File:  [local] / rpl / lapack / lapack / zgbrfsx.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:42 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE ZGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB,
    2:      $                    LDAFB, IPIV, R, C, B, LDB, X, LDX, RCOND,
    3:      $                    BERR, N_ERR_BNDS, ERR_BNDS_NORM,
    4:      $                    ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK,
    5:      $                    INFO )
    6: *
    7: *     -- LAPACK routine (version 3.2.2)                                 --
    8: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    9: *     -- Jason Riedy of Univ. of California Berkeley.                 --
   10: *     -- June 2010                                                    --
   11: *
   12: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   13: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   14: *
   15:       IMPLICIT NONE
   16: *     ..
   17: *     .. Scalar Arguments ..
   18:       CHARACTER          TRANS, EQUED
   19:       INTEGER            INFO, LDAB, LDAFB, LDB, LDX, N, KL, KU, NRHS,
   20:      $                   NPARAMS, N_ERR_BNDS
   21:       DOUBLE PRECISION   RCOND
   22: *     ..
   23: *     .. Array Arguments ..
   24:       INTEGER            IPIV( * )
   25:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   26:      $                   X( LDX , * ),WORK( * )
   27:       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
   28:      $                   ERR_BNDS_NORM( NRHS, * ),
   29:      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
   30: *     ..
   31: *
   32: *     Purpose
   33: *     =======
   34: *
   35: *     ZGBRFSX improves the computed solution to a system of linear
   36: *     equations and provides error bounds and backward error estimates
   37: *     for the solution.  In addition to normwise error bound, the code
   38: *     provides maximum componentwise error bound if possible.  See
   39: *     comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
   40: *     error bounds.
   41: *
   42: *     The original system of linear equations may have been equilibrated
   43: *     before calling this routine, as described by arguments EQUED, R
   44: *     and C below. In this case, the solution and error bounds returned
   45: *     are for the original unequilibrated system.
   46: *
   47: *     Arguments
   48: *     =========
   49: *
   50: *     Some optional parameters are bundled in the PARAMS array.  These
   51: *     settings determine how refinement is performed, but often the
   52: *     defaults are acceptable.  If the defaults are acceptable, users
   53: *     can pass NPARAMS = 0 which prevents the source code from accessing
   54: *     the PARAMS argument.
   55: *
   56: *     TRANS   (input) CHARACTER*1
   57: *     Specifies the form of the system of equations:
   58: *       = 'N':  A * X = B     (No transpose)
   59: *       = 'T':  A**T * X = B  (Transpose)
   60: *       = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
   61: *
   62: *     EQUED   (input) CHARACTER*1
   63: *     Specifies the form of equilibration that was done to A
   64: *     before calling this routine. This is needed to compute
   65: *     the solution and error bounds correctly.
   66: *       = 'N':  No equilibration
   67: *       = 'R':  Row equilibration, i.e., A has been premultiplied by
   68: *               diag(R).
   69: *       = 'C':  Column equilibration, i.e., A has been postmultiplied
   70: *               by diag(C).
   71: *       = 'B':  Both row and column equilibration, i.e., A has been
   72: *               replaced by diag(R) * A * diag(C).
   73: *               The right hand side B has been changed accordingly.
   74: *
   75: *     N       (input) INTEGER
   76: *     The order of the matrix A.  N >= 0.
   77: *
   78: *     KL      (input) INTEGER
   79: *     The number of subdiagonals within the band of A.  KL >= 0.
   80: *
   81: *     KU      (input) INTEGER
   82: *     The number of superdiagonals within the band of A.  KU >= 0.
   83: *
   84: *     NRHS    (input) INTEGER
   85: *     The number of right hand sides, i.e., the number of columns
   86: *     of the matrices B and X.  NRHS >= 0.
   87: *
   88: *     AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
   89: *     The original band matrix A, stored in rows 1 to KL+KU+1.
   90: *     The j-th column of A is stored in the j-th column of the
   91: *     array AB as follows:
   92: *     AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
   93: *
   94: *     LDAB    (input) INTEGER
   95: *     The leading dimension of the array AB.  LDAB >= KL+KU+1.
