Annotation of rpl/lapack/lapack/zgbrfsx.f, revision 1.5

1.5     ! bertrand    1: *> \brief \b ZGBRFSX
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGBRFSX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbrfsx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbrfsx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbrfsx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB,
        !            22: *                           LDAFB, IPIV, R, C, B, LDB, X, LDX, RCOND,
        !            23: *                           BERR, N_ERR_BNDS, ERR_BNDS_NORM,
        !            24: *                           ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK,
        !            25: *                           INFO )
        !            26: * 
        !            27: *       .. Scalar Arguments ..
        !            28: *       CHARACTER          TRANS, EQUED
        !            29: *       INTEGER            INFO, LDAB, LDAFB, LDB, LDX, N, KL, KU, NRHS,
        !            30: *      $                   NPARAMS, N_ERR_BNDS
        !            31: *       DOUBLE PRECISION   RCOND
        !            32: *       ..
        !            33: *       .. Array Arguments ..
        !            34: *       INTEGER            IPIV( * )
        !            35: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            36: *      $                   X( LDX , * ),WORK( * )
        !            37: *       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
        !            38: *      $                   ERR_BNDS_NORM( NRHS, * ),
        !            39: *      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
        !            40: *       ..
        !            41: *  
        !            42: *
        !            43: *> \par Purpose:
        !            44: *  =============
        !            45: *>
        !            46: *> \verbatim
        !            47: *>
        !            48: *>    ZGBRFSX improves the computed solution to a system of linear
        !            49: *>    equations and provides error bounds and backward error estimates
        !            50: *>    for the solution.  In addition to normwise error bound, the code
        !            51: *>    provides maximum componentwise error bound if possible.  See
        !            52: *>    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
        !            53: *>    error bounds.
        !            54: *>
        !            55: *>    The original system of linear equations may have been equilibrated
        !            56: *>    before calling this routine, as described by arguments EQUED, R
        !            57: *>    and C below. In this case, the solution and error bounds returned
        !            58: *>    are for the original unequilibrated system.
        !            59: *> \endverbatim
        !            60: *
        !            61: *  Arguments:
        !            62: *  ==========
        !            63: *
        !            64: *> \verbatim
        !            65: *>     Some optional parameters are bundled in the PARAMS array.  These
        !            66: *>     settings determine how refinement is performed, but often the
        !            67: *>     defaults are acceptable.  If the defaults are acceptable, users
        !            68: *>     can pass NPARAMS = 0 which prevents the source code from accessing
        !            69: *>     the PARAMS argument.
        !            70: *> \endverbatim
        !            71: *>
        !            72: *> \param[in] TRANS
        !            73: *> \verbatim
        !            74: *>          TRANS is CHARACTER*1
        !            75: *>     Specifies the form of the system of equations:
        !            76: *>       = 'N':  A * X = B     (No transpose)
        !            77: *>       = 'T':  A**T * X = B  (Transpose)
        !            78: *>       = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[in] EQUED
        !            82: *> \verbatim
        !            83: *>          EQUED is CHARACTER*1
        !            84: *>     Specifies the form of equilibration that was done to A
        !            85: *>     before calling this routine. This is needed to compute
        !            86: *>     the solution and error bounds correctly.
        !            87: *>       = 'N':  No equilibration
        !            88: *>       = 'R':  Row equilibration, i.e., A has been premultiplied by
        !            89: *>               diag(R).
        !            90: *>       = 'C':  Column equilibration, i.e., A has been postmultiplied
        !            91: *>               by diag(C).
        !            92: *>       = 'B':  Both row and column equilibration, i.e., A has been
        !            93: *>               replaced by diag(R) * A * diag(C).
        !            94: *>               The right hand side B has been changed accordingly.
        !            95: *> \endverbatim
        !            96: *>
        !            97: *> \param[in] N
        !            98: *> \verbatim
        !            99: *>          N is INTEGER
        !           100: *>     The order of the matrix A.  N >= 0.
        !           101: *> \endverbatim
        !           102: *>
        !           103: *> \param[in] KL
        !           104: *> \verbatim
        !           105: *>          KL is INTEGER
        !           106: *>     The number of subdiagonals within the band of A.  KL >= 0.
        !           107: *> \endverbatim
        !           108: *>
        !           109: *> \param[in] KU
        !           110: *> \verbatim
        !           111: *>          KU is INTEGER
        !           112: *>     The number of superdiagonals within the band of A.  KU >= 0.
