Annotation of rpl/lapack/lapack/zgbsvx.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
                      2:      $                   LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
                      3:      $                   RCOND, FERR, BERR, WORK, RWORK, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          EQUED, FACT, TRANS
                     12:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
                     13:       DOUBLE PRECISION   RCOND
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IPIV( * )
                     17:       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
                     18:      $                   RWORK( * )
                     19:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     20:      $                   WORK( * ), X( LDX, * )
                     21: *     ..
                     22: *
                     23: *  Purpose
                     24: *  =======
                     25: *
                     26: *  ZGBSVX uses the LU factorization to compute the solution to a complex
                     27: *  system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
                     28: *  where A is a band matrix of order N with KL subdiagonals and KU
                     29: *  superdiagonals, and X and B are N-by-NRHS matrices.
                     30: *
                     31: *  Error bounds on the solution and a condition estimate are also
                     32: *  provided.
                     33: *
                     34: *  Description
                     35: *  ===========
                     36: *
                     37: *  The following steps are performed by this subroutine:
                     38: *
                     39: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
                     40: *     the system:
                     41: *        TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
                     42: *        TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
                     43: *        TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
                     44: *     Whether or not the system will be equilibrated depends on the
                     45: *     scaling of the matrix A, but if equilibration is used, A is
                     46: *     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
                     47: *     or diag(C)*B (if TRANS = 'T' or 'C').
                     48: *
                     49: *  2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
                     50: *     matrix A (after equilibration if FACT = 'E') as
                     51: *        A = L * U,
                     52: *     where L is a product of permutation and unit lower triangular
                     53: *     matrices with KL subdiagonals, and U is upper triangular with
                     54: *     KL+KU superdiagonals.
                     55: *
                     56: *  3. If some U(i,i)=0, so that U is exactly singular, then the routine
                     57: *     returns with INFO = i. Otherwise, the factored form of A is used
                     58: *     to estimate the condition number of the matrix A.  If the
                     59: *     reciprocal of the condition number is less than machine precision,
                     60: *     INFO = N+1 is returned as a warning, but the routine still goes on
                     61: *     to solve for X and compute error bounds as described below.
                     62: *
                     63: *  4. The system of equations is solved for X using the factored form
                     64: *     of A.
                     65: *
                     66: *  5. Iterative refinement is applied to improve the computed solution
                     67: *     matrix and calculate error bounds and backward error estimates
                     68: *     for it.
                     69: *
                     70: *  6. If equilibration was used, the matrix X is premultiplied by
                     71: *     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
                     72: *     that it solves the original system before equilibration.
                     73: *
                     74: *  Arguments
                     75: *  =========
                     76: *
                     77: *  FACT    (input) CHARACTER*1
                     78: *          Specifies whether or not the factored form of the matrix A is
                     79: *          supplied on entry, and if not, whether the matrix A should be
                     80: *          equilibrated before it is factored.
                     81: *          = 'F':  On entry, AFB and IPIV contain the factored form of
                     82: *                  A.  If EQUED is not 'N', the matrix A has been
                     83: *                  equilibrated with scaling factors given by R and C.
                     84: *                  AB, AFB, and IPIV are not modified.
                     85: *          = 'N':  The matrix A will be copied to AFB and factored.
                     86: *          = 'E':  The matrix A will be equilibrated if necessary, then
                     87: *                  copied to AFB and factored.
                     88: *
                     89: *  TRANS   (input) CHARACTER*1
                     90: *          Specifies the form of the system of equations.
                     91: *          = 'N':  A * X = B     (No transpose)
                     92: *          = 'T':  A**T * X = B  (Transpose)
                     93: *          = 'C':  A**H * X = B  (Conjugate transpose)
                     94: *
                     95: *  N       (input) INTEGER
                     96: *          The number of linear equations, i.e., the order of the
                     97: *          matrix A.  N >= 0.
                     98: *
                     99: *  KL      (input) INTEGER
                    100: *          The number of subdiagonals within the band of A.  KL >= 0.
                    101: *
                    102: *  KU      (input) INTEGER
                    103: *          The number of superdiagonals within the band of A.  KU >= 0.
                    104: *
                    105: *  NRHS    (input) INTEGER
                    106: *          The number of right hand sides, i.e., the number of columns
                    107: *          of the matrices B and X.  NRHS >= 0.