   96: *
   97: *     AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N)
   98: *     Details of the LU factorization of the band matrix A, as
   99: *     computed by DGBTRF.  U is stored as an upper triangular band
  100: *     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
  101: *     the multipliers used during the factorization are stored in
  102: *     rows KL+KU+2 to 2*KL+KU+1.
  103: *
  104: *     LDAFB   (input) INTEGER
  105: *     The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
  106: *
  107: *     IPIV    (input) INTEGER array, dimension (N)
  108: *     The pivot indices from DGETRF; for 1<=i<=N, row i of the
  109: *     matrix was interchanged with row IPIV(i).
  110: *
  111: *     R       (input or output) DOUBLE PRECISION array, dimension (N)
  112: *     The row scale factors for A.  If EQUED = 'R' or 'B', A is
  113: *     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  114: *     is not accessed.  R is an input argument if FACT = 'F';
  115: *     otherwise, R is an output argument.  If FACT = 'F' and
  116: *     EQUED = 'R' or 'B', each element of R must be positive.
  117: *     If R is output, each element of R is a power of the radix.
  118: *     If R is input, each element of R should be a power of the radix
  119: *     to ensure a reliable solution and error estimates. Scaling by
  120: *     powers of the radix does not cause rounding errors unless the
  121: *     result underflows or overflows. Rounding errors during scaling
  122: *     lead to refining with a matrix that is not equivalent to the
  123: *     input matrix, producing error estimates that may not be
  124: *     reliable.
  125: *
  126: *     C       (input or output) DOUBLE PRECISION array, dimension (N)
  127: *     The column scale factors for A.  If EQUED = 'C' or 'B', A is
  128: *     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  129: *     is not accessed.  C is an input argument if FACT = 'F';
  130: *     otherwise, C is an output argument.  If FACT = 'F' and
  131: *     EQUED = 'C' or 'B', each element of C must be positive.
  132: *     If C is output, each element of C is a power of the radix.
  133: *     If C is input, each element of C should be a power of the radix
  134: *     to ensure a reliable solution and error estimates. Scaling by
  135: *     powers of the radix does not cause rounding errors unless the
  136: *     result underflows or overflows. Rounding errors during scaling
  137: *     lead to refining with a matrix that is not equivalent to the
  138: *     input matrix, producing error estimates that may not be
  139: *     reliable.
  140: *
  141: *     B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
  142: *     The right hand side matrix B.
  143: *
  144: *     LDB     (input) INTEGER
  145: *     The leading dimension of the array B.  LDB >= max(1,N).
  146: *
  147: *     X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
  148: *     On entry, the solution matrix X, as computed by DGETRS.
  149: *     On exit, the improved solution matrix X.
  150: *
  151: *     LDX     (input) INTEGER
  152: *     The leading dimension of the array X.  LDX >= max(1,N).
  153: *
  154: *     RCOND   (output) DOUBLE PRECISION
  155: *     Reciprocal scaled condition number.  This is an estimate of the
  156: *     reciprocal Skeel condition number of the matrix A after
  157: *     equilibration (if done).  If this is less than the machine
  158: *     precision (in particular, if it is zero), the matrix is singular
  159: *     to working precision.  Note that the error may still be small even
  160: *     if this number is very small and the matrix appears ill-
  161: *     conditioned.
  162: *
  163: *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  164: *     Componentwise relative backward error.  This is the
  165: *     componentwise relative backward error of each solution vector X(j)
  166: *     (i.e., the smallest relative change in any element of A or B that
  167: *     makes X(j) an exact solution).
  168: *
  169: *     N_ERR_BNDS (input) INTEGER
  170: *     Number of error bounds to return for each right hand side
  171: *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
  172: *     ERR_BNDS_COMP below.