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[in] NRHS
        !           116: *> \verbatim
        !           117: *>          NRHS is INTEGER
        !           118: *>     The number of right hand sides, i.e., the number of columns
        !           119: *>     of the matrices B and X.  NRHS >= 0.
        !           120: *> \endverbatim
        !           121: *>
        !           122: *> \param[in] AB
        !           123: *> \verbatim
        !           124: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
        !           125: *>     The original band matrix A, stored in rows 1 to KL+KU+1.
        !           126: *>     The j-th column of A is stored in the j-th column of the
        !           127: *>     array AB as follows:
        !           128: *>     AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[in] LDAB
        !           132: *> \verbatim
        !           133: *>          LDAB is INTEGER
        !           134: *>     The leading dimension of the array AB.  LDAB >= KL+KU+1.
        !           135: *> \endverbatim
        !           136: *>
        !           137: *> \param[in] AFB
        !           138: *> \verbatim
        !           139: *>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
        !           140: *>     Details of the LU factorization of the band matrix A, as
        !           141: *>     computed by DGBTRF.  U is stored as an upper triangular band
        !           142: *>     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
        !           143: *>     the multipliers used during the factorization are stored in
        !           144: *>     rows KL+KU+2 to 2*KL+KU+1.
        !           145: *> \endverbatim
        !           146: *>
        !           147: *> \param[in] LDAFB
        !           148: *> \verbatim
        !           149: *>          LDAFB is INTEGER
        !           150: *>     The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
        !           151: *> \endverbatim
        !           152: *>
        !           153: *> \param[in] IPIV
        !           154: *> \verbatim
        !           155: *>          IPIV is INTEGER array, dimension (N)
        !           156: *>     The pivot indices from DGETRF; for 1<=i<=N, row i of the
        !           157: *>     matrix was interchanged with row IPIV(i).
        !           158: *> \endverbatim
        !           159: *>
        !           160: *> \param[in,out] R
        !           161: *> \verbatim
        !           162: *>          R is or output) DOUBLE PRECISION array, dimension (N)
        !           163: *>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
        !           164: *>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
        !           165: *>     is not accessed.  R is an input argument if FACT = 'F';
        !           166: *>     otherwise, R is an output argument.  If FACT = 'F' and
        !           167: *>     EQUED = 'R' or 'B', each element of R must be positive.
        !           168: *>     If R is output, each element of R is a power of the radix.
        !           169: *>     If R is input, each element of R should be a power of the radix
        !           170: *>     to ensure a reliable solution and error estimates. Scaling by
        !           171: *>     powers of the radix does not cause rounding errors unless the
        !           172: *>     result underflows or overflows. Rounding errors during scaling
        !           173: *>     lead to refining with a matrix that is not equivalent to the
        !           174: *>     input matrix, producing error estimates that may not be
        !           175: *>     reliable.
        !           176: *> \endverbatim
        !           177: *>
        !           178: *> \param[in,out] C
        !           179: *> \verbatim
        !           180: *>          C is or output) DOUBLE PRECISION array, dimension (N)
        !           181: *>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
        !           182: *>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
        !           183: *>     is not accessed.  C is an input argument if FACT = 'F';
        !           184: *>     otherwise, C is an output argument.  If FACT = 'F' and
        !           185: *>     EQUED = 'C' or 'B', each element of C must be positive.
        !           186: *>     If C is output, each element of C is a power of the radix.
        !           187: *>     If C is input, each element of C should be a power of the radix
        !           188: *>     to ensure a reliable solution and error estimates. Scaling by
        !           189: *>     powers of the radix does not cause rounding errors unless the
        !           190: *>     result underflows or overflows. Rounding errors during scaling
        !           191: *>     lead to refining with a matrix that is not equivalent to the
        !           192: *>     input matrix, producing error estimates that may not be
        !           193: *>     reliable.
        !           194: *> \endverbatim
        !           195: *>
        !           196: *> \param[in] B
        !           197: *> \verbatim
        !           198: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           199: *>     The right hand side matrix B.
        !           200: *> \endverbatim
        !           201: *>
        !           202: *> \param[in] LDB
        !           203: *> \verbatim
        !           204: *>          LDB is INTEGER
        !           205: *>     The leading dimension of the array B.  LDB >= max(1,N).