                    108: *
                    109: *  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)
                    110: *          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
                    111: *          The j-th column of A is stored in the j-th column of the
                    112: *          array AB as follows:
                    113: *          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
                    114: *
                    115: *          If FACT = 'F' and EQUED is not 'N', then A must have been
                    116: *          equilibrated by the scaling factors in R and/or C.  AB is not
                    117: *          modified if FACT = 'F' or 'N', or if FACT = 'E' and
                    118: *          EQUED = 'N' on exit.
                    119: *
                    120: *          On exit, if EQUED .ne. 'N', A is scaled as follows:
                    121: *          EQUED = 'R':  A := diag(R) * A
                    122: *          EQUED = 'C':  A := A * diag(C)
                    123: *          EQUED = 'B':  A := diag(R) * A * diag(C).
                    124: *
                    125: *  LDAB    (input) INTEGER
                    126: *          The leading dimension of the array AB.  LDAB >= KL+KU+1.
                    127: *
                    128: *  AFB     (input or output) COMPLEX*16 array, dimension (LDAFB,N)
                    129: *          If FACT = 'F', then AFB is an input argument and on entry
                    130: *          contains details of the LU factorization of the band matrix
                    131: *          A, as computed by ZGBTRF.  U is stored as an upper triangular
                    132: *          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
                    133: *          and the multipliers used during the factorization are stored
                    134: *          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
                    135: *          the factored form of the equilibrated matrix A.
                    136: *
                    137: *          If FACT = 'N', then AFB is an output argument and on exit
                    138: *          returns details of the LU factorization of A.
                    139: *
                    140: *          If FACT = 'E', then AFB is an output argument and on exit
                    141: *          returns details of the LU factorization of the equilibrated
                    142: *          matrix A (see the description of AB for the form of the
                    143: *          equilibrated matrix).
                    144: *
                    145: *  LDAFB   (input) INTEGER
                    146: *          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
                    147: *
                    148: *  IPIV    (input or output) INTEGER array, dimension (N)
                    149: *          If FACT = 'F', then IPIV is an input argument and on entry
                    150: *          contains the pivot indices from the factorization A = L*U
                    151: *          as computed by ZGBTRF; row i of the matrix was interchanged
                    152: *          with row IPIV(i).
                    153: *
                    154: *          If FACT = 'N', then IPIV is an output argument and on exit
                    155: *          contains the pivot indices from the factorization A = L*U
                    156: *          of the original matrix A.
                    157: *
                    158: *          If FACT = 'E', then IPIV is an output argument and on exit
                    159: *          contains the pivot indices from the factorization A = L*U
                    160: *          of the equilibrated matrix A.
                    161: *
                    162: *  EQUED   (input or output) CHARACTER*1
                    163: *          Specifies the form of equilibration that was done.
                    164: *          = 'N':  No equilibration (always true if FACT = 'N').
                    165: *          = 'R':  Row equilibration, i.e., A has been premultiplied by
                    166: *                  diag(R).
                    167: *          = 'C':  Column equilibration, i.e., A has been postmultiplied
                    168: *                  by diag(C).
                    169: *          = 'B':  Both row and column equilibration, i.e., A has been
                    170: *                  replaced by diag(R) * A * diag(C).
                    171: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    172: *          output argument.
                    173: *
                    174: *  R       (input or output) DOUBLE PRECISION array, dimension (N)
                    175: *          The row scale factors for A.  If EQUED = 'R' or 'B', A is
                    176: *          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
                    177: *          is not accessed.  R is an input argument if FACT = 'F';
                    178: *          otherwise, R is an output argument.  If FACT = 'F' and
                    179: *          EQUED = 'R' or 'B', each element of R must be positive.
                    180: *
                    181: *  C       (input or output) DOUBLE PRECISION array, dimension (N)
                    182: *          The column scale factors for A.  If EQUED = 'C' or 'B', A is
                    183: *          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
                    184: *          is not accessed.  C is an input argument if FACT = 'F';
                    185: *          otherwise, C is an output argument.  If FACT = 'F' and
                    186: *          EQUED = 'C' or 'B', each element of C must be positive.
                    187: *
                    188: *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
                    189: *          On entry, the right hand side matrix B.
                    190: *          On exit,
                    191: *          if EQUED = 'N', B is not modified;
                    192: *          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
                    193: *          diag(R)*B;
                    194: *          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
                    195: *          overwritten by diag(C)*B.