  173: *
  174: *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  175: *     For each right-hand side, this array contains information about
  176: *     various error bounds and condition numbers corresponding to the
  177: *     normwise relative error, which is defined as follows:
  178: *
  179: *     Normwise relative error in the ith solution vector:
  180: *             max_j (abs(XTRUE(j,i) - X(j,i)))
  181: *            ------------------------------
  182: *                  max_j abs(X(j,i))
  183: *
  184: *     The array is indexed by the type of error information as described
  185: *     below. There currently are up to three pieces of information
  186: *     returned.
  187: *
  188: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  189: *     right-hand side.
  190: *
  191: *     The second index in ERR_BNDS_NORM(:,err) contains the following
  192: *     three fields:
  193: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  194: *              reciprocal condition number is less than the threshold
  195: *              sqrt(n) * dlamch('Epsilon').
  196: *
  197: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  198: *              almost certainly within a factor of 10 of the true error
  199: *              so long as the next entry is greater than the threshold
  200: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
  201: *              be trusted if the previous boolean is true.
  202: *
  203: *     err = 3  Reciprocal condition number: Estimated normwise
  204: *              reciprocal condition number.  Compared with the threshold
  205: *              sqrt(n) * dlamch('Epsilon') to determine if the error
  206: *              estimate is "guaranteed". These reciprocal condition
  207: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  208: *              appropriately scaled matrix Z.
  209: *              Let Z = S*A, where S scales each row by a power of the
  210: *              radix so all absolute row sums of Z are approximately 1.
  211: *
  212: *     See Lapack Working Note 165 for further details and extra
  213: *     cautions.
  214: *
  215: *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  216: *     For each right-hand side, this array contains information about
  217: *     various error bounds and condition numbers corresponding to the
  218: *     componentwise relative error, which is defined as follows:
  219: *
  220: *     Componentwise relative error in the ith solution vector:
  221: *                    abs(XTRUE(j,i) - X(j,i))
  222: *             max_j ----------------------
  223: *                         abs(X(j,i))
  224: *
  225: *     The array is indexed by the right-hand side i (on which the
  226: *     componentwise relative error depends), and the type of error
  227: *     information as described below. There currently are up to three
  228: *     pieces of information returned for each right-hand side. If
  229: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  230: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  231: *     the first (:,N_ERR_BNDS) entries are returned.
  232: *
  233: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  234: *     right-hand side.
  235: *
  236: *     The second index in ERR_BNDS_COMP(:,err) contains the following
  237: *     three fields:
  238: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  239: *              reciprocal condition number is less than the threshold
  240: *              sqrt(n) * dlamch('Epsilon').
  241: *
  242: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  243: *              almost certainly within a factor of 10 of the true error
  244: *              so long as the next entry is greater than the threshold
  245: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
  246: *              be trusted if the previous boolean is true.
  247: *
  248: *     err = 3  Reciprocal condition number: Estimated componentwise
  249: *              reciprocal condition number.  Compared with the threshold
  250: *              sqrt(n) * dlamch('Epsilon') to determine if the error
  251: *              estimate is "guaranteed". These reciprocal condition
  252: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  253: *              appropriately scaled matrix Z.
  254: *              Let Z = S*(A*diag(x)), where x is the solution for the
  255: *              current right-hand side and S scales each row of
  256: *              A*diag(x) by a power of the radix so all absolute row
  257: *              sums of Z are approximately 1.
  258: *
  259: *     See Lapack Working Note 165 for further details and extra
  260: *     cautions.
  261: *
  262: *     NPARAMS (input) INTEGER
  263: *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
  264: *     PARAMS array is never referenced and default values are used.
  265: *
  266: *     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS
  267: *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
  268: *     that entry will be filled with default value used for that
  269: *     parameter.  Only positions up to NPARAMS are accessed; defaults
  270: *     are used for higher-numbered parameters.
  271: *
  272: *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
  273: *            refinement or not.
  274: *         Default: 1.0D+0
  275: *            = 0.0 : No refinement is performed, and no error bounds are
  276: *                    computed.