        !           206: *> \endverbatim
        !           207: *>
        !           208: *> \param[in,out] X
        !           209: *> \verbatim
        !           210: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           211: *>     On entry, the solution matrix X, as computed by DGETRS.
        !           212: *>     On exit, the improved solution matrix X.
        !           213: *> \endverbatim
        !           214: *>
        !           215: *> \param[in] LDX
        !           216: *> \verbatim
        !           217: *>          LDX is INTEGER
        !           218: *>     The leading dimension of the array X.  LDX >= max(1,N).
        !           219: *> \endverbatim
        !           220: *>
        !           221: *> \param[out] RCOND
        !           222: *> \verbatim
        !           223: *>          RCOND is DOUBLE PRECISION
        !           224: *>     Reciprocal scaled condition number.  This is an estimate of the
        !           225: *>     reciprocal Skeel condition number of the matrix A after
        !           226: *>     equilibration (if done).  If this is less than the machine
        !           227: *>     precision (in particular, if it is zero), the matrix is singular
        !           228: *>     to working precision.  Note that the error may still be small even
        !           229: *>     if this number is very small and the matrix appears ill-
        !           230: *>     conditioned.
        !           231: *> \endverbatim
        !           232: *>
        !           233: *> \param[out] BERR
        !           234: *> \verbatim
        !           235: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           236: *>     Componentwise relative backward error.  This is the
        !           237: *>     componentwise relative backward error of each solution vector X(j)
        !           238: *>     (i.e., the smallest relative change in any element of A or B that
        !           239: *>     makes X(j) an exact solution).
        !           240: *> \endverbatim
        !           241: *>
        !           242: *> \param[in] N_ERR_BNDS
        !           243: *> \verbatim
        !           244: *>          N_ERR_BNDS is INTEGER
        !           245: *>     Number of error bounds to return for each right hand side
        !           246: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
        !           247: *>     ERR_BNDS_COMP below.
        !           248: *> \endverbatim
        !           249: *>
        !           250: *> \param[out] ERR_BNDS_NORM
        !           251: *> \verbatim
        !           252: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           253: *>     For each right-hand side, this array contains information about
        !           254: *>     various error bounds and condition numbers corresponding to the
        !           255: *>     normwise relative error, which is defined as follows:
        !           256: *>
        !           257: *>     Normwise relative error in the ith solution vector:
        !           258: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
        !           259: *>            ------------------------------
        !           260: *>                  max_j abs(X(j,i))
        !           261: *>
        !           262: *>     The array is indexed by the type of error information as described
        !           263: *>     below. There currently are up to three pieces of information
        !           264: *>     returned.
        !           265: *>
        !           266: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
        !           267: *>     right-hand side.
        !           268: *>
        !           269: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
        !           270: *>     three fields:
        !           271: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           272: *>              reciprocal condition number is less than the threshold
        !           273: *>              sqrt(n) * dlamch('Epsilon').
        !           274: *>
        !           275: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           276: *>              almost certainly within a factor of 10 of the true error
        !           277: *>              so long as the next entry is greater than the threshold
        !           278: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           279: *>              be trusted if the previous boolean is true.
        !           280: *>
        !           281: *>     err = 3  Reciprocal condition number: Estimated normwise
        !           282: *>              reciprocal condition number.  Compared with the threshold
        !           283: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           284: *>              estimate is "guaranteed". These reciprocal condition
        !           285: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           286: *>              appropriately scaled matrix Z.
        !           287: *>              Let Z = S*A, where S scales each row by a power of the
        !           288: *>              radix so all absolute row sums of Z are approximately 1.
        !           289: *>
        !           290: *>     See Lapack Working Note 165 for further details and extra
        !           291: *>     cautions.
        !           292: *> \endverbatim
        !           293: *>
        !           294: *> \param[out] ERR_BNDS_COMP
        !           295: *> \verbatim
        !           296: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           297: *>     For each right-hand side, this array contains information about
        !           298: *>     various error bounds and condition numbers corresponding to the
        !           299: *>     componentwise relative error, which is defined as follows:
        !           300: *>
        !           301: *>     Componentwise relative error in the ith solution vector:
        !           302: *>                    abs(XTRUE(j,i) - X(j,i))
        !           303: *>             max_j ----------------------
        !           304: *>                         abs(X(j,i))
        !           305: *>
        !           306: *>     The array is indexed by the right-hand side i (on which the
        !           307: *>     componentwise relative error depends), and the type of error
        !           308: *>     information as described below. There currently are up to three
        !           309: *>     pieces of information returned for each right-hand side. If
        !           310: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
        !           311: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
        !           312: *>     the first (:,N_ERR_BNDS) entries are returned.