                    196: *
                    197: *  LDB     (input) INTEGER
                    198: *          The leading dimension of the array B.  LDB >= max(1,N).
                    199: *
                    200: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
                    201: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
                    202: *          to the original system of equations.  Note that A and B are
                    203: *          modified on exit if EQUED .ne. 'N', and the solution to the
                    204: *          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
                    205: *          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
                    206: *          and EQUED = 'R' or 'B'.
                    207: *
                    208: *  LDX     (input) INTEGER
                    209: *          The leading dimension of the array X.  LDX >= max(1,N).
                    210: *
                    211: *  RCOND   (output) DOUBLE PRECISION
                    212: *          The estimate of the reciprocal condition number of the matrix
                    213: *          A after equilibration (if done).  If RCOND is less than the
                    214: *          machine precision (in particular, if RCOND = 0), the matrix
                    215: *          is singular to working precision.  This condition is
                    216: *          indicated by a return code of INFO > 0.
                    217: *
                    218: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    219: *          The estimated forward error bound for each solution vector
                    220: *          X(j) (the j-th column of the solution matrix X).
                    221: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    222: *          is an estimated upper bound for the magnitude of the largest
                    223: *          element in (X(j) - XTRUE) divided by the magnitude of the
                    224: *          largest element in X(j).  The estimate is as reliable as
                    225: *          the estimate for RCOND, and is almost always a slight
                    226: *          overestimate of the true error.
                    227: *
                    228: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    229: *          The componentwise relative backward error of each solution
                    230: *          vector X(j) (i.e., the smallest relative change in
                    231: *          any element of A or B that makes X(j) an exact solution).
                    232: *
                    233: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                    234: *
                    235: *  RWORK   (workspace/output) DOUBLE PRECISION array, dimension (N)
                    236: *          On exit, RWORK(1) contains the reciprocal pivot growth
                    237: *          factor norm(A)/norm(U). The "max absolute element" norm is
                    238: *          used. If RWORK(1) is much less than 1, then the stability
                    239: *          of the LU factorization of the (equilibrated) matrix A
                    240: *          could be poor. This also means that the solution X, condition
                    241: *          estimator RCOND, and forward error bound FERR could be
                    242: *          unreliable. If factorization fails with 0<INFO<=N, then
                    243: *          RWORK(1) contains the reciprocal pivot growth factor for the
                    244: *          leading INFO columns of A.
                    245: *
                    246: *  INFO    (output) INTEGER
                    247: *          = 0:  successful exit
                    248: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    249: *          > 0:  if INFO = i, and i is
                    250: *                <= N:  U(i,i) is exactly zero.  The factorization
                    251: *                       has been completed, but the factor U is exactly
                    252: *                       singular, so the solution and error bounds
                    253: *                       could not be computed. RCOND = 0 is returned.
                    254: *                = N+1: U is nonsingular, but RCOND is less than machine
                    255: *                       precision, meaning that the matrix is singular
                    256: *                       to working precision.  Nevertheless, the
                    257: *                       solution and error bounds are computed because
                    258: *                       there are a number of situations where the
                    259: *                       computed solution can be more accurate than the
                    260: *                       value of RCOND would suggest.
                    261: *
                    262: *  =====================================================================
                    263: *  Moved setting of INFO = N+1 so INFO does not subsequently get
                    264: *  overwritten.  Sven, 17 Mar 05. 
                    265: *  =====================================================================
                    266: *
                    267: *     .. Parameters ..
                    268:       DOUBLE PRECISION   ZERO, ONE
                    269:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    270: *     ..
                    271: *     .. Local Scalars ..
                    272:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
                    273:       CHARACTER          NORM
                    274:       INTEGER            I, INFEQU, J, J1, J2
                    275:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
                    276:      $                   ROWCND, RPVGRW, SMLNUM
                    277: *     ..
                    278: *     .. External Functions ..
                    279:       LOGICAL            LSAME
                    280:       DOUBLE PRECISION   DLAMCH, ZLANGB, ZLANTB
                    281:       EXTERNAL           LSAME, DLAMCH, ZLANGB, ZLANTB
                    282: *     ..
                    283: *     .. External Subroutines ..
                    284:       EXTERNAL           XERBLA, ZCOPY, ZGBCON, ZGBEQU, ZGBRFS, ZGBTRF,
                    285:      $                   ZGBTRS, ZLACPY, ZLAQGB
                    286: *     ..
                    287: *     .. Intrinsic Functions ..