  277: *            = 1.0 : Use the double-precision refinement algorithm,
  278: *                    possibly with doubled-single computations if the
  279: *                    compilation environment does not support DOUBLE
  280: *                    PRECISION.
  281: *              (other values are reserved for future use)
  282: *
  283: *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
  284: *            computations allowed for refinement.
  285: *         Default: 10
  286: *         Aggressive: Set to 100 to permit convergence using approximate
  287: *                     factorizations or factorizations other than LU. If
  288: *                     the factorization uses a technique other than
  289: *                     Gaussian elimination, the guarantees in
  290: *                     err_bnds_norm and err_bnds_comp may no longer be
  291: *                     trustworthy.
  292: *
  293: *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
  294: *            will attempt to find a solution with small componentwise
  295: *            relative error in the double-precision algorithm.  Positive
  296: *            is true, 0.0 is false.
  297: *         Default: 1.0 (attempt componentwise convergence)
  298: *
  299: *     WORK    (workspace) COMPLEX*16 array, dimension (2*N)
  300: *
  301: *     RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
  302: *
  303: *     INFO    (output) INTEGER
  304: *       = 0:  Successful exit. The solution to every right-hand side is
  305: *         guaranteed.
  306: *       < 0:  If INFO = -i, the i-th argument had an illegal value
  307: *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
  308: *         has been completed, but the factor U is exactly singular, so
  309: *         the solution and error bounds could not be computed. RCOND = 0
  310: *         is returned.
  311: *       = N+J: The solution corresponding to the Jth right-hand side is
  312: *         not guaranteed. The solutions corresponding to other right-
  313: *         hand sides K with K > J may not be guaranteed as well, but
  314: *         only the first such right-hand side is reported. If a small
  315: *         componentwise error is not requested (PARAMS(3) = 0.0) then
  316: *         the Jth right-hand side is the first with a normwise error
  317: *         bound that is not guaranteed (the smallest J such
  318: *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
  319: *         the Jth right-hand side is the first with either a normwise or
  320: *         componentwise error bound that is not guaranteed (the smallest
  321: *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
  322: *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
  323: *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
  324: *         about all of the right-hand sides check ERR_BNDS_NORM or
  325: *         ERR_BNDS_COMP.
  326: *
  327: *     ==================================================================
  328: *
  329: *     .. Parameters ..
  330:       DOUBLE PRECISION   ZERO, ONE
  331:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  332:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
  333:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
  334:       DOUBLE PRECISION   DZTHRESH_DEFAULT
  335:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
  336:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
  337:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
  338:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
  339:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
  340:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  341:      $                   LA_LINRX_CWISE_I
  342:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  343:      $                   LA_LINRX_ITHRESH_I = 2 )
  344:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  345:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  346:      $                   LA_LINRX_RCOND_I
  347:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  348:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  349: *     ..
  350: *     .. Local Scalars ..
  351:       CHARACTER(1)       NORM
  352:       LOGICAL            ROWEQU, COLEQU, NOTRAN, IGNORE_CWISE
  353:       INTEGER            J, TRANS_TYPE, PREC_TYPE, REF_TYPE, N_NORMS,
  354:      $                   ITHRESH
  355:       DOUBLE PRECISION   ANORM, RCOND_TMP, ILLRCOND_THRESH, ERR_LBND,
  356:      $                   CWISE_WRONG, RTHRESH, UNSTABLE_THRESH
  357: *     ..
  358: *     .. External Subroutines ..
  359:       EXTERNAL           XERBLA, ZGBCON, ZLA_GBRFSX_EXTENDED
  360: *     ..
  361: *     .. Intrinsic Functions ..
  362:       INTRINSIC          MAX, SQRT, TRANSFER
  363: *     ..
  364: *     .. External Functions ..
  365:       EXTERNAL           LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC
  366:       EXTERNAL           DLAMCH, ZLANGB, ZLA_GBRCOND_X, ZLA_GBRCOND_C
  367:       DOUBLE PRECISION   DLAMCH, ZLANGB, ZLA_GBRCOND_X, ZLA_GBRCOND_C
  368:       LOGICAL            LSAME
  369:       INTEGER            BLAS_FPINFO_X
  370:       INTEGER            ILATRANS, ILAPREC
  371: *     ..