        !           313: *>
        !           314: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
        !           315: *>     right-hand side.
        !           316: *>
        !           317: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
        !           318: *>     three fields:
        !           319: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           320: *>              reciprocal condition number is less than the threshold
        !           321: *>              sqrt(n) * dlamch('Epsilon').
        !           322: *>
        !           323: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           324: *>              almost certainly within a factor of 10 of the true error
        !           325: *>              so long as the next entry is greater than the threshold
        !           326: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           327: *>              be trusted if the previous boolean is true.
        !           328: *>
        !           329: *>     err = 3  Reciprocal condition number: Estimated componentwise
        !           330: *>              reciprocal condition number.  Compared with the threshold
        !           331: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           332: *>              estimate is "guaranteed". These reciprocal condition
        !           333: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           334: *>              appropriately scaled matrix Z.
        !           335: *>              Let Z = S*(A*diag(x)), where x is the solution for the
        !           336: *>              current right-hand side and S scales each row of
        !           337: *>              A*diag(x) by a power of the radix so all absolute row
        !           338: *>              sums of Z are approximately 1.
        !           339: *>
        !           340: *>     See Lapack Working Note 165 for further details and extra
        !           341: *>     cautions.
        !           342: *> \endverbatim
        !           343: *>
        !           344: *> \param[in] NPARAMS
        !           345: *> \verbatim
        !           346: *>          NPARAMS is INTEGER
        !           347: *>     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
        !           348: *>     PARAMS array is never referenced and default values are used.
        !           349: *> \endverbatim
        !           350: *>
        !           351: *> \param[in,out] PARAMS
        !           352: *> \verbatim
        !           353: *>          PARAMS is / output) DOUBLE PRECISION array, dimension NPARAMS
        !           354: *>     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
        !           355: *>     that entry will be filled with default value used for that
        !           356: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
        !           357: *>     are used for higher-numbered parameters.
        !           358: *>
        !           359: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
        !           360: *>            refinement or not.
        !           361: *>         Default: 1.0D+0
        !           362: *>            = 0.0 : No refinement is performed, and no error bounds are
        !           363: *>                    computed.
        !           364: *>            = 1.0 : Use the double-precision refinement algorithm,
        !           365: *>                    possibly with doubled-single computations if the
        !           366: *>                    compilation environment does not support DOUBLE
        !           367: *>                    PRECISION.
        !           368: *>              (other values are reserved for future use)
        !           369: *>
        !           370: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
        !           371: *>            computations allowed for refinement.
        !           372: *>         Default: 10
        !           373: *>         Aggressive: Set to 100 to permit convergence using approximate
        !           374: *>                     factorizations or factorizations other than LU. If
        !           375: *>                     the factorization uses a technique other than
        !           376: *>                     Gaussian elimination, the guarantees in
        !           377: *>                     err_bnds_norm and err_bnds_comp may no longer be
        !           378: *>                     trustworthy.
        !           379: *>
        !           380: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
        !           381: *>            will attempt to find a solution with small componentwise
        !           382: *>            relative error in the double-precision algorithm.  Positive
        !           383: *>            is true, 0.0 is false.
        !           384: *>         Default: 1.0 (attempt componentwise convergence)
        !           385: *> \endverbatim
        !           386: *>
        !           387: *> \param[out] WORK
        !           388: *> \verbatim
        !           389: *>          WORK is COMPLEX*16 array, dimension (2*N)
        !           390: *> \endverbatim
        !           391: *>
        !           392: *> \param[out] RWORK
        !           393: *> \verbatim
        !           394: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
        !           395: *> \endverbatim
        !           396: *>
        !           397: *> \param[out] INFO
        !           398: *> \verbatim
        !           399: *>          INFO is INTEGER
        !           400: *>       = 0:  Successful exit. The solution to every right-hand side is
        !           401: *>         guaranteed.
        !           402: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
        !           403: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
        !           404: *>         has been completed, but the factor U is exactly singular, so
        !           405: *>         the solution and error bounds could not be computed. RCOND = 0
        !           406: *>         is returned.