                    288:       INTRINSIC          ABS, MAX, MIN
                    289: *     ..
                    290: *     .. Executable Statements ..
                    291: *
                    292:       INFO = 0
                    293:       NOFACT = LSAME( FACT, 'N' )
                    294:       EQUIL = LSAME( FACT, 'E' )
                    295:       NOTRAN = LSAME( TRANS, 'N' )
                    296:       IF( NOFACT .OR. EQUIL ) THEN
                    297:          EQUED = 'N'
                    298:          ROWEQU = .FALSE.
                    299:          COLEQU = .FALSE.
                    300:       ELSE
                    301:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    302:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    303:          SMLNUM = DLAMCH( 'Safe minimum' )
                    304:          BIGNUM = ONE / SMLNUM
                    305:       END IF
                    306: *
                    307: *     Test the input parameters.
                    308: *
                    309:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    310:      $     THEN
                    311:          INFO = -1
                    312:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    313:      $         LSAME( TRANS, 'C' ) ) THEN
                    314:          INFO = -2
                    315:       ELSE IF( N.LT.0 ) THEN
                    316:          INFO = -3
                    317:       ELSE IF( KL.LT.0 ) THEN
                    318:          INFO = -4
                    319:       ELSE IF( KU.LT.0 ) THEN
                    320:          INFO = -5
                    321:       ELSE IF( NRHS.LT.0 ) THEN
                    322:          INFO = -6
                    323:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
                    324:          INFO = -8
                    325:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
                    326:          INFO = -10
                    327:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    328:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    329:          INFO = -12
                    330:       ELSE
                    331:          IF( ROWEQU ) THEN
                    332:             RCMIN = BIGNUM
                    333:             RCMAX = ZERO
                    334:             DO 10 J = 1, N
                    335:                RCMIN = MIN( RCMIN, R( J ) )
                    336:                RCMAX = MAX( RCMAX, R( J ) )
                    337:    10       CONTINUE
                    338:             IF( RCMIN.LE.ZERO ) THEN
                    339:                INFO = -13
                    340:             ELSE IF( N.GT.0 ) THEN
                    341:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    342:             ELSE
                    343:                ROWCND = ONE
                    344:             END IF
                    345:          END IF
                    346:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
                    347:             RCMIN = BIGNUM
                    348:             RCMAX = ZERO
                    349:             DO 20 J = 1, N
                    350:                RCMIN = MIN( RCMIN, C( J ) )
                    351:                RCMAX = MAX( RCMAX, C( J ) )
                    352:    20       CONTINUE
                    353:             IF( RCMIN.LE.ZERO ) THEN
                    354:                INFO = -14
                    355:             ELSE IF( N.GT.0 ) THEN
                    356:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    357:             ELSE
                    358:                COLCND = ONE
                    359:             END IF
                    360:          END IF
                    361:          IF( INFO.EQ.0 ) THEN
                    362:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    363:                INFO = -16
                    364:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    365:                INFO = -18
                    366:             END IF
                    367:          END IF
                    368:       END IF
                    369: *
                    370:       IF( INFO.NE.0 ) THEN
                    371:          CALL XERBLA( 'ZGBSVX', -INFO )
                    372:          RETURN
                    373:       END IF
                    374: *
                    375:       IF( EQUIL ) THEN
                    376: *
                    377: *        Compute row and column scalings to equilibrate the matrix A.
                    378: *
                    379:          CALL ZGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
                    380:      $                AMAX, INFEQU )
                    381:          IF( INFEQU.EQ.0 ) THEN
                    382: *
                    383: *           Equilibrate the matrix.
                    384: *
                    385:             CALL ZLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
                    386:      $                   AMAX, EQUED )
                    387:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    388:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    389:          END IF
                    390:       END IF
                    391: *
                    392: *     Scale the right hand side.
                    393: *
                    394:       IF( NOTRAN ) THEN
                    395:          IF( ROWEQU ) THEN
                    396:             DO 40 J = 1, NRHS
                    397:                DO 30 I = 1, N
                    398:                   B( I, J ) = R( I )*B( I, J )
                    399:    30          CONTINUE
                    400:    40       CONTINUE
                    401:          END IF
                    402:       ELSE IF( COLEQU ) THEN
                    403:          DO 60 J = 1, NRHS
                    404:             DO 50 I = 1, N
                    405:                B( I, J ) = C( I )*B( I, J )
                    406:    50       CONTINUE
                    407:    60    CONTINUE
                    408:       END IF
                    409: *
                    410:       IF( NOFACT .OR. EQUIL ) THEN
                    411: *
                    412: *        Compute the LU factorization of the band matrix A.
