' ) ) THEN
  314:          INFO = -2
  315:       ELSE IF( N.LT.0 ) THEN
  316:          INFO = -3
  317:       ELSE IF( KL.LT.0 ) THEN
  318:          INFO = -4
  319:       ELSE IF( KU.LT.0 ) THEN
  320:          INFO = -5
  321:       ELSE IF( NRHS.LT.0 ) THEN
  322:          INFO = -6
  323:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  324:          INFO = -8
  325:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  326:          INFO = -10
  327:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  328:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  329:          INFO = -12
  330:       ELSE
  331:          IF( ROWEQU ) THEN
  332:             RCMIN = BIGNUM
  333:             RCMAX = ZERO
  334:             DO 10 J = 1, N
  335:                RCMIN = MIN( RCMIN, R( J ) )
  336:                RCMAX = MAX( RCMAX, R( J ) )
  337:    10       CONTINUE
  338:             IF( RCMIN.LE.ZERO ) THEN
  339:                INFO = -13
  340:             ELSE IF( N.GT.0 ) THEN
  341:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  342:             ELSE
  343:                ROWCND = ONE
  344:             END IF
  345:          END IF
  346:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
  347:             RCMIN = BIGNUM
  348:             RCMAX = ZERO
  349:             DO 20 J = 1, N
  350:                RCMIN = MIN( RCMIN, C( J ) )
  351:                RCMAX = MAX( RCMAX, C( J ) )
  352:    20       CONTINUE
  353:             IF( RCMIN.LE.ZERO ) THEN
  354:                INFO = -14
  355:             ELSE IF( N.GT.0 ) THEN
  356:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  357:             ELSE
  358:                COLCND = ONE
  359:             END IF
  360:          END IF
  361:          IF( INFO.EQ.0 ) THEN
  362:             IF( LDB.LT.MAX( 1, N ) ) THEN
  363:                INFO = -16
  364:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  365:                INFO = -18
  366:             END IF
  367:          END IF
  368:       END IF
  369: *
  370:       IF( INFO.NE.0 ) THEN
  371:          CALL XERBLA( 'ZGBSVX', -INFO )
  372:          RETURN
  373:       END IF
  374: *
  375:       IF( EQUIL ) THEN
  376: *
  377: *        Compute row and column scalings to equilibrate the matrix A.
  378: *
  379:          CALL ZGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  380:      $                AMAX, INFEQU )
  381:          IF( INFEQU.EQ.0 ) THEN
  382: *
  383: *           Equilibrate the matrix.
  384: *
  385:             CALL ZLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  386:      $                   AMAX, EQUED )
  387:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  388:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  389:          END IF
  390:       END IF
  391: *
  392: *     Scale the right hand side.
  393: *
  394:       IF( NOTRAN ) THEN
  395:          IF( ROWEQU ) THEN
  396:             DO 40 J = 1, NRHS
  397:                DO 30 I = 1, N
  398:                   B( I, J ) = R( I )*B( I, J )
  399:    30          CONTINUE
  400:    40       CONTINUE
  401:          END IF
  402:       ELSE IF( COLEQU ) THEN
  403:          DO 60 J = 1, NRHS
  404:             DO 50 I = 1, N
  405:                B( I, J ) = C( I )*B( I, J )
  406:    50       CONTINUE
  407:    60    CONTINUE
  408:       END IF
  409: *
  410:       IF( NOFACT .OR. EQUIL ) THEN
  411: *
  412: *        Compute the LU factorization of the band matrix A.
  413: *
  414:          DO 70 J = 1, N
  415:             J1 = MAX( J-KU, 1 )
  416:             J2 = MIN( J+KL, N )
  417:             CALL ZCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
  418:      $                  AFB( KL+KU+1-J+J1, J ), 1 )
  419:    70    CONTINUE
  420: *
  421:          CALL ZGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
  422: *
  423: *        Return if INFO is non-zero.
  424: *
  425:          IF( INFO.GT.0 ) THEN
  426: *
  427: *           Compute the reciprocal pivot growth factor of the
  428: *           leading rank-deficient INFO columns of A.
  429: *
  430:             ANORM = ZERO
  431:             DO 90 J = 1, INFO
  432:                DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
  433:                   ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
  434:    80          CONTINUE
  435:    90       CONTINUE
  436:             RPVGRW = ZLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
  437:      $                       AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
  438:      $                       RWORK )
  439:             IF( RPVGRW.EQ.ZERO ) THEN
  440:                RPVGRW = ONE
  441:             ELSE
  442:                RPVGRW = ANORM / RPVGRW
  443:             END IF
  444:             RWORK( 1 ) = RPVGRW
  445:             RCOND = ZERO
  446:             RETURN
  447:          END IF
  448:       END IF
  449: *
  450: *     Compute the norm of the matrix A and the
  451: *     reciprocal pivot growth factor RPVGRW.
  452: *
  453:       IF( NOTRAN ) THEN
  454:          NORM = '1'
  455:       ELSE
  456:          NORM = 'I'
  457:       END IF
  458:       ANORM = ZLANGB( NORM, N, KL, KU, AB, LDAB, RWORK )
  459:       RPVGRW = ZLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, RWORK )
  460:       IF( RPVGRW.EQ.ZERO ) THEN
  461:          RPVGRW = ONE
  462:       ELSE
  463:          RPVGRW = ZLANGB( 'M', N, KL, KU, AB, LDAB, RWORK ) / RPVGRW
  464:       END IF
  465: *
  466: *     Compute the reciprocal of the condition number of A.
  467: *
  468:       CALL ZGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
  469:      $             WORK, RWORK, INFO )
  470: *
  471: *     Compute the solution matrix X.
  472: *
  473:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  474:       CALL ZGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
  475:      $             INFO )
  476: *
  477: *     Use iterative refinement to improve the computed solution and
  478: *     compute error bounds and backward error estimates for it.
  479: *
  480:       CALL ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
  481:      $             B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
  482: *
  483: *     Transform the solution matrix X to a solution of the original
  484: *     system.
  485: *
  486:       IF( NOTRAN ) THEN
  487:          IF( COLEQU ) THEN
  488:             DO 110 J = 1, NRHS
  489:                DO 100 I = 1, N
  490:                   X( I, J ) = C( I )*X( I, J )
  491:   100          CONTINUE
  492:   110       CONTINUE
  493:             DO 120 J = 1, NRHS
  494:                FERR( J ) = FERR( J ) / COLCND
  495:   120       CONTINUE
  496:          END IF
  497:       ELSE IF( ROWEQU ) THEN
  498:          DO 140 J = 1, NRHS
  499:             DO 130 I = 1, N
  500:                X( I, J ) = R( I )*X( I, J )
  501:   130       CONTINUE
  502:   140    CONTINUE
  503:          DO 150 J = 1, NRHS
  504:             FERR( J ) = FERR( J ) / ROWCND
  505:   150    CONTINUE
  506:       END IF
  507: *
  508: *     Set INFO = N+1 if the matrix is singular to working precision.
  509: *
  510:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  511:      $   INFO = N + 1
  512: *
  513:       RWORK( 1 ) = RPVGRW
  514:       RETURN
  515: *
  516: *     End of ZGBSVX
  517: *
  518:       END

CVSweb interface <joel.bertrand@systella.fr>