  372: *     .. Executable Statements ..
  373: *
  374: *     Check the input parameters.
  375: *
  376:       INFO = 0
  377:       TRANS_TYPE = ILATRANS( TRANS )
  378:       REF_TYPE = INT( ITREF_DEFAULT )
  379:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
  380:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
  381:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
  382:          ELSE
  383:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
  384:          END IF
  385:       END IF
  386: *
  387: *     Set default parameters.
  388: *
  389:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
  390:       ITHRESH = INT( ITHRESH_DEFAULT )
  391:       RTHRESH = RTHRESH_DEFAULT
  392:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
  393:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
  394: *
  395:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
  396:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
  397:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
  398:          ELSE
  399:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
  400:          END IF
  401:       END IF
  402:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
  403:          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
  404:             IF ( IGNORE_CWISE ) THEN
  405:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
  406:             ELSE
  407:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
  408:             END IF
  409:          ELSE
  410:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
  411:          END IF
  412:       END IF
  413:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
  414:          N_NORMS = 0
  415:       ELSE IF ( IGNORE_CWISE ) THEN
  416:          N_NORMS = 1
  417:       ELSE
  418:          N_NORMS = 2
  419:       END IF
  420: *
  421:       NOTRAN = LSAME( TRANS, 'N' )
  422:       ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  423:       COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  424: *
  425: *     Test input parameters.
  426: *
  427:       IF( TRANS_TYPE.EQ.-1 ) THEN
  428:         INFO = -1
  429:       ELSE IF( .NOT.ROWEQU .AND. .NOT.COLEQU .AND.
  430:      $         .NOT.LSAME( EQUED, 'N' ) ) THEN
  431:         INFO = -2
  432:       ELSE IF( N.LT.0 ) THEN
  433:         INFO = -3
  434:       ELSE IF( KL.LT.0 ) THEN
  435:         INFO = -4
  436:       ELSE IF( KU.LT.0 ) THEN
  437:         INFO = -5
  438:       ELSE IF( NRHS.LT.0 ) THEN
  439:         INFO = -6
  440:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  441:         INFO = -8
  442:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  443:         INFO = -10
  444:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  445:         INFO = -13
  446:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  447:         INFO = -15
  448:       END IF
  449:       IF( INFO.NE.0 ) THEN
  450:         CALL XERBLA( 'ZGBRFSX', -INFO )
  451:         RETURN
  452:       END IF
  453: *
  454: *     Quick return if possible.
  455: *
  456:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  457:          RCOND = 1.0D+0
  458:          DO J = 1, NRHS
  459:             BERR( J ) = 0.0D+0
  460:             IF ( N_ERR_BNDS .GE. 1 ) THEN
  461:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  462:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  463:             END IF
  464:             IF ( N_ERR_BNDS .GE. 2 ) THEN
  465:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
  466:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
  467:             END IF
  468:             IF ( N_ERR_BNDS .GE. 3 ) THEN
  469:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
  470:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
  471:             END IF
  472:          END DO
  473:          RETURN
  474:       END IF
  475: *
  476: *     Default to failure.
  477: *
  478:       RCOND = 0.0D+0
  479:       DO J = 1, NRHS
  480:          BERR( J ) = 1.0D+0
  481:          IF ( N_ERR_BNDS .GE. 1 ) THEN
  482:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  483:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  484:          END IF
  485:          IF ( N_ERR_BNDS .GE. 2 ) THEN
  486:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  487:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  488:          END IF
  489:          IF ( N_ERR_BNDS .GE. 3 ) THEN
  490:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
  491:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
  492:          END IF
  493:       END DO
  494: *
  495: *     Compute the norm of A and the reciprocal of the condition
  496: *     number of A.