                    413: *
                    414:          DO 70 J = 1, N
                    415:             J1 = MAX( J-KU, 1 )
                    416:             J2 = MIN( J+KL, N )
                    417:             CALL ZCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
                    418:      $                  AFB( KL+KU+1-J+J1, J ), 1 )
                    419:    70    CONTINUE
                    420: *
                    421:          CALL ZGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
                    422: *
                    423: *        Return if INFO is non-zero.
                    424: *
                    425:          IF( INFO.GT.0 ) THEN
                    426: *
                    427: *           Compute the reciprocal pivot growth factor of the
                    428: *           leading rank-deficient INFO columns of A.
                    429: *
                    430:             ANORM = ZERO
                    431:             DO 90 J = 1, INFO
                    432:                DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
                    433:                   ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
                    434:    80          CONTINUE
                    435:    90       CONTINUE
                    436:             RPVGRW = ZLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
                    437:      $                       AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
                    438:      $                       RWORK )
                    439:             IF( RPVGRW.EQ.ZERO ) THEN
                    440:                RPVGRW = ONE
                    441:             ELSE
                    442:                RPVGRW = ANORM / RPVGRW
                    443:             END IF
                    444:             RWORK( 1 ) = RPVGRW
                    445:             RCOND = ZERO
                    446:             RETURN
                    447:          END IF
                    448:       END IF
                    449: *
                    450: *     Compute the norm of the matrix A and the
                    451: *     reciprocal pivot growth factor RPVGRW.
                    452: *
                    453:       IF( NOTRAN ) THEN
                    454:          NORM = '1'
                    455:       ELSE
                    456:          NORM = 'I'
                    457:       END IF
                    458:       ANORM = ZLANGB( NORM, N, KL, KU, AB, LDAB, RWORK )
                    459:       RPVGRW = ZLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, RWORK )
                    460:       IF( RPVGRW.EQ.ZERO ) THEN
                    461:          RPVGRW = ONE
                    462:       ELSE
                    463:          RPVGRW = ZLANGB( 'M', N, KL, KU, AB, LDAB, RWORK ) / RPVGRW
                    464:       END IF
                    465: *
                    466: *     Compute the reciprocal of the condition number of A.
                    467: *
                    468:       CALL ZGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
                    469:      $             WORK, RWORK, INFO )
                    470: *
                    471: *     Compute the solution matrix X.
                    472: *
                    473:       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    474:       CALL ZGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
                    475:      $             INFO )
                    476: *
                    477: *     Use iterative refinement to improve the computed solution and
                    478: *     compute error bounds and backward error estimates for it.
                    479: *
                    480:       CALL ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
                    481:      $             B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
                    482: *
                    483: *     Transform the solution matrix X to a solution of the original
                    484: *     system.
                    485: *
                    486:       IF( NOTRAN ) THEN
                    487:          IF( COLEQU ) THEN
                    488:             DO 110 J = 1, NRHS
                    489:                DO 100 I = 1, N
                    490:                   X( I, J ) = C( I )*X( I, J )
                    491:   100          CONTINUE
                    492:   110       CONTINUE
                    493:             DO 120 J = 1, NRHS
                    494:                FERR( J ) = FERR( J ) / COLCND
                    495:   120       CONTINUE
                    496:          END IF
                    497:       ELSE IF( ROWEQU ) THEN
                    498:          DO 140 J = 1, NRHS
                    499:             DO 130 I = 1, N
                    500:                X( I, J ) = R( I )*X( I, J )
                    501:   130       CONTINUE
                    502:   140    CONTINUE
                    503:          DO 150 J = 1, NRHS
                    504:             FERR( J ) = FERR( J ) / ROWCND
                    505:   150    CONTINUE
                    506:       END IF
                    507: *
                    508: *     Set INFO = N+1 if the matrix is singular to working precision.
                    509: *
                    510:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    511:      $   INFO = N + 1
                    512: *
                    513:       RWORK( 1 ) = RPVGRW
                    514:       RETURN
                    515: *
                    516: *     End of ZGBSVX
                    517: *
                    518:       END

CVSweb interface <joel.bertrand@systella.fr>