        !           407: *>       = N+J: The solution corresponding to the Jth right-hand side is
        !           408: *>         not guaranteed. The solutions corresponding to other right-
        !           409: *>         hand sides K with K > J may not be guaranteed as well, but
        !           410: *>         only the first such right-hand side is reported. If a small
        !           411: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
        !           412: *>         the Jth right-hand side is the first with a normwise error
        !           413: *>         bound that is not guaranteed (the smallest J such
        !           414: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
        !           415: *>         the Jth right-hand side is the first with either a normwise or
        !           416: *>         componentwise error bound that is not guaranteed (the smallest
        !           417: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
        !           418: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
        !           419: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
        !           420: *>         about all of the right-hand sides check ERR_BNDS_NORM or
        !           421: *>         ERR_BNDS_COMP.
        !           422: *> \endverbatim
        !           423: *
        !           424: *  Authors:
        !           425: *  ========
        !           426: *
        !           427: *> \author Univ. of Tennessee 
        !           428: *> \author Univ. of California Berkeley 
        !           429: *> \author Univ. of Colorado Denver 
        !           430: *> \author NAG Ltd. 
        !           431: *
        !           432: *> \date November 2011
        !           433: *
        !           434: *> \ingroup complex16GBcomputational
        !           435: *
        !           436: *  =====================================================================
1.1       bertrand  437:       SUBROUTINE ZGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB,
                    438:      $                    LDAFB, IPIV, R, C, B, LDB, X, LDX, RCOND,
                    439:      $                    BERR, N_ERR_BNDS, ERR_BNDS_NORM,
                    440:      $                    ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK,
                    441:      $                    INFO )
                    442: *
1.5     ! bertrand  443: *  -- LAPACK computational routine (version 3.4.0) --
        !           444: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           445: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           446: *     November 2011
1.1       bertrand  447: *
                    448: *     .. Scalar Arguments ..
                    449:       CHARACTER          TRANS, EQUED
                    450:       INTEGER            INFO, LDAB, LDAFB, LDB, LDX, N, KL, KU, NRHS,
                    451:      $                   NPARAMS, N_ERR_BNDS
                    452:       DOUBLE PRECISION   RCOND
                    453: *     ..
                    454: *     .. Array Arguments ..
                    455:       INTEGER            IPIV( * )
                    456:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    457:      $                   X( LDX , * ),WORK( * )
                    458:       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
                    459:      $                   ERR_BNDS_NORM( NRHS, * ),
                    460:      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
                    461: *     ..
                    462: *
1.5     ! bertrand  463: *  ==================================================================
1.1       bertrand  464: *
                    465: *     .. Parameters ..
                    466:       DOUBLE PRECISION   ZERO, ONE
                    467:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    468:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
                    469:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
                    470:       DOUBLE PRECISION   DZTHRESH_DEFAULT
                    471:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
                    472:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
                    473:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
                    474:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
                    475:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
                    476:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    477:      $                   LA_LINRX_CWISE_I
                    478:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    479:      $                   LA_LINRX_ITHRESH_I = 2 )
                    480:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    481:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    482:      $                   LA_LINRX_RCOND_I
                    483:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    484:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    485: *     ..
                    486: *     .. Local Scalars ..
                    487:       CHARACTER(1)       NORM
                    488:       LOGICAL            ROWEQU, COLEQU, NOTRAN, IGNORE_CWISE
                    489:       INTEGER            J, TRANS_TYPE, PREC_TYPE, REF_TYPE, N_NORMS,
                    490:      $                   ITHRESH
                    491:       DOUBLE PRECISION   ANORM, RCOND_TMP, ILLRCOND_THRESH, ERR_LBND,
                    492:      $                   CWISE_WRONG, RTHRESH, UNSTABLE_THRESH
                    493: *     ..
                    494: *     .. External Subroutines ..
                    495:       EXTERNAL           XERBLA, ZGBCON, ZLA_GBRFSX_EXTENDED
                    496: *     ..
                    497: *     .. Intrinsic Functions ..
                    498:       INTRINSIC          MAX, SQRT, TRANSFER
                    499: *     ..
                    500: *     .. External Functions ..