  497: *
  498:       IF( NOTRAN ) THEN
  499:          NORM = 'I'
  500:       ELSE
  501:          NORM = '1'
  502:       END IF
  503:       ANORM = ZLANGB( NORM, N, KL, KU, AB, LDAB, RWORK )
  504:       CALL ZGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
  505:      $     WORK, RWORK, INFO )
  506: *
  507: *     Perform refinement on each right-hand side
  508: *
  509:       IF ( REF_TYPE .NE. 0 ) THEN
  510: 
  511:          PREC_TYPE = ILAPREC( 'E' )
  512: 
  513:          IF ( NOTRAN ) THEN
  514:             CALL ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N, KL, KU,
  515:      $           NRHS, AB, LDAB, AFB, LDAFB, IPIV, COLEQU, C, B,
  516:      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
  517:      $           ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
  518:      $           TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
  519:      $           RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
  520:      $           INFO )
  521:          ELSE
  522:             CALL ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N, KL, KU,
  523:      $           NRHS, AB, LDAB, AFB, LDAFB, IPIV, ROWEQU, R, B,
  524:      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
  525:      $           ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
  526:      $           TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
  527:      $           RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
  528:      $           INFO )
  529:          END IF
  530:       END IF
  531: 
  532:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
  533:       IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN
  534: *
  535: *     Compute scaled normwise condition number cond(A*C).
  536: *
  537:          IF ( COLEQU .AND. NOTRAN ) THEN
  538:             RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
  539:      $           LDAFB, IPIV, C, .TRUE., INFO, WORK, RWORK )
  540:          ELSE IF ( ROWEQU .AND. .NOT. NOTRAN ) THEN
  541:             RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
  542:      $           LDAFB, IPIV, R, .TRUE., INFO, WORK, RWORK )
  543:          ELSE
  544:             RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
  545:      $           LDAFB, IPIV, C, .FALSE., INFO, WORK, RWORK )
  546:          END IF
  547:          DO J = 1, NRHS
  548: *
  549: *     Cap the error at 1.0.
  550: *
  551:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  552:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0)
  553:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  554: *
  555: *     Threshold the error (see LAWN).
  556: *
  557:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  558:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
  559:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
  560:                IF ( INFO .LE. N ) INFO = N + J
  561:             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
  562:      $              THEN
  563:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
  564:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
  565:             END IF
  566: *
  567: *     Save the condition number.
  568: *
  569:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  570:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  571:             END IF
  572: 
  573:          END DO
  574:       END IF
  575: 
  576:       IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2) THEN
  577: *
  578: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
  579: *     each right-hand side using the current solution as an estimate of
  580: *     the true solution.  If the componentwise error estimate is too
  581: *     large, then the solution is a lousy estimate of truth and the
  582: *     estimated RCOND may be too optimistic.  To avoid misleading users,
  583: *     the inverse condition number is set to 0.0 when the estimated
  584: *     cwise error is at least CWISE_WRONG.
  585: *
  586:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
  587:          DO J = 1, NRHS
  588:             IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
  589:      $     THEN
  590:                RCOND_TMP = ZLA_GBRCOND_X( TRANS, N, KL, KU, AB, LDAB,
  591:      $              AFB, LDAFB, IPIV, X( 1, J ), INFO, WORK, RWORK )
  592:             ELSE
  593:                RCOND_TMP = 0.0D+0
  594:             END IF
  595: *
  596: *     Cap the error at 1.0.
  597: *
  598:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
  599:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
  600:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  601: *
  602: *     Threshold the error (see LAWN).
  603: *
  604:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
  605:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
  606:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
  607:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
  608:      $              .AND. INFO.LT.N + J ) INFO = N + J
  609:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
  610:      $              .LT. ERR_LBND ) THEN
  611:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
  612:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
  613:             END IF
  614: *
  615: *     Save the condition number.
  616: *
  617:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
  618:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
  619:             END IF
  620: 
  621:          END DO
  622:       END IF
  623: *
  624:       RETURN
  625: *
  626: *     End of ZGBRFSX
  627: *
  628:       END

CVSweb interface <joel.bertrand@systella.fr>