                    501:       EXTERNAL           LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC
                    502:       EXTERNAL           DLAMCH, ZLANGB, ZLA_GBRCOND_X, ZLA_GBRCOND_C
                    503:       DOUBLE PRECISION   DLAMCH, ZLANGB, ZLA_GBRCOND_X, ZLA_GBRCOND_C
                    504:       LOGICAL            LSAME
                    505:       INTEGER            BLAS_FPINFO_X
                    506:       INTEGER            ILATRANS, ILAPREC
                    507: *     ..
                    508: *     .. Executable Statements ..
                    509: *
                    510: *     Check the input parameters.
                    511: *
                    512:       INFO = 0
                    513:       TRANS_TYPE = ILATRANS( TRANS )
                    514:       REF_TYPE = INT( ITREF_DEFAULT )
                    515:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
                    516:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
                    517:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
                    518:          ELSE
                    519:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
                    520:          END IF
                    521:       END IF
                    522: *
                    523: *     Set default parameters.
                    524: *
                    525:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
                    526:       ITHRESH = INT( ITHRESH_DEFAULT )
                    527:       RTHRESH = RTHRESH_DEFAULT
                    528:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
                    529:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
                    530: *
                    531:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
                    532:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
                    533:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
                    534:          ELSE
                    535:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
                    536:          END IF
                    537:       END IF
                    538:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
                    539:          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
                    540:             IF ( IGNORE_CWISE ) THEN
                    541:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
                    542:             ELSE
                    543:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
                    544:             END IF
                    545:          ELSE
                    546:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
                    547:          END IF
                    548:       END IF
                    549:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
                    550:          N_NORMS = 0
                    551:       ELSE IF ( IGNORE_CWISE ) THEN
                    552:          N_NORMS = 1
                    553:       ELSE
                    554:          N_NORMS = 2
                    555:       END IF
                    556: *
                    557:       NOTRAN = LSAME( TRANS, 'N' )
                    558:       ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    559:       COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    560: *
                    561: *     Test input parameters.
                    562: *
                    563:       IF( TRANS_TYPE.EQ.-1 ) THEN
                    564:         INFO = -1
                    565:       ELSE IF( .NOT.ROWEQU .AND. .NOT.COLEQU .AND.
                    566:      $         .NOT.LSAME( EQUED, 'N' ) ) THEN
                    567:         INFO = -2
                    568:       ELSE IF( N.LT.0 ) THEN
                    569:         INFO = -3
                    570:       ELSE IF( KL.LT.0 ) THEN
                    571:         INFO = -4
                    572:       ELSE IF( KU.LT.0 ) THEN
                    573:         INFO = -5
                    574:       ELSE IF( NRHS.LT.0 ) THEN
                    575:         INFO = -6
                    576:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
                    577:         INFO = -8
                    578:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
                    579:         INFO = -10
                    580:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    581:         INFO = -13
                    582:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    583:         INFO = -15
                    584:       END IF
                    585:       IF( INFO.NE.0 ) THEN
                    586:         CALL XERBLA( 'ZGBRFSX', -INFO )
                    587:         RETURN
                    588:       END IF
                    589: *
                    590: *     Quick return if possible.
                    591: *
                    592:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    593:          RCOND = 1.0D+0
                    594:          DO J = 1, NRHS
                    595:             BERR( J ) = 0.0D+0
                    596:             IF ( N_ERR_BNDS .GE. 1 ) THEN
                    597:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    598:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    599:             END IF
                    600:             IF ( N_ERR_BNDS .GE. 2 ) THEN
                    601:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
                    602:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
                    603:             END IF
                    604:             IF ( N_ERR_BNDS .GE. 3 ) THEN
                    605:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    606:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
                    607:             END IF
                    608:          END DO
                    609:          RETURN
                    610:       END IF
                    611: *
                    612: *     Default to failure.
                    613: *
                    614:       RCOND = 0.0D+0
                    615:       DO J = 1, NRHS
                    616:          BERR( J ) = 1.0D+0
                    617:          IF ( N_ERR_BNDS .GE. 1 ) THEN
                    618:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    619:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    620:          END IF
                    621:          IF ( N_ERR_BNDS .GE. 2 ) THEN
                    622:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    623:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    624:          END IF
                    625:          IF ( N_ERR_BNDS .GE. 3 ) THEN
                    626:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    627:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
                    628:          END IF
                    629:       END DO
                    630: *
                    631: *     Compute the norm of A and the reciprocal of the condition
                    632: *     number of A.
                    633: *
                    634:       IF( NOTRAN ) THEN
                    635:          NORM = 'I'
                    636:       ELSE
                    637:          NORM = '1'
                    638:       END IF
                    639:       ANORM = ZLANGB( NORM, N, KL, KU, AB, LDAB, RWORK )
                    640:       CALL ZGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
                    641:      $     WORK, RWORK, INFO )
                    642: *
                    643: *     Perform refinement on each right-hand side
                    644: *
                    645:       IF ( REF_TYPE .NE. 0 ) THEN
                    646: 
                    647:          PREC_TYPE = ILAPREC( 'E' )
                    648: 
                    649:          IF ( NOTRAN ) THEN
                    650:             CALL ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N, KL, KU,
                    651:      $           NRHS, AB, LDAB, AFB, LDAFB, IPIV, COLEQU, C, B,
                    652:      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
                    653:      $           ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
                    654:      $           TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
                    655:      $           RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
                    656:      $           INFO )
                    657:          ELSE
                    658:             CALL ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N, KL, KU,
                    659:      $           NRHS, AB, LDAB, AFB, LDAFB, IPIV, ROWEQU, R, B,
                    660:      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
                    661:      $           ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
                    662:      $           TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
                    663:      $           RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
                    664:      $           INFO )
                    665:          END IF
                    666:       END IF
                    667: 
                    668:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
                    669:       IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN
                    670: *
                    671: *     Compute scaled normwise condition number cond(A*C).
                    672: *
                    673:          IF ( COLEQU .AND. NOTRAN ) THEN
                    674:             RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
                    675:      $           LDAFB, IPIV, C, .TRUE., INFO, WORK, RWORK )
                    676:          ELSE IF ( ROWEQU .AND. .NOT. NOTRAN ) THEN
                    677:             RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
                    678:      $           LDAFB, IPIV, R, .TRUE., INFO, WORK, RWORK )
                    679:          ELSE
                    680:             RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
                    681:      $           LDAFB, IPIV, C, .FALSE., INFO, WORK, RWORK )
                    682:          END IF
                    683:          DO J = 1, NRHS
                    684: *
                    685: *     Cap the error at 1.0.
                    686: *
                    687:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    688:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0)
                    689:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    690: *
                    691: *     Threshold the error (see LAWN).
                    692: *
                    693:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
                    694:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
                    695:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    696:                IF ( INFO .LE. N ) INFO = N + J
                    697:             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
                    698:      $              THEN
                    699:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
                    700:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    701:             END IF
                    702: *
                    703: *     Save the condition number.
                    704: *
                    705:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    706:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    707:             END IF
                    708: 
                    709:          END DO
                    710:       END IF
                    711: 
                    712:       IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2) THEN
                    713: *
                    714: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
                    715: *     each right-hand side using the current solution as an estimate of
                    716: *     the true solution.  If the componentwise error estimate is too
                    717: *     large, then the solution is a lousy estimate of truth and the
                    718: *     estimated RCOND may be too optimistic.  To avoid misleading users,
                    719: *     the inverse condition number is set to 0.0 when the estimated
                    720: *     cwise error is at least CWISE_WRONG.
                    721: *
                    722:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
                    723:          DO J = 1, NRHS
                    724:             IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
                    725:      $     THEN
                    726:                RCOND_TMP = ZLA_GBRCOND_X( TRANS, N, KL, KU, AB, LDAB,
                    727:      $              AFB, LDAFB, IPIV, X( 1, J ), INFO, WORK, RWORK )
                    728:             ELSE
                    729:                RCOND_TMP = 0.0D+0
                    730:             END IF
                    731: *
                    732: *     Cap the error at 1.0.
                    733: *
                    734:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
                    735:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
                    736:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    737: *
                    738: *     Threshold the error (see LAWN).
                    739: *
                    740:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
                    741:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
                    742:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
                    743:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
                    744:      $              .AND. INFO.LT.N + J ) INFO = N + J
                    745:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
                    746:      $              .LT. ERR_LBND ) THEN
                    747:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
                    748:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
                    749:             END IF
                    750: *
                    751: *     Save the condition number.
                    752: *
                    753:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
                    754:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
                    755:             END IF
                    756: 
                    757:          END DO
                    758:       END IF
                    759: *
                    760:       RETURN
                    761: *
                    762: *     End of ZGBRFSX
                    763: *
                    764:       END

CVSweb interface <joel.bertrand@systella.fr>